37 datasets found
  1. d

    Digital data sets describing metropolitan areas in the conterminous US

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Oct 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Digital data sets describing metropolitan areas in the conterminous US [Dataset]. https://catalog.data.gov/dataset/digital-data-sets-describing-metropolitan-areas-in-the-conterminous-us
    Explore at:
    Dataset updated
    Oct 5, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Contiguous United States, United States
    Description

    This data set describes metropolitan areas in the conterminous United States, developed from U.S. Bureau of the Census boundaries of Consolidated Metropolitan Statistical Areas (CMSA) and Metropolitan Statistical Areas (MSA), that have been processed to extract the largest contiguous urban area within each MSA or CMSA.

  2. U

    United States US: Population in Largest City: as % of Urban Population

    • ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2021). United States US: Population in Largest City: as % of Urban Population [Dataset]. https://www.ceicdata.com/en/united-states/population-and-urbanization-statistics/us-population-in-largest-city-as--of-urban-population
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    United States
    Variables measured
    Population
    Description

    United States US: Population in Largest City: as % of Urban Population data was reported at 7.020 % in 2017. This records a decrease from the previous number of 7.065 % for 2016. United States US: Population in Largest City: as % of Urban Population data is updated yearly, averaging 8.675 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 11.200 % in 1960 and a record low of 7.020 % in 2017. United States US: Population in Largest City: as % of Urban Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank.WDI: Population and Urbanization Statistics. Population in largest city is the percentage of a country's urban population living in that country's largest metropolitan area.; ; United Nations, World Urbanization Prospects.; Weighted average;

  3. o

    US Cities: Demographics

    • public.opendatasoft.com
    • data.smartidf.services
    • +3more
    csv, excel, json
    Updated Jul 27, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). US Cities: Demographics [Dataset]. https://public.opendatasoft.com/explore/dataset/us-cities-demographics/
    Explore at:
    excel, csv, jsonAvailable download formats
    Dataset updated
    Jul 27, 2017
    License

    https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain

    Area covered
    United States
    Description

    This dataset contains information about the demographics of all US cities and census-designated places with a population greater or equal to 65,000. This data comes from the US Census Bureau's 2015 American Community Survey. This product uses the Census Bureau Data API but is not endorsed or certified by the Census Bureau.

  4. Most populated cities in the U.S. - median household income 2022

    • statista.com
    Updated Aug 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Most populated cities in the U.S. - median household income 2022 [Dataset]. https://www.statista.com/statistics/205609/median-household-income-in-the-top-20-most-populated-cities-in-the-us/
    Explore at:
    Dataset updated
    Aug 30, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    United States
    Description

    In 2022, San Francisco had the highest median household income of cities ranking within the top 25 in terms of population, with a median household income in of 136,692 U.S. dollars. In that year, San Jose in California was ranked second, and Seattle, Washington third.

    Following a fall after the great recession, median household income in the United States has been increasing in recent years. As of 2022, median household income by state was highest in Maryland, Washington, D.C., Utah, and Massachusetts. It was lowest in Mississippi, West Virginia, and Arkansas. Families with an annual income of 25,000 and 49,999 U.S. dollars made up the largest income bracket in America, with about 25.26 million households.

    Data on median household income can be compared to statistics on personal income in the U.S. released by the Bureau of Economic Analysis. Personal income rose to around 21.8 trillion U.S. dollars in 2022, the highest value recorded. Personal income is a measure of the total income received by persons from all sources, while median household income is “the amount with divides the income distribution into two equal groups,” according to the U.S. Census Bureau. Half of the population in question lives above median income and half lives below. Though total personal income has increased in recent years, this wealth is not distributed throughout the population. In practical terms, income of most households has decreased. One additional statistic illustrates this disparity: for the lowest quintile of workers, mean household income has remained more or less steady for the past decade at about 13 to 16 thousand constant U.S. dollars annually. Meanwhile, income for the top five percent of workers has actually risen from about 285,000 U.S. dollars in 1990 to about 499,900 U.S. dollars in 2020.

