Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This data shows premature deaths (Age under 75) from all Cancers, numbers and rates by gender, as 3-year moving-averages.
Cancers are a major cause of premature deaths. Inequalities exist in cancer rates between the most deprived areas and the most affluent areas.
Directly Age-Standardised Rates (DASR) are shown in the data (where numbers are sufficient) so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates.
A limitation on using mortalities as a proxy for prevalence of health conditions is that mortalities may give an incomplete view of health conditions in an area, as ill-health might not lead to premature death.
Data source: NHS Health and Social Care Information Centre (NHS-HSCIC) (Dataset unique identifier P00399). This data is updated annually.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Annual percent change and average annual percent change in age-standardized cancer mortality rates since 1984 to the most recent data year. The table includes a selection of commonly diagnosed invasive cancers and causes of death are defined based on the World Health Organization International Classification of Diseases, ninth revision (ICD-9) from 1984 to 1999 and on its tenth revision (ICD-10) from 2000 to the most recent year.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
AbstractIn Italy, approximately 400.000 new cases of malignant tumors are recorded every year. The average of annual deaths caused by tumors, according to the Italian Cancer Registers, is about 3.5 deaths and about 2.5 per 1,000 men and women respectively, for a total of about 3 deaths every 1,000 people. Long-term (at least a decade) and spatially detailed data (up to the municipality scale) are neither easily accessible nor fully available for public consultation by the citizens, scientists, research groups, and associations. Therefore, here we present a ten-year (2009–2018) database on cancer mortality rates (in the form of Standardized Mortality Ratios, SMR) for 23 cancer macro-types in Italy on municipal, provincial, and regional scales. We aim to make easily accessible a comprehensive, ready-to-use, and openly accessible source of data on the most updated status of cancer mortality in Italy for local and national stakeholders, researchers, and policymakers and to provide researchers with ready-to-use data to perform specific studies. Methods For a given locality, year, and cause of death, the SMR is the ratio between the observed number of deaths (Om) and the number of expected deaths (Em): SMR = Om/Em (1) where Om should be an available observational data and Em is estimated as the weighted sum of age-specific population size for the given locality (ni) per age-specific death rates of the reference population (MRi): Em = sum(MRi x ni) (2) MRi could be provided by a public health organization or be estimated as the ratio between the age-specific number of deaths of reference population (Mi) to the age-specific reference population size (Ni): MRi = Mi/Ni (3) Thus, the value of Em is weighted by the age distribution of deaths and population size. SMR assumes value 1 when the number of observed and expected deaths are equal. Following eqns. (1-3), the SMR was computed for single years of the period 2009-2018 and for single cause of death as defined by the International ICD-10 classification system by using the following data: age-specific number of deaths by cause of reference population (i.e., Mi) from the Italian National Institute of Statistics (ISTAT, (http://www.istat.it/en/, last access: 26/01/2022)); age-specific census data on reference population (i.e., Ni) from ISTAT; the observed number of deaths by cause (i.e., Om) from ISTAT; the age-specific census data on population (ni); the SMR was estimated at three different level of aggregation: municipal, provincial (equivalent to the European classification NUTS 3) and regional (i.e., NUTS2). The SMR was also computed for the broad category of malignant tumors (i.e. C00-C979, hereinafter cancer macro-type C), and for the broad category of malignant tumor plus non-malignant tumors (i.e. C00-C979 plus D0-D489, hereinafter cancer macro-type CD). Lower 90% and 95% confidence intervals of 10-year average values were computed according to the Byar method.
Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
This dataset presents the footprint of cancer mortality data in Australia for all cancers combined, and six selected cancers (female breast cancer, colorectal cancer, cervical cancer, lung cancer, melanoma of the skin, and prostate cancer) with their respective ICD-10 codes. The data spans the years 2011 to 2015 and is aggregated to 2015 PHN boundaries based on the 2011 Australian Statistical Geography Standard (ASGS). The source of the mortality data is the Australia Cancer Database, the National Mortality Database and the National Death Index. Cause of Death Unit Record File data are provided to the AIHW by the Registries of Births, Deaths and Marriages and the National Coronial Information System (managed by the Victorian Department of Justice) and include cause of death coded by the Australian Bureau of Statistics (ABS). The data are maintained by AIHW in the National Mortality Database. For more information, please visit the data source: AIHW - Cancer incidence and mortality in Australia by small geographic areas. Please note: AURIN has spatially enabled the original data using the Department of Health - PHN Areas. Colorectal deaths presented are underestimates. For further information on complexities in the measurement of bowel cancer in Australia, refer to the Australian Bureau of Statistics.
