This dataset shows the the world's best hospital in 2023 issued by the Newsweek and Statista.
Success.ai’s Healthcare Professionals Data for Healthcare & Hospital Executives in Europe provides a reliable and comprehensive dataset tailored for businesses aiming to connect with decision-makers in the European healthcare and hospital sectors. Covering healthcare executives, hospital administrators, and medical directors, this dataset offers verified contact details, professional insights, and leadership profiles.
With access to over 700 million verified global profiles and data from 70 million businesses, Success.ai ensures your outreach, market research, and partnership strategies are powered by accurate, continuously updated, and GDPR-compliant data. Backed by our Best Price Guarantee, this solution is indispensable for navigating and thriving in Europe’s healthcare industry.
Why Choose Success.ai’s Healthcare Professionals Data?
Verified Contact Data for Targeted Engagement
Comprehensive Coverage of European Healthcare Professionals
Continuously Updated Datasets
Ethical and Compliant
Data Highlights:
Key Features of the Dataset:
Comprehensive Professional Profiles
Advanced Filters for Precision Campaigns
Healthcare Industry Insights
AI-Driven Enrichment
Strategic Use Cases:
Marketing and Outreach to Healthcare Executives
Partnership Development and Collaboration
Market Research and Competitive Analysis
Recruitment and Workforce Solutions
Why Choose Success.ai?
Best Price Guarantee
Seamless Integration
...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
*Standardized units.Characteristics of the top 50 Cancer Hospitals, as ranked by the US News and World Report.
By US Open Data Portal, data.gov [source]
This dataset provides an inside look at the performance of the Veterans Health Administration (VHA) hospitals on timely and effective care measures. It contains detailed information such as hospital names, addresses, census-designated cities and locations, states, ZIP codes county names, phone numbers and associated conditions. Additionally, each entry includes a score, sample size and any notes or footnotes to give further context. This data is collected through either Quality Improvement Organizations for external peer review programs as well as direct electronic medical records. By understanding these performance scores of VHA hospitals on timely care measures we can gain valuable insights into how VA healthcare services are delivering values throughout the country!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset contains information about the performance of Veterans Health Administration hospitals on timely and effective care measures. In this dataset, you can find the hospital name, address, city, state, ZIP code, county name, phone number associated with each hospital as well as data related to the timely and effective care measure such as conditions being measured and their associated scores.
To use this dataset effectively, we recommend first focusing on identifying an area of interest for analysis. For example: what condition is most impacting wait times for patients? Once that has been identified you can narrow down which fields would best fit your needs - for example if you are studying wait times then “Score” may be more valuable to filter than Footnote. Additionally consider using aggregation functions over certain fields (like average score over time) in order to get a better understanding of overall performance by factor--for instance Location.
Ultimately this dataset provides a snapshot into how Veteran's Health Administration hospitals are performing on timely and effective care measures so any research should focus around that aspect of healthcare delivery
- Analyzing and predicting hospital performance on a regional level to improve the quality of healthcare for veterans across the country.
- Using this dataset to identify trends and develop strategies for hospitals that consistently score low on timely and effective care measures, with the goal of improving patient outcomes.
- Comparison analysis between different VHA hospitals to discover patterns and best practices in providing effective care so they can be shared with other hospitals in the system
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: csv-1.csv | Column name | Description | |:-----------------------|:-------------------------------------------------------------| | Hospital Name | Name of the VHA hospital. (String) | | Address | Street address of the VHA hospital. (String) | | City | City where the VHA hospital is located. (String) | | State | State where the VHA hospital is located. (String) | | ZIP Code | ZIP code of the VHA hospital. (Integer) | | County Name | County where the VHA hospital is located. (String) | | Phone Number | Phone number of the VHA hospital. (String) | | Condition | Condition being measured. (String) | | Measure Name | Measure used to measure the condition. (String) | | Score | Score achieved by the VHA h...