  5. undefined undefined: undefined | undefined (undefined)

    • data.census.gov
    Updated Aug 16, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Census Bureau (2018). undefined undefined: undefined | undefined (undefined) [Dataset]. https://data.census.gov/table/ASECB2016.SE1600CSCB37?q=COMMON%20WEALTH%20BUILD%20OUT%20CO
    Explore at:
    Dataset updated
    Aug 16, 2018
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Release Date: 2018-08-10.[NOTE: Includes firms with payroll at any time during 2016. Employment reflects the number of paid employees during the March 12 pay period. Data are based on Census administrative records, and the estimates of business ownership by gender, ethnicity, race, and veteran status are from the 2016 Annual Survey of Entrepreneurs. Detail may not add to total due to rounding or because a Hispanic firm may be of any race. Moreover, each owner had the option of selecting more than one race and therefore is included in each race selected. Respondent firms include all firms that responded to the characteristic(s) tabulated in this dataset and reported gender, ethnicity, race, or veteran status or that were publicly held or not classifiable by gender, ethnicity, race, or veteran status. Percentages are for respondent firms only and are not recalculated when the dataset is resorted. Percentages are always based on total reporting (defined above) within a gender, ethnicity, race, veteran status, and/or industry group for the characteristics tabulated in this dataset. Firms with more than one domestic establishment are counted in each geographic area and industry in which they operate, but only once in the U.S. and state totals for all sectors. For information on confidentiality protection, sampling error, nonsampling error, and definitions, see Survey Methodology.]..Table Name. . Statistics for U.S. Employer Firms by Outcome of Business Advice or Mentoring by Sector, Gender, Ethnicity, Race, Veteran Status, and Years in Business for the U.S., States, and Top 50 MSAs: 2016. ..Release Schedule. . This file was released in August 2018.. ..Key Table Information. . These data are related to all other 2016 ASE files.. Refer to the Methodology section of the Annual Survey of Entrepreneurs website for additional information.. ..Universe. . The universe for the 2016 Annual Survey of Entrepreneurs (ASE) includes all U.S. firms with paid employees operating during 2016 with receipts of $1,000 or more which are classified in the North American Industry Classification System (NAICS) sectors 11 through 99, except for NAICS 111, 112, 482, 491, 521, 525, 813, 814, and 92 which are not covered. Firms with more than one domestic establishment are counted in each geographic area and industry in which they operate, but only once in the U.S. total.. In this file, "respondent firms" refers to all firms that reported gender, ethnicity, race, or veteran status for at least one owner or returned a survey form with at least one item completed and were publicly held or not classifiable by gender, ethnicity, race, and veteran status.. ..Geographic Coverage. . The data are shown for:. . United States. States and the District of Columbia. The fifty most populous metropolitan areas. . ..Industry Coverage. . The data are shown for the total of all sectors (00) and the 2-digit NAICS code level.. ..Data Items and Other Identifying Records. . Statistics for U.S. Employer Firms by Outcome of Business Advice or Mentoring by Sector, Gender, Ethnicity, Race, Veteran Status, and Years in Business for the U.S., States, and Top 50 MSAs: 2016 contains data on:. . Number of firms with paid employees. Sales and receipts for firms with paid employees. Number of employees for firms with paid employees. Annual payroll for firms with paid employees. Percent of respondent firms with paid employees. Percent of sales and receipts of respondent firms with paid employees. Percent of number of employees of respondent firms with paid employees. Percent of annual payroll of respondent firms with paid employees. . The data are shown for:. . Gender, ethnicity, race and veteran status of respondent firms. . All firms. Female-owned. Male-owned. Equally male-/female-owned. Hispanic. Equally Hispanic/non-Hispanic. Non-Hispanic. White. Black or African American. American Indian and Alaska Native. Asian. Native Hawaiian and Other Pacific Islander. Some other race. Minority. Equally minority/nonminority. Nonminority. Veteran-owned. Equally veteran-/nonveteran-owned. Nonveteran-owned. All firms classifiable by gender, ethnicity, race, and veteran status. Publicly held and other firms not classifiable by gender, ethnicity, race, and veteran status. . . Years in business. . All firms. Firms less than 2 years in business. Firms with 2 to 3 years in business. Firms with 4 to 5 years in business. Firms with 6 to 10 years in business. Firms with 11 to 15 years in business. ...

  6. m

    Maine Cities by Population

    • maine-demographics.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). Maine Cities by Population [Dataset]. https://www.maine-demographics.com/cities_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.maine-demographics.com/terms_and_conditionshttps://www.maine-demographics.com/terms_and_conditions

    Area covered
    Maine, Portland
    Description

    A dataset listing Maine cities by population for 2024.

  7. 2016 Economic Surveys: SE1600CSCB04 | Statistics for U.S. Employer Firms by...

