Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for MARKET CAPITALIZATION OF LISTED COMPANIES US DOLLAR WB DATA.HTML. reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Market Capitalization: Listed Domestic Companies data was reported at 32,120.703 USD bn in 2017. This records an increase from the previous number of 27,352.201 USD bn for 2016. United States US: Market Capitalization: Listed Domestic Companies data is updated yearly, averaging 11,322.354 USD bn from Dec 1980 (Median) to 2017, with 38 observations. The data reached an all-time high of 32,120.703 USD bn in 2017 and a record low of 1,263.561 USD bn in 1981. United States US: Market Capitalization: Listed Domestic Companies data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Financial Sector. Market capitalization (also known as market value) is the share price times the number of shares outstanding (including their several classes) for listed domestic companies. Investment funds, unit trusts, and companies whose only business goal is to hold shares of other listed companies are excluded. Data are end of year values converted to U.S. dollars using corresponding year-end foreign exchange rates.; ; World Federation of Exchanges database.; Sum; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The DXY exchange rate fell to 98.2829 on July 16, 2025, down 0.34% from the previous session. Over the past month, the United States Dollar has weakened 0.54%, and is down by 5.21% over the last 12 months. United States Dollar - values, historical data, forecasts and news - updated on July of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Germany DE: Market Capitalization: Listed Domestic Companies data was reported at 1,889.664 USD bn in 2022. This records a decrease from the previous number of 2,503.046 USD bn for 2021. Germany DE: Market Capitalization: Listed Domestic Companies data is updated yearly, averaging 948.491 USD bn from Dec 1975 (Median) to 2022, with 48 observations. The data reached an all-time high of 2,503.046 USD bn in 2021 and a record low of 51.400 USD bn in 1975. Germany DE: Market Capitalization: Listed Domestic Companies data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Germany – Table DE.World Bank.WDI: Financial Sector. Market capitalization (also known as market value) is the share price times the number of shares outstanding (including their several classes) for listed domestic companies. Investment funds, unit trusts, and companies whose only business goal is to hold shares of other listed companies are excluded. Data are end of year values converted to U.S. dollars using corresponding year-end foreign exchange rates.;World Federation of Exchanges database.;Sum;Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset contains historical price data for Bitcoin (BTC) against the U.S. Dollar (USD), spanning from June 2010 to November 2024. The data is organized on a daily basis and includes key market metrics such as the opening price, closing price, high, low, volume, and market capitalization for each day.
Columns: The dataset consists of the following columns:
Date: The date of the recorded data point (format: YYYY-MM-DD). Open: The opening price of Bitcoin on that day. High: The highest price Bitcoin reached on that day. Low: The lowest price Bitcoin reached on that day. Close: The closing price of Bitcoin on that day. Volume: The total trading volume of Bitcoin during that day. Market Cap: The total market capitalization of Bitcoin on that day (calculated by multiplying the closing price by the circulating supply of Bitcoin at the time). Source: The data is sourced from Yahoo Finance.
Time Period: The data spans from June 2010, when Bitcoin first began trading, to November 2024. This provides a comprehensive view of Bitcoin’s historical price movements, from its early days of trading at a fraction of a cent to its more recent valuation in the thousands of dollars.