Death rate of a population adjusted to a standard age distribution. As most causes of death vary significantly with people's age and sex, the use of standardised death rates improves comparability over time and between countries, as they aim at measuring death rates independently of different age structures of populations. The standardised death rates used here are calculated on the basis of a standard European population (defined by the World Health Organization). Detailed data for 65 causes of death are available in the database (under the heading 'Data').
https://choosealicense.com/licenses/cc0-1.0/https://choosealicense.com/licenses/cc0-1.0/
Dataset Card for Breast Ultrasound Images Dataset
Dataset Summary
Breast cancer is one of the most common causes of death among women worldwide. Early detection helps in reducing the number of early deaths. The data reviews the medical images of breast cancer using ultrasound scan. Breast Ultrasound Dataset is categorized into three classes: normal, benign, and malignant images. Breast ultrasound images can produce great results in classification, detection, and… See the full description on the dataset page: https://huggingface.co/datasets/ShivamRaisharma/breastcancer.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundEarly-onset colorectal cancer (EOCRC) has an alarmingly increasing trend and arouses increasing attention. Causes of death in EOCRC population remain unclear.MethodsData of EOCRC patients (1975–2018) were extracted from the Surveillance, Epidemiology, and End Results database. Distribution of death was calculated, and death risk of each cause was compared with the general population by calculating standard mortality ratios (SMRs) at different follow-up time. Univariate and multivariate Cox regression models were utilized to identify independent prognostic factors for overall survival (OS).ResultsThe study included 36,013 patients, among whom 9,998 (27.7%) patients died of colorectal cancer (CRC) and 6,305 (17.5%) patients died of non-CRC causes. CRC death accounted for a high proportion of 74.8%–90.7% death cases within 10 years, while non-CRC death (especially cardiocerebrovascular disease death) was the major cause of death after 10 years. Non-cancer death had the highest SMR in EOCRC population within the first year after cancer diagnosis. Kidney disease [SMR = 2.10; 95% confidence interval (CI), 1.65–2.64] and infection (SMR = 1.92; 95% CI, 1.48–2.46) were two high-risk causes of death. Age at diagnosis, race, sex, year of diagnosis, grade, SEER stage, and surgery were independent prognostic factors for OS.ConclusionMost of EOCRC patients died of CRC within 10-year follow-up, while most of patients died of non-CRC causes after 10 years. Within the first year after cancer diagnosis, patients had high non-CRC death risk compared to the general population. Our findings help to guide risk monitoring and management for US EOCRC patients.
Death rate has been age-adjusted by the 2000 U.S. standard population. Single-year data are only available for Los Angeles County overall, Service Planning Areas, Supervisorial Districts, City of Los Angeles overall, and City of Los Angeles Council Districts.Lung cancer is a leading cause of cancer-related death in the US. People who smoke have the greatest risk of lung cancer, though lung cancer can also occur in people who have never smoked. Most cases are due to long-term tobacco smoking or exposure to secondhand tobacco smoke. Cities and communities can take an active role in curbing tobacco use and reducing lung cancer by adopting policies to regulate tobacco retail; reducing exposure to secondhand smoke in outdoor public spaces, such as parks, restaurants, or in multi-unit housing; and improving access to tobacco cessation programs and other preventive services.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
The number of premature deaths at age 0 to 74 years and their corresponding mortality rates/ratios with respective confidence intervals for: cancers, colorectal cancer, lung cancer, breast cancer, circulatory system diseases, ischaemic heart disease, cerebrovascular disease, respiratory system diseases, chronic obstructive pulmonary disease, deaths from external causes, transport accidents, suicide and self-inflicted injuries, 2010 – 2014 (all entries that were classified as not shown, not published or not applicable were assigned a null value). The data is by LGA 2015 profile (based on the LGA 2011 geographic boundaries). For more information on statistics used please refer to the PHIDU website, available from: http://phidu.torrens.edu.au/. Source: Data compiled by PHIDU from deaths data based on the 2010 to 2014 Cause of Death Unit Record Files supplied by the Australian Coordinating Registry and the Victorian Department of Justice, on behalf of the Registries of Births, Deaths and Marriages and the National Coronial Information System. The population at the small area level is the ABS Estimated Resident Population (ERP), 30 June 2010 to 30 June 2014, Statistical Areas Level 2; the population standard is the ABS ERP for Australia, 30 June 2010 to 30 June 2014.