    • data.census.gov
    Updated Aug 16, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECN (2018). 2016 Economic Surveys: SE1600CSCB04 | Statistics for U.S. Employer Firms by Owner('s) Business Aspirations by Sector, Gender, Ethnicity, Race, Veteran Status, and Years in Business for the U.S., States, and Top 50 MSAs: 2016 (ECNSVY Annual Survey of Entrepreneurs Annual Survey of Entrepreneurs Characteristics of Businesses) [Dataset]. https://data.census.gov/table/ASECB2016.SE1600CSCB04?q=S%20Perera%20MD
    Explore at:
    Dataset updated
    Aug 16, 2018
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ECN
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2016
    Area covered
    United States
    Description

    Release Date: 2018-08-10.[NOTE: Includes firms with payroll at any time during 2016. Employment reflects the number of paid employees during the March 12 pay period. Data are based on Census administrative records, and the estimates of business ownership by gender, ethnicity, race, and veteran status are from the 2016 Annual Survey of Entrepreneurs. Detail may not add to total due to rounding or because a Hispanic firm may be of any race. Moreover, each owner had the option of selecting more than one race and therefore is included in each race selected. Respondent firms include all firms that responded to the characteristic(s) tabulated in this dataset and reported gender, ethnicity, race, or veteran status or that were publicly held or not classifiable by gender, ethnicity, race, or veteran status. Percentages are for respondent firms only and are not recalculated when the dataset is resorted. Percentages are always based on total reporting (defined above) within a gender, ethnicity, race, veteran status, and/or industry group for the characteristics tabulated in this dataset. Firms with more than one domestic establishment are counted in each geographic area and industry in which they operate, but only once in the U.S. and state totals for all sectors. For information on confidentiality protection, sampling error, nonsampling error, and definitions, see Survey Methodology.]..Table Name. . Statistics for U.S. Employer Firms by Owner('s) Business Aspirations by Sector, Gender, Ethnicity, Race, Veteran Status, and Years in Business for the U.S., States, and Top 50 MSAs: 2016. ..Release Schedule. . This file was released in August 2018.. ..Key Table Information. . These data are related to all other 2016 ASE files.. Refer to the Methodology section of the Annual Survey of Entrepreneurs website for additional information.. ..Universe. . The universe for the 2016 Annual Survey of Entrepreneurs (ASE) includes all U.S. firms with paid employees operating during 2016 with receipts of $1,000 or more which are classified in the North American Industry Classification System (NAICS) sectors 11 through 99, except for NAICS 111, 112, 482, 491, 521, 525, 813, 814, and 92 which are not covered. Firms with more than one domestic establishment are counted in each geographic area and industry in which they operate, but only once in the U.S. total.. In this file, "respondent firms" refers to all firms that reported gender, ethnicity, race, or veteran status for at least one owner or returned a survey form with at least one item completed and were publicly held or not classifiable by gender, ethnicity, race, and veteran status.. ..Geographic Coverage. . The data are shown for:. . United States. States and the District of Columbia. The fifty most populous metropolitan areas. . ..Industry Coverage. . The data are shown for the total of all sectors (00) and the 2-digit NAICS code level.. ..Data Items and Other Identifying Records. . Statistics for U.S. Employer Firms by Owner('s) Business Aspirations by Sector, Gender, Ethnicity, Race, Veteran Status, and Years in Business for the U.S., States, and Top 50 MSAs: 2016 contains data on:. . Number of firms with paid employees. Sales and receipts for firms with paid employees. Number of employees for firms with paid employees. Annual payroll for firms with paid employees. Percent of respondent firms with paid employees. Percent of sales and receipts of respondent firms with paid employees. Percent of number of employees of respondent firms with paid employees. Percent of annual payroll of respondent firms with paid employees. . The data are shown for:. . Gender, ethnicity, race and veteran status of respondent firms. . All firms. Female-owned. Male-owned. Equally male-/female-owned. Hispanic. Equally Hispanic/non-Hispanic. Non-Hispanic. White. Black or African American. American Indian and Alaska Native. Asian. Native Hawaiian and Other Pacific Islander. Some other race. Minority. Equally minority/nonminority. Nonminority. Veteran-owned. Equally veteran-/nonveteran-owned. Nonveteran-owned. All firms classifiable by gender, ethnicity, race, and veteran status. Publicly held and other firms not classifiable by gender, ethnicity, race, and veteran status. . . Years in business. . All firms. Firms less than 2 years in business. Firms with 2 to 3 years in business. Firms with 4 to 5 years in business. Firms with 6 to 10 years in business. Firms with 11 to 15 years in business. Firms wi...

