The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>Total population for the world in 2024 was <strong>8,118,835,999</strong>, a <strong>0.71% increase</strong> from 2023.</li>
<li>Total population for the world in 2023 was <strong>8,061,876,001</strong>, a <strong>0.9% increase</strong> from 2022.</li>
<li>Total population for the world in 2022 was <strong>7,989,981,520</strong>, a <strong>0.87% increase</strong> from 2021.</li>
</ul>Total population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship. The values shown are midyear estimates.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This Dataset provides comprehensive demographic information on global populations from 1950 to the present. It offers insights into various aspects of population dynamics, including population counts, gender ratios, birth and death rates, life expectancy, and migration patterns.
SortOrder: Numeric identifier for sorting.
LocID: Location identifier.
Notes: Additional notes or comments (blank in this dataset).
ISO3_code: ISO 3-character country code.
ISO2_code: ISO 2-character country code.
SDMX_code: Statistical Data and Metadata Exchange code.
LocTypeID: Location type identifier.
LocTypeName: Location type name.
ParentID: Identifier for the parent location.
Location: Name of the location.
VarID: Identifier for the variant.
Variant: Type of population variant.
Time: Year or time period.
TPopulation1Jan: Total population on January 1st.
TPopulation1July: Total population on July 1st.
TPopulationMale1July: Total male population on July 1st.
TPopulationFemale1July: Total female population on July 1st.
PopDensity: Population density (people per square kilometer).
PopSexRatio: Population sex ratio (male/female).
MedianAgePop: Median age of the population.
NatChange: Natural change in population.
NatChangeRT: Natural change rate (per 1,000 people).
PopChange: Population change.
PopGrowthRate: Population growth rate (percentage).
DoublingTime: Time for population to double (in years).
Births: Total number of births.
Births1519: Births to mothers aged 15-19.
CBR: Crude birth rate (per 1,000 people).
TFR: Total fertility rate (average number of children per woman).
NRR: Net reproduction rate.
MAC: Mean age at childbearing.
SRB: Sex ratio at birth (male/female).
Deaths: Total number of deaths.
DeathsMale: Total male deaths.
DeathsFemale: Total female deaths.
CDR: Crude death rate (per 1,000 people).
LEx: Life expectancy at birth.
LExMale: Life expectancy for males at birth.
LExFemale: Life expectancy for females at birth.
LE15: Life expectancy at age 15.
LE15Male: Life expectancy for males at age 15.
LE15Female: Life expectancy for females at age 15.
LE65: Life expectancy at age 65.
LE65Male: Life expectancy for males at age 65.
LE65Female: Life expectancy for females at age 65.
LE80: Life expectancy at age 80.
LE80Male: Life expectancy for males at age 80.
LE80Female: Life expectancy for females at age 80.
InfantDeaths: Number of infant deaths.
IMR: Infant mortality rate (per 1,000 live births).
LBsurvivingAge1: Children surviving to age 1.
Under5Deaths: Number of deaths under age 5.
NetMigrations: Net migration rate (per 1,000 people).
CNMR: Crude net migration rate.
Please upvote and show your support if you find this dataset valuable for your research or analysis. Your feedback and contributions help make this dataset more accessible to the Kaggle community. Thank you!
Until the 1800s, population growth was incredibly slow on a global level. The global population was estimated to have been around 188 million people in the year 1CE, and did not reach one billion until around 1803. However, since the 1800s, a phenomenon known as the demographic transition has seen population growth skyrocket, reaching eight billion people in 2023, and this is expected to peak at over 10 billion in the 2080s.