https://snd.se/en/search-and-order-data/using-datahttps://snd.se/en/search-and-order-data/using-data
High-risk human papillomavirus (hrHPV) infection is established as the major cause of invasive cervical cancer (ICC). However, whether hrHPV status in the tumor is associated with subsequent prognosis of ICC is controversial. We aim to evaluate the association between tumor hrHPV status and ICC prognosis using national registers and comprehensive human papillomavirus (HPV) genotyping.
In this nationwide population-based cohort study, we identified all ICC diagnosed in Sweden during the years 2002–2011 (4,254 confirmed cases), requested all archival formalin-fixed paraffin-embedded blocks, and performed HPV genotyping. Twenty out of 25 pathology biobanks agreed to the study, yielding a total of 2,845 confirmed cases with valid HPV results. Cases were prospectively followed up from date of cancer diagnosis to 31 December 2015, migration from Sweden, or death, whichever occurred first. The main exposure was tumor hrHPV status classified as hrHPV-positive and hrHPV-negative. The primary outcome was all-cause mortality by 31 December 2015. Five-year relative survival ratios (RSRs) were calculated, and excess hazard ratios (EHRs) with 95% confidence intervals (CIs) were estimated using Poisson regression, adjusting for education, time since cancer diagnosis, and clinical factors including age at cancer diagnosis and International Federation of Gynecology and Obstetrics (FIGO) stage.
Of the 2,845 included cases, hrHPV was detected in 2,293 (80.6%), and we observed 1,131 (39.8%) deaths during an average of 6.2 years follow-up. The majority of ICC cases were diagnosed at age 30–59 years (57.5%) and classified as stage IB (40.7%). hrHPV positivity was significantly associated with screen-detected tumors, young age, high education level, and early stage at diagnosis (p < 0.001). The 5-year RSR compared to the general female population was 0.74 (95% CI 0.72–0.76) for hrHPV-positive cases and 0.54 (95% CI 0.50–0.59) for hrHPV-negative cases, yielding a crude EHR of 0.45 (95% CI 0.38–0.52) and an adjusted EHR of 0.61 (95% CI 0.52–0.71). Risk of all-cause mortality as measured by EHR was consistently and statistically significantly lower for cases with hrHPV-positive tumors for each age group above 29 years and each FIGO stage above IA. The difference in prognosis by hrHPV status was highly robust, regardless of the clinical, histological, and educational characteristics of the cases. The main limitation was that, except for education, we were not able to adjust for lifestyle factors or other unmeasured confounders.
In conclusion, women with hrHPV-positive cervical tumors had a substantially better prognosis than women with hrHPV-negative tumors. hrHPV appears to be a biomarker for better prognosis in cervical cancer independent of age, FIGO stage, and histological type, extending information from already established prognostic factors. The underlying biological mechanisms relating lack of detectable tumor hrHPV to considerably worse prognosis are not known and should be further investigated.
Purpose:
To compile a comprehensive survival and HPV genotyping data and provide a large-scale population-based evaluation of the association between tumor high risk HPV status and prognosis of invasive cervical cancer.
This dataset (ccHPV_RelativeSurvival.dta) comprises 2845 invasive cervical cancer (ICC) cases diagnosed in Sweden during the years 2002-2011, and had valid human papillomavirus (HPV) results assessed from the formalin-fixed, paraffin-embedded (FFPE) blocks.