  8. 2016 Economic Surveys: SE1600CSCBO09 | Statistics for Owners of Respondent...

    • data.census.gov
    Updated Aug 16, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECN (2018). 2016 Economic Surveys: SE1600CSCBO09 | Statistics for Owners of Respondent Employer Firms by Whether the Owner Was Born a U.S. Citizen by Sector, Gender, Ethnicity, Race, Veteran Status, and Years in Business for the U.S., States, and Top 50 MSAs: 2016 (ECNSVY Annual Survey of Entrepreneurs Annual Survey of Entrepreneurs Characteristics of Business Owners) [Dataset]. https://data.census.gov/table/ASECBO2016.SE1600CSCBO09
    Explore at:
    Dataset updated
    Aug 16, 2018
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ECN
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2016
    Area covered
    United States
    Description

    Release Date: 2018-08-10.[NOTE: Includes firms with payroll at any time during 2016. Employment reflects the number of paid employees during the March 12 pay period. Data are based on Census administrative records, and the estimates of business ownership by gender, ethnicity, race, and veteran status are from the 2016 Annual Survey of Entrepreneurs. Detail may not add to total due to rounding or because a Hispanic firm may be of any race. Moreover, each owner had the option of selecting more than one race and therefore is included in each race selected. Respondent firms include all firms that responded to the characteristic(s) tabulated in this dataset and reported gender, ethnicity, race, or veteran status for at least one owner and were not publicly held or not classifiable by gender, ethnicity, race, and veteran status. The 2016 Annual Survey of Entrepreneurs asked for information for up to four persons owning the largest percentage(s) of the business. Percentages are for owners of respondent firms only and are not recalculated when the dataset is resorted. Percentages are always based on total reporting (defined above) within a gender, ethnicity, race, veteran status, and/or industry group for the characteristics tabulated in this dataset. Firms with more than one domestic establishment are counted in each geographic area and industry in which they operate, but only once in the U.S. and state totals for all sectors. For information on confidentiality protection, sampling error, nonsampling error, and definitions, see Survey Methodology.]..Table Name. . Statistics for Owners of Respondent Employer Firms by Whether the Owner Was Born a U.S. Citizen by Sector, Gender, Ethnicity, Race, Veteran Status, and Years in Business for the U.S., States, and Top 50 MSAs: 2016. ..Release Schedule. . This file was released in August 2018.. ..Key Table Information. . These data are related to all other 2016 ASE files.. Refer to the Methodology section of the Annual Survey of Entrepreneurs website for additional information.. ..Universe. . The universe for the 2016 Annual Survey of Entrepreneurs (ASE) includes all U.S. firms with paid employees operating during 2016 with receipts of $1,000 or more which are classified in the North American Industry Classification System (NAICS) sectors 11 through 99, except for NAICS 111, 112, 482, 491, 521, 525, 813, 814, and 92 which are not covered. Firms with more than one domestic establishment are counted in each geographic area and industry in which they operate, but only once in the U.S. total.. For Characteristics of Business Owners (CBO) data, all estimates are of owners of firms responding to the ASE. That is, estimates are based only on firms providing gender, ethnicity, race, or veteran status; or firms not classifiable by gender, ethnicity, race, and veteran status that returned an ASE online questionnaire with at least one question answered. The ASE online questionnaire provided space for up to four owners to report their characteristics.. CBO data are not representative of all owners of all firms operating in the United States. The data do not represent all business owners in the United States.. ..Geographic Coverage. . The data are shown for:. . United States. States and the District of Columbia. The fifty most populous metropolitan areas. . ..Industry Coverage. . The data are shown for the total of all sectors (00) and the 2-digit NAICS code level.. ..Data Items and Other Identifying Records. . Statistics for Owners of Respondent Employer Firms by Whether the Owner Was Born a U.S. Citizen by Sector, Gender, Ethnicity, Race, Veteran Status, and Years in Business for the U.S., States, and Top 50 MSAs: 2016 contains data on:. . Number of owners of respondent firms with paid employees. Percent of number of owners of respondent firms with paid employees. . The data are shown for:. . Gender, ethnicity, race and veteran status of owners of respondent firms. . All owners of respondent firms. Female. Male. Hispanic. Non-Hispanic. White. Black or African American. American Indian and Alaska Native. Asian. Native Hawaiian and Other Pacific Islander. Some other race. Minority. Nonminority. Veteran. Nonveteran. . . Years in business. . All firms. Firms less than 2 years in business. Firms with 2 to 3 years in business. Firms with 4 to 5 years in business. Firms with 6 to 10 years in business. Firms with 11 to 15 years in business. Firms with 16 or more years in business. . . Whether the owner was born a U.S. citizen. . Born a citizen of the Un...