From the selected regions, the ranking by number of hospitals is led by China with 37,627 hospitals and is followed by the Nigeria (23,640 hospitals). In contrast, the ranking is trailed by Seychelles with one hospitals, recording a difference of 37,626 hospitals to China. Depicted is the number of hospitals in the country or region at hand. As the OECD states, the rules according to which an institution can be registered as a hospital vary across countries.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths
column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project
Comparing the 148 selected regions regarding the average number of hospital beds available per 1,000 people , South Korea is leading the ranking (12.98 beds) and is followed by Japan with 12.5 beds. At the other end of the spectrum is Burkina Faso with 0.18 beds, indicating a difference of 12.8 beds to South Korea. Depicted is the number of hospital beds per capita in the country or region at hand. As defined by World Bank this includes inpatient beds in general, specialized, public and private hospitals as well as rehabilitation centers.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
The Integrated Emergency Response Analytics Dataset (IERAD) comprises meticulously curated emergency response records collected from 2018 to 2024 in metropolitan Sydney, Australia \cite{35}. This dataset offers a holistic perspective on emergency operations, integrating data from ambulance dispatch units, drone operators, and regional hospitals. The dataset bridges operational details, response times, environmental factors, and logistical variables to present a comprehensive view of real-world emergency scenarios.
IERAD reflects the complexities faced by emergency services in urban and suburban regions, enriched with real-time inputs from aerial drones and on-ground ambulance services. Annotations from real-world incidents enhance its authenticity and relevance. The dataset captures diverse emergency situations, incorporating variations in traffic conditions, incident severities, and weather constraints, ensuring its robustness for AI-driven optimization and classification models in emergency service routing.
Compiled with the support of local municipal authorities, IERAD is highly reliable and practical. To ensure confidentiality, all sensitive information has been anonymized while preserving the data's integrity and analytical potential.
Features: Timestamp: Precise 10-minute intervals from 2018 to 2024 for time-based analysis. Incident Severity: Classification of emergency severity as Low, Medium, or High. Incident Type: Nature of the incident: Accident, Cardiac Arrest, Fire, or Other. Region Type: Geographic classification: Urban, Suburban, or Rural. Traffic Congestion: Levels of traffic congestion: Low, Moderate, or High. Weather Condition: Environmental conditions: Clear, Rainy, or Stormy. Drone Availability: Indicates whether drones are Available or Unavailable. Ambulance Availability: Indicates whether ambulances are Available or Unavailable. Battery Life: Remaining battery life of drones, ranging from 30% to 100%. Air Traffic: Air congestion levels: Low, Medium, or High. Response Time: Estimated time for emergency units to respond (5-30 minutes). Hospital Capacity: Number of available beds in nearby hospitals (10-100). Distance to Incident: Distance in kilometers between the emergency service and the incident (1-50 km). Number of Injuries: Number of injured individuals (1-4). Specialist Availability: Availability of medical specialists: Available or Unavailable. Road Type: Classification of roads: Highway, Local Road, or Unpaved Road. Emergency Level: Level of emergency: Minor, Major, or Critical. Drone Speed: Speed of drones in km/h (30-100 km/h). Ambulance Speed: Speed of ambulances in km/h (20-80 km/h). Payload Weight: Weight carried by drones in kilograms (0.5-10 kg). Fuel Level: Remaining fuel level in ambulances, ranging from 10% to 100%. Weather Impact: Degree of weather interference: None, Moderate, or Severe. Dispatch Coordinator: Decision-making entity for dispatch: Human or AI. Label: Categorization of dispatch strategy: Drone Only, Ambulance Only, or Hybrid Dispatch. This dataset is ideal for advancing research in emergency service optimization, machine learning, and real-time decision-making applications, enabling effective model development and evaluation.
Success.ai’s Healthcare Industry Leads Data empowers businesses and organizations to connect with key decision-makers and stakeholders in the global healthcare and pharmaceutical sectors. Leveraging over 170 million verified professional profiles and 30 million company profiles, this dataset includes detailed contact information, firmographic insights, and leadership data for hospitals, clinics, biotech firms, medical device manufacturers, pharmaceuticals, and other healthcare-related enterprises. Whether your goal is to pitch a new medical technology, partner with healthcare providers, or conduct market research, Success.ai ensures that your outreach and strategic planning are guided by reliable, continuously updated, and AI-validated data.
Why Choose Success.ai’s Healthcare Industry Leads Data?
