Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Associated with manuscript titled: Fifty Muslim-majority countries have fewer COVID-19 cases and deaths than the 50 richest non-Muslim countriesThe objective of this research was to determine the difference in the total number of COVID-19 cases and deaths between Muslim-majority and non-Muslim countries, and investigate reasons for the disparities. Methods: The 50 Muslim-majority countries had more than 50.0% Muslims with an average of 87.5%. The non-Muslim country sample consisted of 50 countries with the highest GDP while omitting any Muslim-majority countries listed. The non-Muslim countries’ average percentage of Muslims was 4.7%. Data pulled on September 18, 2020 included the percentage of Muslim population per country by World Population Review15 and GDP per country, population count, and total number of COVID-19 cases and deaths by Worldometers.16 The data set was transferred via an Excel spreadsheet on September 23, 2020 and analyzed. To measure COVID-19’s incidence in the countries, three different Average Treatment Methods (ATE) were used to validate the results. Results published as a preprint at https://doi.org/10.31235/osf.io/84zq5(15) Muslim Majority Countries 2020 [Internet]. Walnut (CA): World Population Review. 2020- [Cited 2020 Sept 28]. Available from: http://worldpopulationreview.com/country-rankings/muslim-majority-countries (16) Worldometers.info. Worldometer. Dover (DE): Worldometer; 2020 [cited 2020 Sept 28]. Available from: http://worldometers.info
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The world's population has undergone remarkable growth, exceeding 7.5 billion by mid-2019 and continuing to surge beyond previous estimates. Notably, China and India stand as the two most populous countries, with China's population potentially facing a decline while India's trajectory hints at surpassing it by 2030. This significant demographic shift is just one facet of a global landscape where countries like the United States, Indonesia, Brazil, Nigeria, and others, each with populations surpassing 100 million, play pivotal roles.
The steady decrease in growth rates, though, is reshaping projections. While the world's population is expected to exceed 8 billion by 2030, growth will notably decelerate compared to previous decades. Specific countries like India, Nigeria, and several African nations will notably contribute to this growth, potentially doubling their populations before rates plateau.
This dataset provides comprehensive historical population data for countries and territories globally, offering insights into various parameters such as area size, continent, population growth rates, rankings, and world population percentages. Spanning from 1970 to 2023, it includes population figures for different years, enabling a detailed examination of demographic trends and changes over time.
Structured with meticulous detail, this dataset offers a wide array of information in a format conducive to analysis and exploration. Featuring parameters like population by year, country rankings, geographical details, and growth rates, it serves as a valuable resource for researchers, policymakers, and analysts. Additionally, the inclusion of growth rates and world population percentages provides a nuanced understanding of how countries contribute to global demographic shifts.
This dataset is invaluable for those interested in understanding historical population trends, predicting future demographic patterns, and conducting in-depth analyses to inform policies across various sectors such as economics, urban planning, public health, and more.
This dataset (world_population_data.csv
) covering from 1970 up to 2023 includes the following columns:
Column Name | Description |
---|---|
Rank | Rank by Population |
CCA3 | 3 Digit Country/Territories Code |
Country | Name of the Country |
Continent | Name of the Continent |
2023 Population | Population of the Country in the year 2023 |
2022 Population | Population of the Country in the year 2022 |
2020 Population | Population of the Country in the year 2020 |
2015 Population | Population of the Country in the year 2015 |
2010 Population | Population of the Country in the year 2010 |
2000 Population | Population of the Country in the year 2000 |
1990 Population | Population of the Country in the year 1990 |
1980 Population | Population of the Country in the year 1980 |
1970 Population | Population of the Country in the year 1970 |
Area (km²) | Area size of the Country/Territories in square kilometer |
Density (km²) | Population Density per square kilometer |
Growth Rate | Population Growth Rate by Country |
World Population Percentage | The population percentage by each Country |
The primary dataset was retrieved from the World Population Review. I sincerely thank the team for providing the core data used in this dataset.
© Image credit: Freepik
WorldPop produces different types of gridded population count datasets, depending on the methods used and end application.
Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.
Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 30 arc-seconds (approximately 1km at the equator)
-Unconstrained individual countries 2000-2020: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding
Unconstrained individual countries 2000-2020 population count datasets by dividing the number of people in each pixel by the pixel surface area.
These are produced using the unconstrained top-down modelling method.
-Unconstrained individual countries 2000-2020 UN adjusted: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding
Unconstrained individual countries 2000-2020 population UN adjusted count datasets by dividing the number of people in each pixel,
adjusted to match the country total from the official United Nations population estimates (UN 2019), by the pixel surface area.