  9. a

    Heat Severity - USA 2022

    • hrtc-oc-cerf.hub.arcgis.com
    • hub.arcgis.com
    • +2more
    Updated Mar 10, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2023). Heat Severity - USA 2022 [Dataset]. https://hrtc-oc-cerf.hub.arcgis.com/datasets/22be6dafba754c778bd0aba39dfc0b78
    Explore at:
    Dataset updated
    Mar 10, 2023
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    Description

    Notice: this is not the latest Heat Island Severity image service. For 2023 data, visit https://tpl.maps.arcgis.com/home/item.html?id=db5bdb0f0c8c4b85b8270ec67448a0b6. This layer contains the relative heat severity for every pixel for every city in the United States, including Alaska, Hawaii, and Puerto Rico. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2022, patched with data from 2021 where necessary.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  10. c

    Net Job and Business Growth

    • data.ccrpc.org
    csv
    Updated Oct 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Net Job and Business Growth [Dataset]. https://data.ccrpc.org/dataset/net-job-and-business-growth
    Explore at:
    csv(5801)Available download formats
    Dataset updated
    Oct 22, 2024
    Dataset provided by
    Champaign County Regional Planning Commission
    Description

    The net job and business growth indicator measures the annual change in both the number of firms and the number of employees between 1978 and 2022. The data is categorized by the size of the firm: those with 1-19 employees, those with between 20 and 499 employees, and those with more than 500 employees.

    This data contributes to the big picture of economic conditions in Champaign County. More firms and larger employment numbers are generally positive economic indicators, but any strictly economic indicator should be considered in the context of other factors.

    The number of firms and number of employees show very different trends.

    Historically, there have been significantly more firms with 1-19 employees than firms in the larger two size categories. The number of firms with 1-19 employees has also been relatively consistent until 2021: there were 95 fewer such firms in 2021 than 1978, and the largest year-to-year change in that 43-year period of analysis was a -3.2% decrease between 1979 and 1980. However, there were 437 fewer such firms in 2022 than 1978. There was a decrease in these firms of 12.5% from 2021 to 2022, the only double-digit year-to-year change and the largest year-to-year change over 44 years.

    The larger two size categories have shown an increasing trend over the period of analysis. There were 43 more firms with 20-499 employees in 2022 than 1978, a total increase of 9%. The number of firms with more than 500 employees almost doubled, increasing by 206 firms from 212 in 1978 to 418 in 2022, a total increase of 97.2%.

    The trends of employment also vary based on firm size. Firms with 1-19 employees have consistently, and unsurprisingly, accounted for less of the total employment than the larger two categories. Employment in firms with 1-19 employees has also remained relatively consistent over the period of analysis. Employment in firms with more than 500 employees saw an overall trend of growth, interrupted by brief and intermittent decreases, between 1978 and 2022. Employment in the middle category (firms with between 20 and 499 employees) was also greater in 2022 than in 1978.

    This data is from the U.S. Census Bureau’s Business Dynamics Statistics Data Tables. This data is at the geographic scale of the Champaign-Urbana Metropolitan Statistical Area (MSA), which is comprised of Champaign and Piatt Counties, or a larger area than the cities or Champaign County.

    Source: U.S. Census Bureau; 2022 Business Dynamics Statistics Data Tables; "BDSFSIZE - Business Dynamics Statistics: Firm Size: 1978-2022"; retrieved 21 October 2024.

  11. n

    Geographic Regions

    • linc.osbm.nc.gov
    • demography.osbm.nc.gov
    • +3more
    csv, excel, geojson +1
    Updated Mar 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geographic Regions [Dataset]. https://linc.osbm.nc.gov/explore/dataset/north-carolina-geographic-regions/
    Explore at:
    csv, json, geojson, excelAvailable download formats
    Dataset updated
    Mar 19, 2021
    Description