Use Cases:
This dataset is valuable for a variety of purposes, including:
Time Series Analysis: Analyze Bitcoin price movements, identify trends, and develop predictive models for future prices. Financial Modeling: Use the dataset to assess Bitcoin as an asset class, model its volatility, or simulate investment strategies. Machine Learning: Train machine learning algorithms to forecast Bitcoin’s future price or predict market trends based on historical data. Economic Research: Study the impact of global events on Bitcoin’s price, such as regulatory changes, technological developments, or macroeconomic factors. Visualization: Generate visualizations of Bitcoin price trends, trading volume, and market capitalization over time.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Bermuda BM: Market Capitalization: Listed Domestic Companies data was reported at 207.000 USD mn in 2022. This records a decrease from the previous number of 245.000 USD mn for 2021. Bermuda BM: Market Capitalization: Listed Domestic Companies data is updated yearly, averaging 1.912 USD bn from Dec 2000 (Median) to 2022, with 23 observations. The data reached an all-time high of 2.965 USD bn in 2019 and a record low of 207.000 USD mn in 2022. Bermuda BM: Market Capitalization: Listed Domestic Companies data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Bermuda – Table BM.World Bank.WDI: Financial Sector. Market capitalization (also known as market value) is the share price times the number of shares outstanding (including their several classes) for listed domestic companies. Investment funds, unit trusts, and companies whose only business goal is to hold shares of other listed companies are excluded. Data are end of year values converted to U.S. dollars using corresponding year-end foreign exchange rates.;World Federation of Exchanges database.;Sum;Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Argentina AR: Market Capitalization: Listed Domestic Companies data was reported at 52.948 USD bn in 2022. This records an increase from the previous number of 41.751 USD bn for 2021. Argentina AR: Market Capitalization: Listed Domestic Companies data is updated yearly, averaging 38.589 USD bn from Dec 1977 (Median) to 2022, with 46 observations. The data reached an all-time high of 108.740 USD bn in 2017 and a record low of 832.500 USD mn in 1977. Argentina AR: Market Capitalization: Listed Domestic Companies data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Argentina – Table AR.World Bank.WDI: Financial Sector. Market capitalization (also known as market value) is the share price times the number of shares outstanding (including their several classes) for listed domestic companies. Investment funds, unit trusts, and companies whose only business goal is to hold shares of other listed companies are excluded. Data are end of year values converted to U.S. dollars using corresponding year-end foreign exchange rates.;World Federation of Exchanges database.;Sum;Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Costa Rica CR: Market Capitalization: Listed Domestic Companies data was reported at 2.232 USD bn in 2022. This records an increase from the previous number of 2.041 USD bn for 2021. Costa Rica CR: Market Capitalization: Listed Domestic Companies data is updated yearly, averaging 1.901 USD bn from Dec 1993 (Median) to 2022, with 25 observations. The data reached an all-time high of 3.011 USD bn in 2017 and a record low of 357.000 USD mn in 1993. Costa Rica CR: Market Capitalization: Listed Domestic Companies data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Costa Rica – Table CR.World Bank.WDI: Financial Sector. Market capitalization (also known as market value) is the share price times the number of shares outstanding (including their several classes) for listed domestic companies. Investment funds, unit trusts, and companies whose only business goal is to hold shares of other listed companies are excluded. Data are end of year values converted to U.S. dollars using corresponding year-end foreign exchange rates.;World Federation of Exchanges database.;Sum;Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for MARKET CAPITALIZATION OF LISTED COMPANIES US DOLLAR WB DATA.HTML. reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Netflix, Inc. is an American media company engaged in paid streaming and the production of films and series.
Market capitalization of Netflix (NFLX)
Market cap: $517.08 Billion USD
As of June 2025 Netflix has a market cap of $517.08 Billion USD. This makes Netflix the world's 19th most valuable company by market cap according to our data. The market capitalization, commonly called market cap, is the total market value of a publicly traded company's outstanding shares and is commonly used to measure how much a company is worth.
Revenue for Netflix (NFLX)
Revenue in 2025: $40.17 Billion USD
According to Netflix's latest financial reports the company's current revenue (TTM ) is $40.17 Billion USD. In 2024 the company made a revenue of $39.00 Billion USD an increase over the revenue in the year 2023 that were of $33.72 Billion USD. The revenue is the total amount of income that a company generates by the sale of goods or services. Unlike with the earnings no expenses are subtracted.
Earnings for Netflix (NFLX)
Earnings in 2025 (TTM): $11.31 Billion USD
According to Netflix's latest financial reports the company's current earnings are $40.17 Billion USD. In 2024 the company made an earning of $10.70 Billion USD, an increase over its 2023 earnings that were of $7.02 Billion USD. The earnings displayed on this page is the company's Pretax Income.