These are produced using the unconstrained top-down modelling method.
Data for earlier dates is available directly from WorldPop.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00674
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Census: Population: by Religion: Muslim: Assam data was reported at 10,679,345.000 Person in 03-01-2011. This records an increase from the previous number of 8,240,611.000 Person for 03-01-2001. Census: Population: by Religion: Muslim: Assam data is updated decadal, averaging 9,459,978.000 Person from Mar 2001 (Median) to 03-01-2011, with 2 observations. The data reached an all-time high of 10,679,345.000 Person in 03-01-2011 and a record low of 8,240,611.000 Person in 03-01-2001. Census: Population: by Religion: Muslim: Assam data remains active status in CEIC and is reported by Office of the Registrar General & Census Commissioner, India. The data is categorized under India Premium Database’s Demographic – Table IN.GAE003: Census: Population: by Religion: Muslim.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IPUMS-International is an effort to inventory, preserve, harmonize, and disseminate census microdata from around the world. The project has collected the world's largest archive of publicly available census samples. The data are coded and documented consistently across countries and over time to facillitate comparative research. IPUMS-International makes these data available to qualified researchers free of charge through a web dissemination system. The IPUMS project is a collaboration of the Minnesota Population Center, National Statistical Offices, and international data archives. Major funding is provided by the U.S. National Science Foundation and the Demographic and Behavioral Sciences Branch of the National Institute of Child Health and Human Development. Additional support is provided by the University of Minnesota Office of the Vice President for Research, the Minnesota Population Center, and Sun Microsystems.
The fourth edition of the Global Findex offers a lens into how people accessed and used financial services during the COVID-19 pandemic, when mobility restrictions and health policies drove increased demand for digital services of all kinds.
The Global Findex is the world's most comprehensive database on financial inclusion. It is also the only global demand-side data source allowing for global and regional cross-country analysis to provide a rigorous and multidimensional picture of how adults save, borrow, make payments, and manage financial risks. Global Findex 2021 data were collected from national representative surveys of about 128,000 adults in more than 120 economies. The latest edition follows the 2011, 2014, and 2017 editions, and it includes a number of new series measuring financial health and resilience and contains more granular data on digital payment adoption, including merchant and government payments.
The Global Findex is an indispensable resource for financial service practitioners, policy makers, researchers, and development professionals.
National coverage
Individual
Observation data/ratings [obs]
In most developing economies, Global Findex data have traditionally been collected through face-to-face interviews. Surveys are conducted face-to-face in economies where telephone coverage represents less than 80 percent of the population or where in-person surveying is the customary methodology. However, because of ongoing COVID-19 related mobility restrictions, face-to-face interviewing was not possible in some of these economies in 2021. Phone-based surveys were therefore conducted in 67 economies that had been surveyed face-to-face in 2017. These 67 economies were selected for inclusion based on population size, phone penetration rate, COVID-19 infection rates, and the feasibility of executing phone-based methods where Gallup would otherwise conduct face-to-face data collection, while complying with all government-issued guidance throughout the interviewing process. Gallup takes both mobile phone and landline ownership into consideration. According to Gallup World Poll 2019 data, when face-to-face surveys were last carried out in these economies, at least 80 percent of adults in almost all of them reported mobile phone ownership. All samples are probability-based and nationally representative of the resident adult population. Phone surveys were not a viable option in 17 economies that had been part of previous Global Findex surveys, however, because of low mobile phone ownership and surveying restrictions. Data for these economies will be collected in 2022 and released in 2023.
In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households. Each eligible household member is listed, and the hand-held survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.
In traditionally phone-based economies, respondent selection follows the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies where mobile phone and landline penetration is high, a dual sampling frame is used.
The same respondent selection procedure is applied to the new phone-based economies. Dual frame (landline and mobile phone) random digital dialing is used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digital dialing is used in economies with limited to no landline presence (less than 20 percent).
For landline respondents in economies where mobile phone or landline penetration is 80 percent or higher, random selection of respondents is achieved by using either the latest birthday or household enumeration method. For mobile phone respondents in these economies or in economies where mobile phone or landline penetration is less than 80 percent, no further selection is performed. At least three attempts are made to reach a person in each household, spread over different days and times of day.
Sample size for Iran, Islamic Rep. is 1005.
Landline and mobile telephone
Questionnaires are available on the website.
Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar. 2022. The Global Findex Database 2021: Financial Inclusion, Digital Payments, and Resilience in the Age of COVID-19. Washington, DC: World Bank.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Recent issues on politics have been dominant in Indonesia that people are divided and become more intolerant of each other. Indonesia has the biggest Muslim population in the world and the role of Islam in Indonesian politics is significant. The current Indonesian government claim that moderate Muslims are loyal to the present political system while the opposing rivals who are often labelled’intolerant and radical Muslims’ by Indonesian mass media often disagree with the central interpretation of democracy in Indonesia. Studies on contributing factors and discourse strategies used in news and articles in secular and Islamic mass media which play a vital role in the construction of Muslim and Islamic identities in Indonesia are, therefore, recommended.
Islam and Christianity form the two dominant religions in Nigeria. Since colonialism, approximately 90 percent of the Nigerian people identify themselves as Islamic or Christian. The northern region of Nigeria is predominately Islamic, while the southern region is predominately Christian.
Nigeria’s contact with Islam predated that of Christianity and European colonialism; its spread was facilitated into Sub-Saharan Africa through trade and commerce. The northern part of Nigeria is symbolic to the history of Islam, as it penetrated the area through the Kanem-Borno Empire in the 11th century before spreading to other predominately Hausa states. Islam was then introduced into the traditional societies of the Yoruba-speaking people of south-west Nigeria through their established commercial relationship with people of the north, particularly the Nupe and Fulani.
Christianity reached Nigeria in the 15th century with the visitation of Catholic missionaries to the coastal areas of the Niger-Delta region. Christianity soon recorded a boost in the southern region given its opposition to the slave trade and its promotion of Western education.
The distinct religious divide has instigated violence in present-day Nigeria, including the Sharia riot in Kaduna in 2000, ongoing ethno-religious violence in Jos since 2001, and the 2011 post-election violence that erupted in some northern states, particularly in the city of Maiduguri. Nigerians’ continued loyalty to religion compared to that of the country continues to sustain major political debate, conflict, and violent outbreaks between populations of the two faiths.
ISO3-International Organization for Standardization 3-digit country code
NAME-Name of religious institution
TYPE-Type of religious institution
CITY-City religious institution is located in
SPA_ACC-Spatial accuracy of site location 1- high, 2 – medium, 3 - low
SOURCE_DT-Source creation date
SOURCE-Primary source
SOURCE2_DT-Secondary source creation date
SOURCE2-Secondary source
Collection
This HGIS was created using information collected from the web sites GCatholic.org, Islamic Finder, Wikimapia, and BBBike.org, which uses OpenStreetMap, a crowd-source collaboration project that geo-locates sites throughout the world. After collection, all education institutions were geo-located.
The data included herein have not been derived from a registered survey and should be considered approximate unless otherwise defined. While rigorous steps have been taken to ensure the quality of each dataset, DigitalGlobe Analytics is not responsible for the accuracy and completeness of data compiled from outside sources.
Sources (HGIS)
BBBike, "Nigeria." Last modified 2013. Accessed March 19, 2013. http://extract.bbbike.org.
GCatholic.org, "Catholic Churches in Federal Republic of Nigeria." Last modified 2013. Accessed April 4, 2013. http://www.gcatholic.org/.
Islamic Finder, "Nigeria." Last modified 2013. Accessed April 4, 2013. http://islamicfinder.org/.
Olanrewaju, Timothy. The Sun, "oko Haram attacks church in Maiduguri." Last modified 2013. Accessed April 9, 2013. http://sunnewsonline.com/.
Wikimapia, "Nigeria:Mosques/Churches." Last modified 2013. Accessed April 4, 2013. http://wikimapia.org/
World Watch Monitor, "Muslim Threat to Attack Church Raises Tensions." Last modified 2012. Accessed April 9, 2013. http://www.worldwatchmonitor.org/.
Sources (Metadata)
Danjibo, N.D. "Islamic Fundamentalism and Sectarian Violence: The "Maitatsine" and "Boko Haram" Crises in Northern Nigeria." manuscript., University of Ibadan, 2010. http://www.ifra-nigeria.org.
Olanrewaju, Timothy. The Sun, "oko Haram attacks church in Maiduguri." Last modified 2013. Accessed April 9, 2013. http://sunnewsonline.com/.
Onapajo, Hakeem. "Politics for God: Religion, Politics, and Conflict in Democratic Nigeria." Journal of Pan African Studies. 4. no. 9 (2012): 42-66. http://web.ebscohost.com (accessed March 26, 2013).