    Provides regional identifiers for county based regions of various types. These can be combined with other datasets for visualization, mapping, analyses, and aggregation. These regions include:Metropolitan Statistical Areas (Current): MSAs as defined by US OMB in 2023Metropolitan Statistical Areas (2010s): MSAs as defined by US OMB in 2013Metropolitan Statistical Areas (2000s): MSAs as defined by US OMB in 2003Region: Three broad regions in North Carolina (Eastern, Western, Central)Council of GovernmentsProsperity Zones: NC Department of Commerce Prosperity ZonesNCDOT Divisions: NC Dept. of Transportation DivisionsNCDOT Districts (within Divisions)Metro Regions: Identifies Triangle, Triad, Charlotte, All Other Metros, & Non-MetropolitanUrban/Rural defined by:NC Rural Center (Urban, Regional/Suburban, Rural) - 2020 Census designations2010 Census (Urban = Counties with 50% or more population living in urban areas in 2010)2010 Census Urbanized (Urban = Counties with 50% or more of the population living in urbanized areas in 2010 (50,000+ sized urban area))Municipal Population - State Demographer (Urban = counties with 50% or more of the population living in a municipality as of July 1, 2019)Isserman Urban-Rural Density Typology

  12. w

    Washington Cities by Population

    • washington-demographics.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). Washington Cities by Population [Dataset]. https://www.washington-demographics.com/cities_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.washington-demographics.com/terms_and_conditionshttps://www.washington-demographics.com/terms_and_conditions

    Area covered
    Washington
    Description

    A dataset listing Washington cities by population for 2024.

  13. K

    California 2050 Projected Urban Growth

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Oct 13, 2003
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of California (2003). California 2050 Projected Urban Growth [Dataset]. https://koordinates.com/layer/671-california-2050-projected-urban-growth/
    Explore at:
    dwg, geopackage / sqlite, geodatabase, kml, pdf, shapefile, mapinfo tab, mapinfo mif, csvAvailable download formats
    Dataset updated
    Oct 13, 2003
    Dataset authored and provided by
    State of California
    License

    https://koordinates.com/license/attribution-3-0/https://koordinates.com/license/attribution-3-0/

    Area covered
    Description

    50 year Projected Urban Growth scenarios. Base year is 2000. Projected year in this dataset is 2050.

    By 2020, most forecasters agree, California will be home to between 43 and 46 million residents-up from 35 million today. Beyond 2020 the size of California's population is less certain. Depending on the composition of the population, and future fertility and migration rates, California's 2050 population could be as little as 50 million or as much as 70 million. One hundred years from now, if present trends continue, California could conceivably have as many as 90 million residents. Where these future residents will live and work is unclear. For most of the 20th Century, two-thirds of Californians have lived south of the Tehachapi Mountains and west of the San Jacinto Mountains-in that part of the state commonly referred to as Southern California. Yet most of coastal Southern California is already highly urbanized, and there is relatively little vacant land available for new development. More recently, slow-growth policies in Northern California and declining developable land supplies in Southern California are squeezing ever more of the state's population growth into the San Joaquin Valley. How future Californians will occupy the landscape is also unclear. Over the last fifty years, the state's population has grown increasingly urban. Today, nearly 95 percent of Californians live in metropolitan areas, mostly at densities less than ten persons per acre. Recent growth patterns have strongly favored locations near freeways, most of which where built in the 1950s and 1960s. With few new freeways on the planning horizon, how will California's future growth organize itself in space? By national standards, California's large urban areas are already reasonably dense, and economic theory suggests that densities should increase further as California's urban regions continue to grow. In practice, densities have been rising in some urban counties, but falling in others.

    These are important issues as California plans its long-term future. Will California have enough land of the appropriate types and in the right locations to accommodate its projected population growth? Will future population growth consume ever-greater amounts of irreplaceable resource lands and habitat? Will jobs continue decentralizing, pushing out the boundaries of metropolitan areas? Will development densities be sufficient to support mass transit, or will future Californians be stuck in perpetual gridlock? Will urban and resort and recreational growth in the Sierra Nevada and Trinity Mountain regions lead to the over-fragmentation of precious natural habitat? How much water will be needed by California's future industries, farms, and residents, and where will that water be stored? Where should future highway, transit, and high-speed rail facilities and rights-of-way be located? Most of all, how much will all this growth cost, both economically, and in terms of changes in California's quality of life? Clearly, the more precise our current understanding of how and where California is likely to grow, the sooner and more inexpensively appropriate lands can be acquired for purposes of conservation, recreation, and future facility siting. Similarly, the more clearly future urbanization patterns can be anticipated, the greater our collective ability to undertake sound city, metropolitan, rural, and bioregional planning.