In order to control the risk of incidental disclosure of personal information, the data available here has been anonymized in the following manner: • The date of diagnosis has been moved to 2008-07-01 for all subjects. • Follow-up time has been censored at five years after diagnosis. • Age at diagnosis and follow-up time after diagnosis have been microaggregated in groups of five subjects (using function microaggregation in R package sdcMicro 2.5.9, available from https://cran.r-project.org/package=sdcMicro)
Analysis of the anonymized data replicates the results presented in main part of the study (Figures 2 & 3, Tables 1-3) with only minor numerical differences, with the following exceptions: • In Figure 2, relative survival can only be calculated up to five years after diagnosis. • In Table 1, the number of person years and the mean follow-up time differ considerably due to censoring; the distribution of subjects between age groups varies somewhat due to microaggregation. • In Figure 3, the excess hazard ratios for age groups 30-44 and 45-59 in Panel A shift noticeably, but without affecting the overall message (comparable reduced risk across all age strata).
The dataset includes 12 variables, eight of which are necessary for the analysis (core variables) and four of which are included for administrative purposes and convenience of coding the analysis (extra variables). Core variables: • dx_date: Date of diagnosis • age: Age (in years) at diagnosis • x_stage_group: International Federation of Gynecology and Obstetrics (FIGO) stage of tumor, IA; IB; II and III+ • edu_cat: Education (categorical, three levels): 1=low (less than high school); 2=middle (high school); 3=high (university exam and above); 99=missing • exit_new: End of follow-up (date) • censor_new: Censoring status: 1=death; 2=censored due to migration, loss of follow-up or end of study • final_type: Histological type of tumor: SCC=squamous cell carcinoma; AC=adenocarcinoma. • hr_hpv: High-risk HPV status of tumor (main exposure, binary): 0=hrHPV negative; 1= hrHPV positive
Extra variables: • entry: Entry date (copy of diagnosis date) • sex: Gender (all female, for linking to standard population mortality file): 2=female. • dx_year: Year of diagnosis (for linking to standard population mortality file)
Annual dataset on death causes for all persons who died in Austria in the respective year.
Medical Service Study Areas (MSSAs)As defined by California's Office of Statewide Health Planning and Development (OSHPD) in 2013, "MSSAs are sub-city and sub-county geographical units used to organize and display population, demographic and physician data" (Source). Each census tract in CA is assigned to a given MSSA. The most recent MSSA dataset (2014) was used. Spatial data are available via OSHPD at the California Open Data Portal. This information may be useful in studying health equity.Age-Adjusted Incidence Rate (AAIR)Age-adjustment is a statistical method that allows comparisons of incidence rates to be made between populations with different age distributions. This is important since the incidence of most cancers increases with age. An age-adjusted cancer incidence (or death) rate is defined as the number of new cancers (or deaths) per 100,000 population that would occur in a certain period of time if that population had a 'standard' age distribution. In the California Health Maps, incidence rates are age-adjusted using the U.S. 2000 Standard Population.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Lung cancer is the leading cause of the cancer deaths. Therefore, predicting the survival status of lung cancer patients is of great value. However, the existing methods mainly depend on statistical machine learning (ML) algorithms. Moreover, they are not appropriate for high-dimensionality genomics data, and deep learning (DL), with strong high-dimensional data learning capability, can be used to predict lung cancer survival using genomics data. The Cancer Genome Atlas (TCGA) is a great database that contains many kinds of genomics data for 33 cancer types. With this enormous amount of data, researchers can analyze key factors related to cancer therapy. This paper proposes a novel method to predict lung cancer long-term survival using gene expression data from TCGA. Firstly, we select the most relevant genes to the target problem by the supervised feature selection method called mutual information selector. Secondly, we propose a method to convert gene expression data into two kinds of images with KEGG BRITE and KEGG Pathway data incorporated, so that we could make good use of the convolutional neural network (CNN) model to learn high-level features. Afterwards, we design a CNN-based DL model and added two kinds of clinical data to improve the performance, so that we finally got a multimodal DL model. The generalized experiments results indicated that our method performed much better than the ML models and unimodal DL models. Furthermore, we conduct survival analysis and observe that our model could better divide the samples into high-risk and low-risk groups.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