There are three csv files.One is of world population by year (1955-2020).The second file is of world population by region and the third file is of world population by countries.In which there is population of each country in our world till year 2020. Features in these 3 datasets :
I have scraped these 3 datasets from worldometers.info website using BeautifulSoup
Analyse the increase of world population in last 10 year and do the world population forecast .Find 10 largest countries by population and population density
As a source of animal and plant population data, the Global Population Dynamics Database (GPDD) is unrivalled. Nearly five thousand separate time series are available here. In addition to all the population counts, there are taxonomic details of over 1400 species. The type of data contained in the GPDD varies enormously, from annual counts of mammals or birds at individual sampling sites, to weekly counts of zooplankton and other marine fauna. The project commenced in October 1994, following discussions on ways in which the collaborating partners could make a practical and enduring contribution to research into population dynamics. A small team was assembled and, with assistance and advice from numerous interested parties we decided to construct the database using the popular Microsoft Access platform. After an initial design phase, the major task has been that of locating, extracting, entering and validating the data in all the various tables. Now, nearly 5000 individual datasets have been entered onto the GPDD. The Global Population Dynamics Database comprises six Tables of data and information. The tables are linked to each other as shown in the diagram shown in figure 3 of the GPDD User Guide (GPDD-User-Guide.pdf). Referential integrity is maintained through record ID numbers which are held, along with other information in the Main Table. It's structure obeys all the rules of a standard relational database.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘2021 World Population (updated daily)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/rsrishav/world-population on 28 January 2022.
--- Dataset description provided by original source is as follows ---
2021 World Population dataset which gets updated daily.
2021_population.csv
: File contains data for only live 2021 population count which gets updated daily.
Also contains more information about the country's growth rate, area, etc.
timeseries_population_count.csv
: File contains data for live population count which gets updated daily but it contains last updated data also. Data in this file is managed day-wise.
This type of data can be used for population-related use cases.
Like, my own dataset COVID Vaccination in World (updated daily)
, which requires population data.
I believe there are more use cases that I didn't explore yet but might other Kaggler needs this.
Time-series related use-case can be implemented on this data but I know it will take time to compile that amount of data. So stay tuned.
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We would like to inform you that the updated GlobPOP dataset (2021-2022) have been available in version 2.0. The GlobPOP dataset (2021-2022) in the current version is not recommended for your work. The GlobPOP dataset (1990-2020) in the current version is the same as version 1.0.
Thank you for your continued support of the GlobPOP.
If you encounter any issues, please contact us via email at lulingliu@mail.bnu.edu.cn.
Continuously monitoring global population spatial dynamics is essential for implementing effective policies related to sustainable development, such as epidemiology, urban planning, and global inequality.
Here, we present GlobPOP, a new continuous global gridded population product with a high-precision spatial resolution of 30 arcseconds from 1990 to 2020. Our data-fusion framework is based on cluster analysis and statistical learning approaches, which intends to fuse the existing five products(Global Human Settlements Layer Population (GHS-POP), Global Rural Urban Mapping Project (GRUMP), Gridded Population of the World Version 4 (GPWv4), LandScan Population datasets and WorldPop datasets to a new continuous global gridded population (GlobPOP). The spatial validation results demonstrate that the GlobPOP dataset is highly accurate. To validate the temporal accuracy of GlobPOP at the country level, we have developed an interactive web application, accessible at https://globpop.shinyapps.io/GlobPOP/, where data users can explore the country-level population time-series curves of interest and compare them with census data.
With the availability of GlobPOP dataset in both population count and population density formats, researchers and policymakers can leverage our dataset to conduct time-series analysis of population and explore the spatial patterns of population development at various scales, ranging from national to city level.
The product is produced in 30 arc-seconds resolution(approximately 1km in equator) and is made available in GeoTIFF format. There are two population formats, one is the 'Count'(Population count per grid) and another is the 'Density'(Population count per square kilometer each grid)
Each GeoTIFF filename has 5 fields that are separated by an underscore "_". A filename extension follows these fields. The fields are described below with the example filename:
GlobPOP_Count_30arc_1990_I32
Field 1: GlobPOP(Global gridded population)
Field 2: Pixel unit is population "Count" or population "Density"
Field 3: Spatial resolution is 30 arc seconds
Field 4: Year "1990"
Field 5: Data type is I32(Int 32) or F32(Float32)
Please refer to the paper for detailed information:
Liu, L., Cao, X., Li, S. et al. A 31-year (1990–2020) global gridded population dataset generated by cluster analysis and statistical learning. Sci Data 11, 124 (2024). https://doi.org/10.1038/s41597-024-02913-0.