On Jun 12th, 2025 the market cap of Netflix was reported to be:
$517.08 Billion USD by Yahoo Finance
$517.08 Billion USD by CompaniesMarketCap
$517.21 Billion USD by Nasdaq
Geography: USA
Time period: May 2002- June 2025
Unit of analysis: Netflix Stock Data 2025
Variable | Description |
---|---|
date | date |
open | The price at market open. |
high | The highest price for that day. |
low | The lowest price for that day. |
close | The price at market close, adjusted for splits. |
adj_close | The closing price after adjustments for all applicable splits and dividend distributions. Data is adjusted using appropriate split and dividend multipliers, adhering to Center for Research in Security Prices (CRSP) standards. |
volume | The number of shares traded on that day. |
This dataset belongs to me. I’m sharing it here for free. You may do with it as you wish.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Nigeria NG: Market Capitalization: Listed Domestic Companies data was reported at 37.218 USD bn in 2017. This records an increase from the previous number of 29.792 USD bn for 2016. Nigeria NG: Market Capitalization: Listed Domestic Companies data is updated yearly, averaging 31.008 USD bn from Dec 1993 (Median) to 2017, with 22 observations. The data reached an all-time high of 84.895 USD bn in 2007 and a record low of 2.143 USD bn in 1993. Nigeria NG: Market Capitalization: Listed Domestic Companies data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Nigeria – Table NG.World Bank.WDI: Financial Sector. Market capitalization (also known as market value) is the share price times the number of shares outstanding (including their several classes) for listed domestic companies. Investment funds, unit trusts, and companies whose only business goal is to hold shares of other listed companies are excluded. Data are end of year values converted to U.S. dollars using corresponding year-end foreign exchange rates.; ; World Federation of Exchanges database.; Sum; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cryptocurrency historical datasets from January 2012 (if available) to October 2021 were obtained and integrated from various sources and Application Programming Interfaces (APIs) including Yahoo Finance, Cryptodownload, CoinMarketCap, various Kaggle datasets, and multiple APIs. While these datasets used various formats of time (e.g., minutes, hours, days), in order to integrate the datasets days format was used for in this research study. The integrated cryptocurrency historical datasets for 80 cryptocurrencies including but not limited to Bitcoin (BTC), Ethereum (ETH), Binance Coin (BNB), Cardano (ADA), Tether (USDT), Ripple (XRP), Solana (SOL), Polkadot (DOT), USD Coin (USDC), Dogecoin (DOGE), Tron (TRX), Bitcoin Cash (BCH), Litecoin (LTC), EOS (EOS), Cosmos (ATOM), Stellar (XLM), Wrapped Bitcoin (WBTC), Uniswap (UNI), Terra (LUNA), SHIBA INU (SHIB), and 60 more cryptocurrencies were uploaded in this online Mendeley data repository. Although the primary attribute of including the mentioned cryptocurrencies was the Market Capitalization, a subject matter expert i.e., a professional trader has also guided the initial selection of the cryptocurrencies by analyzing various indicators such as Relative Strength Index (RSI), Moving Average Convergence/Divergence (MACD), MYC Signals, Bollinger Bands, Fibonacci Retracement, Stochastic Oscillator and Ichimoku Cloud. The primary features of this dataset that were used as the decision-making criteria of the CLUS-MCDA II approach are Timestamps, Open, High, Low, Closed, Volume (Currency), % Change (7 days and 24 hours), Market Cap and Weighted Price values. The available excel and CSV files in this data set are just part of the integrated data and other databases, datasets and API References that was used in this study are as follows: [1] https://finance.yahoo.com/ [2] https://coinmarketcap.com/historical/ [3] https://cryptodatadownload.com/ [4] https://kaggle.com/philmohun/cryptocurrency-financial-data [5] https://kaggle.com/deepshah16/meme-cryptocurrency-historical-data [6] https://kaggle.com/sudalairajkumar/cryptocurrencypricehistory [7] https://min-api.cryptocompare.com/data/price?fsym=BTC&tsyms=USD [8] https://min-api.cryptocompare.com/ [9] https://p.nomics.com/cryptocurrency-bitcoin-api [10] https://www.coinapi.io/ [11] https://www.coingecko.com/en/api [12] https://cryptowat.ch/ [13] https://www.alphavantage.co/ This dataset is part of the CLUS-MCDA (Cluster analysis for improving Multiple Criteria Decision Analysis) and CLUS-MCDAII Project: https://aimaghsoodi.github.io/CLUSMCDA-R-Package/ https://github.com/Aimaghsoodi/CLUS-MCDA-II https://github.com/azadkavian/CLUS-MCDA
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset contains historical price data for the top global cryptocurrencies, sourced from Yahoo Finance. The data spans the following time frames for each cryptocurrency:
BTC-USD (Bitcoin): From 2014 to December 2024 ETH-USD (Ethereum): From 2017 to December 2024 XRP-USD (Ripple): From 2017 to December 2024 USDT-USD (Tether): From 2017 to December 2024 SOL-USD (Solana): From 2020 to December 2024 BNB-USD (Binance Coin): From 2017 to December 2024 DOGE-USD (Dogecoin): From 2017 to December 2024 USDC-USD (USD Coin): From 2018 to December 2024 ADA-USD (Cardano): From 2017 to December 2024 STETH-USD (Staked Ethereum): From 2020 to December 2024
Key Features:
Date: The date of the record. Open: The opening price of the cryptocurrency on that day. High: The highest price during the day. Low: The lowest price during the day. Close: The closing price of the cryptocurrency on that day. Adj Close: The adjusted closing price, factoring in stock splits or dividends (for stablecoins like USDT and USDC, this value should be the same as the closing price). Volume: The trading volume for that day.