Comprehensive Contact Information
Global Reach Across Healthcare Segments
Continuously Updated Datasets
Ethical and Compliant
Data Highlights:
Key Features of the Dataset:
Healthcare Decision-Maker Profiles
Detailed Business Profiles
Advanced Filters for Precision Targeting
AI-Driven Enrichment
Strategic Use Cases:
Sales and Business Development
Market Research and Product Innovation
Strategic Partnerships and Alliances
Recruitment and Talent Acquisition
Why Choose Success.ai?
The number of hospital beds in Spain was forecast to continuously decrease between 2024 and 2029 by in total 2.6 thousand beds (-1.95 percent). After the tenth consecutive decreasing year, the number of hospital beds is estimated to reach 130.51 thousand beds and therefore a new minimum in 2029. Depicted is the estimated total number of hospital beds in the country or region at hand.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
The number of hospitals in Spain was forecast to remain on a similar level in 2029 as compared to 2024 with 775 hospitals. According to this forecast, the number of hospitals will stay nearly the same over the forecast period. Depicted is the number of hospitals in the country or region at hand. As the OECD states, the rules according to which an institution can be registered as a hospital vary across countries.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
The number of smokers in Saudi Arabia was forecast to continuously increase between 2024 and 2029 by in total 0.4 million individuals (+8.85 percent). After the fifteenth consecutive increasing year, the number of smokers is estimated to reach 4.88 million individuals and therefore a new peak in 2029. Notably, the number of smokers of was continuously increasing over the past years.Shown is the estimated share of the adult population (15 years or older) in a given region or country, that smoke. According to the WHO and World bank, smoking refers to the use of cigarettes, pipes or other types of tobacco, be it on a daily or non-daily basis.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smokers in countries like Qatar and Oman.
The average number of hospital beds available per 1,000 people in Argentina was forecast to continuously decrease between 2024 and 2029 by in total 0.2 beds (-6.56 percent). After the eighth consecutive decreasing year, the number of available beds per 1,000 people is estimated to reach 2.85 beds and therefore a new minimum in 2029. Depicted is the number of hospital beds per capita in the country or region at hand. As defined by World Bank this includes inpatient beds in general, specialized, public and private hospitals as well as rehabilitation centers.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the average number of hospital beds available per 1,000 people in countries like Paraguay and Uruguay.
The share of the population with overweight in Saudi Arabia was forecast to continuously increase between 2024 and 2029 by in total 2.2 percentage points. After the fifteenth consecutive increasing year, the overweight population share is estimated to reach 74.67 percent and therefore a new peak in 2029. Notably, the share of the population with overweight of was continuously increasing over the past years.Overweight is defined as a body mass index (BMI) of more than 25.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the share of the population with overweight in countries like Kuwait and Jordan.
The share of the population with overweight in Qatar was forecast to continuously increase between 2024 and 2029 by in total two percentage points. After the fifteenth consecutive increasing year, the overweight population share is estimated to reach 77.01 percent and therefore a new peak in 2029. Notably, the share of the population with overweight of was continuously increasing over the past years.Overweight is defined as a body mass index (BMI) of more than 25.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the share of the population with overweight in countries like Bahrain and Saudi Arabia.
The number of smokers in the United Arab Emirates was forecast to continuously increase between 2024 and 2029 by in total 0.1 million individuals (+4.13 percent). After the fourteenth consecutive increasing year, the number of smokers is estimated to reach 2.53 million individuals and therefore a new peak in 2029. Shown is the estimated share of the adult population (15 years or older) in a given region or country, that smoke. According to the WHO and World bank, smoking refers to the use of cigarettes, pipes or other types of tobacco, be it on a daily or non-daily basis.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smokers in countries like Kuwait and Lebanon.
The number of physicians in the United Arab Emirates was forecast to continuously increase between 2024 and 2029 by in total 8.2 thousand physicians (+23.71 percent). After the fifteenth consecutive increasing year, the number of physicians is estimated to reach 42.78 thousand physicians and therefore a new peak in 2029. Notably, the number of physicians of was continuously increasing over the past years.Depicted here is the estimated number of physicians in the geographical unit at hand. Thereby physicians include medical specialists as well as general practitioners.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of physicians in countries like Bahrain and Israel.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
This dataset shows the the world's best hospital in 2023 issued by the Newsweek and Statista.