    Consider two scenarios for the year 2100. In the first, California's population would grow to 80 million persons and would occupy the landscape at an average density of eight persons per acre, the current statewide urban average. Under this scenario, and assuming that 10% percent of California's future population growth would occur through infill-that is, on existing urban land-California's expanding urban population would consume an additional 5.06 million acres of currently undeveloped land. As an alternative, assume the share of infill development were increased to 30%, and that new population were accommodated at a density of about 12 persons per acre-which is the current average density of the City of Los Angeles. Under this second scenario, California's urban population would consume an additional 2.6 million acres of currently undeveloped land. While both scenarios accommodate the same amount of population growth and generate large increments of additional urban development-indeed, some might say even the second scenario allows far too much growth and development-the second scenario is far kinder to California's unique natural landscape.

    This report presents the results of a series of baseline population and urban growth projections for California's 38 urban counties through the year 2100. Presented in map and table form, these projections are based on extrapolations of current population trends and recent urban development trends. The next section, titled Approach, outlines the methodology and data used to develop the various projections. The following section, Baseline Scenario, reviews the projections themselves. A final section, entitled Baseline Impacts, quantitatively assesses the impacts of the baseline projections on wetland, hillside, farmland and habitat loss.

  14. h

    Urban Heat Island Severity for U.S. cities - 2019

    • heat.gov
    • opendata.rcmrd.org
    • +6more
    Updated Sep 13, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Trust for Public Land (2019). Urban Heat Island Severity for U.S. cities - 2019 [Dataset]. https://www.heat.gov/datasets/4f6d72903c9741a6a6ee6349f5393572
    Explore at:
    Dataset updated
    Sep 13, 2019
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    Description

    Notice: this is not the latest Heat Island Severity image service. For 2023 data, visit https://tpl.maps.arcgis.com/home/item.html?id=db5bdb0f0c8c4b85b8270ec67448a0b6. This layer contains the relative heat severity for every pixel for every city in the United States. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summers of 2018 and 2019.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter than the average temperature for that same city as a whole. Severity is measured on a scale of 1 to 5, with 1 being a relatively mild heat area (slightly above the mean for the city), and 5 being a severe heat area (significantly above the mean for the city). The absolute heat above mean values are classified into these 5 classes using the Jenks Natural Breaks classification method, which seeks to reduce the variance within classes and maximize the variance between classes. Knowing where areas of high heat are located can help a city government plan for mitigation strategies.This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.What can you do with this layer?This layer has query, identify, and export image services available. Since it is served as an image service, it is not necessary to download the data; the service itself is data that can be used directly in any Esri geoprocessing tool that accepts raster data as input.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of Arizona Dr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAADaphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

  15. u

    Utah Cities by Population

    • utah-demographics.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). Utah Cities by Population [Dataset]. https://www.utah-demographics.com/cities_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.utah-demographics.com/terms_and_conditionshttps://www.utah-demographics.com/terms_and_conditions

    Area covered
    Utah
    Description

    A dataset listing Utah cities by population for 2024.

  16. v

    Virginia Cities by Population

    • virginia-demographics.com
    Updated Jun 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). Virginia Cities by Population [Dataset]. https://www.virginia-demographics.com/cities_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.virginia-demographics.com/terms_and_conditionshttps://www.virginia-demographics.com/terms_and_conditions

    Area covered
    Virginia
    Description

    A dataset listing Virginia cities by population for 2024.

  17. D

    Smart City Challenge Finalists Project Proposals - Calibration Data

    • transportation.gov
    • data.virginia.gov
    • +3more
    Updated Jan 3, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Booz Allen Hamilton and TSS-Transport Simulation Systems (2017). Smart City Challenge Finalists Project Proposals - Calibration Data [Dataset]. https://www.transportation.gov/smartcity
    Explore at:
    xml, application/geo+json, csv, application/rssxml, kml, kmz, application/rdfxml, tsvAvailable download formats
    Dataset updated
    Jan 3, 2017
    Dataset authored and provided by
    Booz Allen Hamilton and TSS-Transport Simulation Systems
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Analysis of the projects proposed by the seven finalists to USDOT's Smart City Challenge, including challenge addressed, proposed project category, and project description.

    The time reported for the speed profiles are between 2:00PM to 8:00PM in increments of 10 minutes.

  18. a

    Alabama Cities by Population

    • alabama-demographics.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). Alabama Cities by Population [Dataset]. https://www.alabama-demographics.com/cities_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.alabama-demographics.com/terms_and_conditionshttps://www.alabama-demographics.com/terms_and_conditions

    Area covered
    Huntsville, Alabama
    Description

    A dataset listing Alabama cities by population for 2024.