Data Source:
The dataset is sourced from Yahoo Finance and spans daily data from 2014 to December 2024, offering a rich set of data points for cryptocurrency analysis.
Use Cases:
Market Analysis: Analyze price trends and historical market behavior of leading cryptocurrencies. Price Prediction: Use the data to build predictive models, such as time-series forecasting for future price movements. Backtesting: Test trading strategies and financial models on historical data. Volatility Analysis: Assess the volatility of top cryptocurrencies to gauge market risk. Overview of the Cryptocurrencies in the Dataset: Bitcoin (BTC): The pioneer cryptocurrency, often referred to as digital gold and used as a store of value. Ethereum (ETH): A decentralized platform for building smart contracts and decentralized applications (DApps). Ripple (XRP): A payment protocol focused on enabling fast and low-cost international transfers. Tether (USDT): A popular stablecoin pegged to the US Dollar, providing price stability for trading and transactions. Solana (SOL): A high-speed blockchain known for low transaction fees and scalability, often seen as a competitor to Ethereum. Binance Coin (BNB): The native token of Binance, the world's largest cryptocurrency exchange, used for various purposes within the Binance ecosystem. Dogecoin (DOGE): Initially a meme-inspired coin, Dogecoin has gained a strong community and mainstream popularity. USD Coin (USDC): A fully-backed stablecoin pegged to the US Dollar, commonly used in decentralized finance (DeFi) applications. Cardano (ADA): A proof-of-stake blockchain focused on scalability, sustainability, and security. Staked Ethereum (STETH): A token representing Ethereum staked in the Ethereum 2.0 network, earning staking rewards.
This dataset provides a comprehensive overview of key cryptocurrencies that have shaped and continue to influence the digital asset market. Whether you're conducting research, building prediction models, or analyzing trends, this dataset is an essential resource for understanding the evolution of cryptocurrencies from 2014 to December 2024.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Colombia CO: Market Capitalization: Listed Domestic Companies data was reported at 68.412 USD bn in 2022. This records a decrease from the previous number of 90.541 USD bn for 2021. Colombia CO: Market Capitalization: Listed Domestic Companies data is updated yearly, averaging 105.082 USD bn from Dec 2005 (Median) to 2022, with 18 observations. The data reached an all-time high of 262.101 USD bn in 2012 and a record low of 50.501 USD bn in 2005. Colombia CO: Market Capitalization: Listed Domestic Companies data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Colombia – Table CO.World Bank.WDI: Financial Sector. Market capitalization (also known as market value) is the share price times the number of shares outstanding (including their several classes) for listed domestic companies. Investment funds, unit trusts, and companies whose only business goal is to hold shares of other listed companies are excluded. Data are end of year values converted to U.S. dollars using corresponding year-end foreign exchange rates.;World Federation of Exchanges database.;Sum;Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘📊 Financial market screener’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/pierrelouisdanieau/financial-market-screener on 28 January 2022.
--- Dataset description provided by original source is as follows ---
In this dataset you will find several characteristics on global companies listed on the stock exchange. These characteristics are analyzed by millions of investors before they invest their money.
Analyze the stock market performance of thousands of companies ! This is the objective of this dataset !
Among thse charateristics you will find :
All this data is public data, obtained from the annual financial reports of these companies. They have been retrieved from the Yahoo Finance API and have been checked beforehand.
This dataset has been designed so that it is possible to build a recommendation engine. For example, from an existing position in a portfolio, recommend an alternative with similar characteristics (sector, market capitalization, current ratio,...) but more in line with an investor's expectations (may be with less risk or with more dividends etc...)