The number of potentially avoidable deaths and their cause at age 0 to 74 years with corresponding mortality rates/ratios with respective confidence intervals, 2010 - 2014. The specified causes of death are: cancers, colorectal cancer, breast cancer, circulatory system diseases, ischaemic heart disease, cerebrovascular disease, respiratory system diseases, chronic obstructive pulmonary disease, deaths from select external causes of mortality, suicide and self-inflicted injuries, other external causes of mortality, transport accidents. (all entries that were classified as not shown, not published or not applicable were assigned a null value; no data was provided for Maralinga Tjarutja LGA, in South Australia). The data is by LGA 2015 profile (based on the LGA 2011 geographic boundaries). For more information on statistics used please refer to the PHIDU website, available from: http://phidu.torrens.edu.au/. For information on the avoidable mortality concept please refer to the Australian and New Zealand Atlas of Avoidable Mortality, available from: http://phidu.torrens.edu.au/. Source: Data compiled by PHIDU from deaths data based on the 2010 to 2014 Cause of Death Unit Record Files supplied by the Australian Coordinating Registry and the Victorian Department of Justice, and ABS Estimated Resident Population (ERP), 30 June 2010 to 30 June 2014.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Annual statistical publication that collates and analyses information on the underlying causes of all deaths registered in New Zealand. The commentary summarises key facts, mortality rates, trends and major causes of death by age group, ethnicity and sex. Cancer, ischaemic heart disease, cerebrovascular disease, diabetes mellitus, motor vehicle accidents and suicide deaths are analysed and reviewed in more detail.
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
This publication reports on newly diagnosed cancers registered in England in addition to cancer deaths registered in England during 2020. It includes this summary report showing key findings, spreadsheet tables with more detailed estimates, and a methodology document.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
National (excluding Quebec) estimates of five-year net survival for 11 types of cancer by age group at diagnosis. Net survival refers to the survival probability that would be observed in the hypothetical situation where the cancer of interest is the only possible cause of death. Predicted survival provides a more up-to-date estimate of survival by exclusively using the survival experienced by cancer cases during a recent period.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
This dataset, released December 2016, contains statistics for deaths of people aged 0-74 years during the years 2010-2014 based on the following causes: cancer, diabetes, circulatory system diseases, respiratory systems diseases and external causes. The data is by Local Government Area (LGA) 2016 geographic boundaries. For more information please see the data source notes on the data. Source: Data compiled by PHIDU from deaths data based on the 2010 to 2014 Cause of Death Unit Record Filessupplied by the Australian Coordinating Registry and the Victorian Department of Justice, on behalf of the Registriesof Births, Deaths and Marriages and the National Coronial Information System. AURIN has spatially enabled the original data. Data that was not shown/not applicable/not published/not available for the specific area ('#', '..', '^', 'np, 'n.a.', 'n.y.a.' in original PHIDU data) was removed.It has been replaced by by Blank cells. For other keys and abbreviations refer to PHIDU Keys.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This publication contains facts, mortality rates, trends and major causes of death by age group, sex, ethnicity and district health board for deaths registered in 2011. Cancer, ischaemic heart disease, cerebrovascular disease, diabetes mellitus, motor vehicle accidents and suicide deaths are analysed and reviewed in more detail. Where possible, time trends from 1950 are included.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This data shows premature deaths (Age under 75) from all Cancers, numbers and rates by gender, as 3-year moving-averages.
Cancers are a major cause of premature deaths. Inequalities exist in cancer rates between the most deprived areas and the most affluent areas.
Directly Age-Standardised Rates (DASR) are shown in the data (where numbers are sufficient) so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates.
A limitation on using mortalities as a proxy for prevalence of health conditions is that mortalities may give an incomplete view of health conditions in an area, as ill-health might not lead to premature death.
Data source: NHS Health and Social Care Information Centre (NHS-HSCIC) (Dataset unique identifier P00399). This data is updated annually.