The fully reproducible codes are publicly available at GitHub: https://github.com/lulingliu/GlobPOP.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The total population in the United States was estimated at 341.2 million people in 2024, according to the latest census figures and projections from Trading Economics. This dataset provides - United States Population - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of White Earth by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for White Earth. The dataset can be utilized to understand the population distribution of White Earth by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in White Earth. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for White Earth.
Key observations
Largest age group (population): Male # 10-14 years (17) | Female # 40-44 years (13). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for White Earth Population by Gender. You can refer the same here
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
2021 World Population dataset which gets updated daily.
2021_population.csv
: File contains data for only live 2021 population count which gets updated daily.
Also contains more information about the country's growth rate, area, etc.
timeseries_population_count.csv
: File contains data for live population count which gets updated daily but it contains last updated data also. Data in this file is managed day-wise.
This type of data can be used for population-related use cases.
Like, my own dataset COVID Vaccination in World (updated daily)
, which requires population data.
I believe there are more use cases that I didn't explore yet but might other Kaggler needs this.
Time-series related use-case can be implemented on this data but I know it will take time to compile that amount of data. So stay tuned.
https://www.geopostcodes.com/privacy-policy/https://www.geopostcodes.com/privacy-policy/
Comprehensive, annually-updated population datasets at ZIP code and administrative levels for 247 countries, spanning from 1975 to 2030, including historical, current, and projected population figures, enriched with attributes like area size, multilingual support, UNLOCODEs, IATA codes, and time zones.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This layer was created by Duncan Smith and based on work by the European Commission JRC and CIESIN. A description from his website follows:--------------------A brilliant new dataset produced by the European Commission JRC and CIESIN Columbia University was recently released- the Global Human Settlement Layer (GHSL). This is the first time that detailed and comprehensive population density and built-up area for the world has been available as open data. As usual, my first thought was to make an interactive map, now online at- http://luminocity3d.org/WorldPopDen/The World Population Density map is exploratory, as the dataset is very rich and new, and I am also testing out new methods for navigating statistics at both national and city scales on this site. There are clearly many applications of this data in understanding urban geographies at different scales, urban development, sustainability and change over time.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of White Earth by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of White Earth across both sexes and to determine which sex constitutes the majority.
Key observations
There is a majority of male population, with 61.18% of total population being male. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for White Earth Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We are pleased to announce that the GlobPOP dataset for the years 2021-2022 has undergone a comprehensive quality check and has now been updated accordingly. Following the established methodology that ensures the high precision and reliability, these latest updates allow for even more comprehensive time-series analysis. The updated GlobPOP dataset remains available in GeoTIFF format for easy integration into your existing workflows.
2021-2022 年的 GlobPOP 数据集经过全面的质量检查,现已进行相应更新。 遵循确保高精度和可靠性的原有方法,本次更新允许进行更全面的时间序列分析。 更新后的 GlobPOP 数据集仍以 GeoTIFF 格式提供,以便轻松集成到您现有的工作流中。
To reflect these updates, our interactive web application has also been refreshed. Users can now explore the updated national population time-series curves from 1990 to 2022. This can be accessed via the same link: https://globpop.shinyapps.io/GlobPOP/. Thank you for your continued support of the GlobPOP, and we hope that the updated data will further enhance your research and policy analysis endeavors.
交互式网页反映了人口最新动态,用户现在可以探索感兴趣的国家1990 年至 2022 年人口时间序列曲线,并将其与人口普查数据进行比较。感谢您对 GlobPOP 的支持,我们希望更新的数据将进一步加强您的研究和政策分析工作。
If you encounter any issues, please contact us via email at lulingliu@mail.bnu.edu.cn.