If you have question about this dataset you can contact me
--- Original source retains full ownership of the source dataset ---
The dataset of this paper is collected based on Google, Blockchain, and the Bitcoin market. Generally, there is a total of 26 features, however, a feature whose correlation rate is lower than 0.3 between the variations of price and the variations of feature has been eliminated. Hence, a total of 21 practical features including Market capitalization, Trade-volume, Transaction-fees USD, Average confirmation time, Difficulty, High price, Low price, Total hash rate, Block-size, Miners-revenue, N-transactions-total, Google searches, Open price, N-payments-per Block, Total circulating Bitcoin, Cost-per-transaction percent, Fees-USD-per transaction, N-unique-addresses, N-transactions-per block, and Output-volume have been selected. In addition to the values of these features, for each feature, a new one is created that includes the difference between the previous day and the day before the previous day as a supportive feature. From the point of view of the number and history of the dataset used, a total of 1275 training data were used in the proposed model to extract patterns of Bitcoin price and they were collected from 12 Nov 2018 to 4 Jun 2021.
The U.S. Treasury-Owned Gold dataset provides the amount of gold that is available across various U.S. Treasury-maintained locations. The data shows whether the gold is held in deep storage or working stock, that is, available to the U.S. Mint as raw material for the creation of congressionally authorized coins. The dataset includes the weight of gold in troy ounces (a measurement unit still used today for precious metals and gunpowder) and the book value in dollars. The book value is not the market value, but instead represents the total number of troy ounces multiplied by a value established by law ($42.222), set in 1973.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Microsoft is an American company that develops and distributes software and services such as: a search engine (Bing), cloud solutions and the computer operating system Windows.
Market capitalization of Microsoft (MSFT)
Market cap: $3.085 Trillion USD
As of February 2025 Microsoft has a market cap of $3.085 Trillion USD. This makes Microsoft the world's 2nd most valuable company by market cap according to our data. The market capitalization, commonly called market cap, is the total market value of a publicly traded company's outstanding shares and is commonly used to measure how much a company is worth.
Revenue for Microsoft (MSFT)
Revenue in 2024 (TTM): $254.19 Billion USD
According to Microsoft's latest financial reports the company's current revenue (TTM ) is $254.19 Billion USD. In 2023 the company made a revenue of $227.58 Billion USD an increase over the revenue in the year 2022 that were of $204.09 Billion USD. The revenue is the total amount of income that a company generates by the sale of goods or services. Unlike with the earnings no expenses are subtracted.
Earnings for Microsoft (MSFT)
Earnings in 2024 (TTM): $110.77 Billion USD
According to Microsoft's latest financial reports the company's current earnings are $254.19 Billion USD. In 2023 the company made an earning of $101.21 Billion USD, an increase over its 2022 earnings that were of $82.58 Billion USD. The earnings displayed on this page are the earnings before interest and taxes or simply EBIT.
End of Day market cap according to different sources On Feb 2nd, 2025 the market cap of Microsoft was reported to be:
$3.085 Trillion USD by Nasdaq
$3.085 Trillion USD by CompaniesMarketCap
$3.085 Trillion USD by Yahoo Finance
Geography: USA
Time period: March 1986- February 2025
Unit of analysis: Microsoft Stock Data 2025
Variable | Description |
---|---|
date | date |
open | The price at market open. |
high | The highest price for that day. |
low | The lowest price for that day. |
close | The price at market close, adjusted for splits. |
adj_close | The closing price after adjustments for all applicable splits and dividend distributions. Data is adjusted using appropriate split and dividend multipliers, adhering to Center for Research in Security Prices (CRSP) standards. |
volume | The number of shares traded on that day. |
This dataset belongs to me. I’m sharing it here for free. You may do with it as you wish.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F18335022%2F0304ad0416e7e55515daf890288d7f7f%2FScreenshot%202025-02-03%20152019.png?generation=1738662588735376&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F18335022%2Fba7629dd0c4dc3e2ea1dbac361b94de1%2FScreenshot%202025-02-03%20152147.png?generation=1738662611945343&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F18335022%2Fa9f48f1ec5fdf2a363a138389294d5b0%2FScreenshot%202025-02-03%20152159.png?generation=1738662631268574&alt=media" alt="">
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for MARKET CAPITALIZATION OF LISTED COMPANIES US DOLLAR WB DATA.HTML. reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.