World Watch Monitor, "Muslim Threat to Attack Church Raises Tensions." Last modified 2012. Accessed April 9, 2013. http://www.worldwatchmonitor.org/.
The project had two main dimensions: the first is theoretical and the second is empirical, focusing on three case studies (Moscow, Tatarstan and Dagestan). The theoretical aspect of the project examines two main sets of questions: First, how the general concepts of extremism and moderation, and the associated concept of radicalization, are understood in the Russian context. How is radicalization linked to identity politics(ethnicity, nationalism and religion) and radical ideological movements? Second, how these concepts - moderation, extremism, and radicalization- applied in discourses and policies towards Muslim communities in Russia? What are the presumed internal and external influences? What are the comparisons and links with elite discourse in other European countries with significant Muslim communities, such as UK and France?
The empirical aspect of the project examines how these general concepts and approaches help to illuminate and explains developments in regions of Russian where there exist sizeable Muslim communities. The three case studies chosen include a) the city of Moscow, where it is estimated that there are 1-2 million Muslims, representing at least 10% of the population; b) Tatarstan, which has an ethnic Tatar Muslim plurality and which is often taken to be the best example of the influence of moderate Islam; c) Dagestan, which is regularly taken to be the region with the greatest potential danger, apart form Chechnya, of Islamic radicalization.
The dataset was originally intended to include transcriptions of elite interviews which would have been in the format of elite interview-audio files. However, as we warned might be the case, it did not prove possible to gain consent to recording the interviews.
This project investigates the causes of Islamic radicalisation within Russia and their consequences for Russia's relevant domestic policies (for example ethnic, regional, immigration policies, and domestic democratisation), as well as its foreign policy response towards the Muslim world in the context of the global 'War on Terror'. There are four principal research questions:(1) How Russian policy-making and academic elites conceptualise the idea of 'radicalisation' and political violence. (2) How these discourses are translated into state practice and policy. (3) How these state-driven practices feed or undermine underlying processes of radicalisation. (4) How Russia's domestic context of combating radicalisation drives its foreign policy. The project methodology includes a discourse analysis of academic and journalistic writings and three regional case studies of Russian state policy towards Islam (Moscow, Tatarstan and Dagestan). Each case study relies on discourse analysis of public and media approaches, content analysis of relevant legal and state policy documents, and semi-structured elite interviews. The project co-ordinators will work with local institutes in Russia and will invite scholars from these institutes to the UK as research fellows. The project findings will be disseminated by four journal articles, policy briefings and a co-authored monograph.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Singapore Population: Religion: Female: Islam data was reported at 233.800 Person th in 2015. This records an increase from the previous number of 231.478 Person th for 2010. Singapore Population: Religion: Female: Islam data is updated yearly, averaging 231.478 Person th from Jun 2000 (Median) to 2015, with 3 observations. The data reached an all-time high of 233.800 Person th in 2015 and a record low of 185.804 Person th in 2000. Singapore Population: Religion: Female: Islam data remains active status in CEIC and is reported by Department of Statistics. The data is categorized under Global Database’s Singapore – Table SG.G002: Population by Religion .
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Associated with manuscript titled: Fifty Muslim-majority countries have fewer COVID-19 cases and deaths than the 50 richest non-Muslim countriesThe objective of this research was to determine the difference in the total number of COVID-19 cases and deaths between Muslim-majority and non-Muslim countries, and investigate reasons for the disparities. Methods: The 50 Muslim-majority countries had more than 50.0% Muslims with an average of 87.5%. The non-Muslim country sample consisted of 50 countries with the highest GDP while omitting any Muslim-majority countries listed. The non-Muslim countries’ average percentage of Muslims was 4.7%. Data pulled on September 18, 2020 included the percentage of Muslim population per country by World Population Review15 and GDP per country, population count, and total number of COVID-19 cases and deaths by Worldometers.16 The data set was transferred via an Excel spreadsheet on September 23, 2020 and analyzed. To measure COVID-19’s incidence in the countries, three different Average Treatment Methods (ATE) were used to validate the results. Results published as a preprint at https://doi.org/10.31235/osf.io/84zq5(15) Muslim Majority Countries 2020 [Internet]. Walnut (CA): World Population Review. 2020- [Cited 2020 Sept 28]. Available from: http://worldpopulationreview.com/country-rankings/muslim-majority-countries (16) Worldometers.info. Worldometer. Dover (DE): Worldometer; 2020 [cited 2020 Sept 28]. Available from: http://worldometers.info