如果您遇到任何问题,请通过电子邮件联系我们。
Continuously monitoring global population spatial dynamics is essential for implementing effective policies related to sustainable development, such as epidemiology, urban planning, and global inequality.
Here, we present GlobPOP, a new continuous global gridded population product with a high-precision spatial resolution of 30 arcseconds from 1990 to 2020. Our data-fusion framework is based on cluster analysis and statistical learning approaches, which intends to fuse the existing five products(Global Human Settlements Layer Population (GHS-POP), Global Rural Urban Mapping Project (GRUMP), Gridded Population of the World Version 4 (GPWv4), LandScan Population datasets and WorldPop datasets to a new continuous global gridded population (GlobPOP). The spatial validation results demonstrate that the GlobPOP dataset is highly accurate. To validate the temporal accuracy of GlobPOP at the country level, we have developed an interactive web application, accessible at https://globpop.shinyapps.io/GlobPOP/, where data users can explore the country-level population time-series curves of interest and compare them with census data.
With the availability of GlobPOP dataset in both population count and population density formats, researchers and policymakers can leverage our dataset to conduct time-series analysis of population and explore the spatial patterns of population development at various scales, ranging from national to city level.
The product is produced in 30 arc-seconds resolution(approximately 1km in equator) and is made available in GeoTIFF format. There are two population formats, one is the 'Count'(Population count per grid) and another is the 'Density'(Population count per square kilometer each grid)
Each GeoTIFF filename has 5 fields that are separated by an underscore "_". A filename extension follows these fields. The fields are described below with the example filename:
GlobPOP_Count_30arc_1990_I32
Field 1: GlobPOP(Global gridded population)
Field 2: Pixel unit is population "Count" or population "Density"
Field 3: Spatial resolution is 30 arc seconds
Field 4: Year "1990"
Field 5: Data type is I32(Int 32) or F32(Float32)
Please refer to the paper for detailed information:
Liu, L., Cao, X., Li, S. et al. A 31-year (1990–2020) global gridded population dataset generated by cluster analysis and statistical learning. Sci Data 11, 124 (2024). https://doi.org/10.1038/s41597-024-02913-0.
The fully reproducible codes are publicly available at GitHub: https://github.com/lulingliu/GlobPOP.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
World Population Data from the United Nations (UN), United Nations Department of Economic and Social Affairs Population Division World Population Prospects 2022
Notes
File (CSV, 6 KB)
Location notes.
**Demographic Indicators ** Indicator reference (CSV, 4 KB) 1950-2100, medium (ZIP, 7.77 MB) 2022-2100, other scenarios (ZIP, 34.76 MB) Demographic Indicators:
Total Population, as of 1 January (thousands)
Total Population, as of 1 July (thousands)
Male Population, as of 1 July (thousands)
Female Population, as of 1 July (thousands)
Population Density, as of 1 July (persons per square km)
Population Sex Ratio, as of 1 July (males per 100 females)
Median Age, as of 1 July (years)
Natural Change, Births minus Deaths (thousands)
Rate of Natural Change (per 1,000 population)
Population Change (thousands)
Population Growth Rate (percentage)
Population Annual Doubling Time (years)
Births (thousands)
Births by women aged 15 to 19 (thousands)
Crude Birth Rate (births per 1,000 population)
Total Fertility Rate (live births per woman)
Net Reproduction Rate (surviving daughters per woman)
Mean Age Childbearing (years)
Sex Ratio at Birth (males per 100 female births)
Total Deaths (thousands)
Male Deaths (thousands)
Female Deaths (thousands)
Crude Death Rate (deaths per 1,000 population)
Life Expectancy at Birth, both sexes (years)