  19. Data from: Public Housing Developments

    • data.lojic.org
    • opendata.atlantaregional.com
    • +3more
    Updated Nov 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2024). Public Housing Developments [Dataset]. https://data.lojic.org/datasets/5c96143f79c940a0a8cedae99a1ac562
    Explore at:
    Dataset updated
    Nov 12, 2024
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Authors
    Department of Housing and Urban Development
    Area covered
    North Pacific Ocean, Pacific Ocean
    Description

    HUD furnishes technical and professional assistance in planning, developing and managing these developments. Public Housing Developments are depicted as a distinct address chosen to represent the general location of an entire Public Housing Development, which may be comprised of several buildings scattered across a community. The building with the largest number of units is selected to represent the location of the development. Location data for HUD-related properties and facilities are derived from HUD's enterprise geocoding service. While not all addresses are able to be geocoded and mapped to 100% accuracy, we are continuously working to improve address data quality and enhance coverage. Please consider this issue when using any datasets provided by HUD. When using this data, take note of the field titled “LVL2KX” which indicates the overall accuracy of the geocoded address using the following return codes: ‘R’ - Interpolated rooftop (high degree of accuracy, symbolized as green) ‘4’ - ZIP+4 centroid (high degree of accuracy, symbolized as green) ‘B’ - Block group centroid (medium degree of accuracy, symbolized as yellow) ‘T’ - Census tract centroid (low degree of accuracy, symbolized as red) ‘2’ - ZIP+2 centroid (low degree of accuracy, symbolized as red) ‘Z’ - ZIP5 centroid (low degree of accuracy, symbolized as red) ‘5’ - ZIP5 centroid (same as above, low degree of accuracy, symbolized as red) Null - Could not be geocoded (does not appear on the map) For the purposes of displaying the location of an address on a map only use addresses and their associated lat/long coordinates where the LVL2KX field is coded ‘R’ or ‘4’. These codes ensure that the address is displayed on the correct street segment and in the correct census block. The remaining LVL2KX codes provide a cascading indication of the most granular level geography for which an address can be confirmed. For example, if an address cannot be accurately interpolated to a rooftop (‘R’), or ZIP+4 centroid (‘4’), then the address will be mapped to the centroid of the next nearest confirmed geography: block group, tract, and so on. When performing any point-in polygon analysis it is important to note that points mapped to the centroids of larger geographies will be less likely to map accurately to the smaller geographies of the same area. For instance, a point coded as ‘5’ in the correct ZIP Code will be less likely to map to the correct block group or census tract for that address. In an effort to protect Personally Identifiable Information (PII), the characteristics for each building are suppressed with a -4 value when the “Number_Reported” is equal to, or less than 10. To learn more about Public Housing visit: https://www.hud.gov/program_offices/public_indian_housing/programs/ph/, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_Public Housing Developments Date Updated: 12/2024 Q3 2024

  20. a

    Full Range Heat Anomalies - USA 2022

    • hub.arcgis.com
    • community-climatesolutions.hub.arcgis.com
    Updated Mar 10, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Full Range Heat Anomalies - USA 2022 [Dataset]. https://hub.arcgis.com/datasets/26b8ebf70dfc46c7a5eb099a2380ee1d
    Explore at:
    Dataset updated
    Mar 10, 2023
    Dataset authored and provided by
    The Trust for Public Land
    Area covered
    United States
    Description

    Notice: this is not the latest Heat Island Anomalies image service. For 2023 data visit https://tpl.maps.arcgis.com/home/item.html?id=e89a556263e04cb9b0b4638253ca8d10.This layer contains the relative degrees Fahrenheit difference between any given pixel and the mean heat value for the city in which it is located, for every city in the contiguous United States, Alaska, Hawaii, and Puerto Rico. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2022, with patching from summer of 2021 where necessary.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter or cooler than the average temperature for that same city as a whole. This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Geological Survey (2024). Digital data sets describing metropolitan areas in the conterminous US [Dataset]. https://catalog.data.gov/dataset/digital-data-sets-describing-metropolitan-areas-in-the-conterminous-us

Digital data sets describing metropolitan areas in the conterminous US

Explore at:
Dataset updated
Oct 5, 2024
Dataset provided by
U.S. Geological Survey
Area covered
Contiguous United States, United States
Description

This data set describes metropolitan areas in the conterminous United States, developed from U.S. Bureau of the Census boundaries of Consolidated Metropolitan Statistical Areas (CMSA) and Metropolitan Statistical Areas (MSA), that have been processed to extract the largest contiguous urban area within each MSA or CMSA.

Search
Clear search
Close search
Google apps
Main menu