Male Life Expectancy at Birth (years)
Female Life Expectancy at Birth (years)
Life Expectancy at Age 15, both sexes (years)
Male Life Expectancy at Age 15 (years)
Female Life Expectancy at Age 15 (years)
Life Expectancy at Age 65, both sexes (years)
Male Life Expectancy at Age 65 (years)
Female Life Expectancy at Age 65 (years)
Life Expectancy at Age 80, both sexes (years)
Male Life Expectancy at Age 80 (years)
Female Life Expectancy at Age 80 (years)
Infant Deaths, under age 1 (thousands)
Infant Mortality Rate (infant deaths per 1,000 live births)
Live births Surviving to Age 1 (thousands)
Deaths under age 5 (thousands)
Under-five Mortality Rate (deaths under age 5 per 1,000 live births)
Mortality before Age 40, both sexes (deaths under age 40 per 1,000 live births)
Male mortality before Age 40 (deaths under age 40 per 1,000 male live births)
Female mortality before Age 40 (deaths under age 40 per 1,000 female live births)
Mortality before Age 60, both sexes (deaths under age 60 per 1,000 live births)
Male mortality before Age 60 (deaths under age 60 per 1,000 male live births)
Female mortality before Age 60 (deaths under age 60 per 1,000 female live births)
Mortality between Age 15 and 50, both sexes (deaths under age 50 per 1,000 alive at age 15)
Male mortality between Age 15 and 50 (deaths under age 50 per 1,000 males alive at age 15)
Female mortality between Age 15 and 50 (deaths under age 50 per 1,000 females alive at age 15)
Mortality between Age 15 and 60, both sexes (deaths under age 60 per 1,000 alive at age 15)
Male mortality between Age 15 and 60 (deaths under age 60 per 1,000 males alive at age 15)
Female mortality between Age 15 and 60 (deaths under age 60 per 1,000 females alive at age 15)
Net Number of Migrants (thousands)
Net Migration Rate (per 1,000 population)
Fertility
1950-2100, single age (ZIP, 78.01 MB)
1950-2100, 5-year age groups (ZIP, 22.38 MB)
Age-specific Fertility Rate (ASFR)
Percent Age-specific Fertility Rate (PASFR)
Births (thousands)
**Life Tables ** 1950-2021, medium (ZIP, 68.72 MB) 2022-2100, medium (ZIP, 74.62 MB) Abridged life tables up to age 100 by sex and both sexes combined providing a set of values showing the mortality experience of a hypothetical group of infants born at the same time and subject throughout their lifetime to the specific mortality rates of a given year, from 1950 to 2100. Only medium is available.
mx: Central death rate, nmx, for the age interval (x, x+n)
qx: Probability of dying (nqx), for an individual between age x and x+n
px: Probability of surviving, (npx), for an individual of age x to age x+n
lx: Number of survivors, (lx), at age (x) for 100000 births
dx: Number of deaths, (ndx), between ages x and x+n
Lx: Number of person-years lived, (nLx), between ages x and x+n
Sx: Survival ratio (nSx) corresponding to proportion of the life table population in age group (x, x+n) who are alive n year later
Tx: Person-years lived, (Tx), above age x
ex: Expectation of life (ex) at age x, i.e., average number of years lived subsequent to age x by those reaching age x
ax: Average number of years lived (nax) between ages x and x+n by those dying in the interval
Life Tables 1950-2021 (ZIP, 94.76 MB) 2022-2100 (ZIP, 101.66 MB) Single age life tables up to age 10...
Web Map Service that supports the IRENA Global Atlas for Renewable EnergyThe LandScan 2018 Global Population Database was developed by Oak Ridge National Laboratory (ORNL) for the United States Department of Defense (DoD).ORNL’s LandScan™ is a community standard for global population distribution data. At approximately 1 km (30″ X 30″) spatial resolution, it represents an ambient population (average over 24 hours) distribution. The database is refreshed annually and released to the broader user community around October. LandScan™ is now available at no cost to the educational community. The latest LandScan™ dataset available is LandScan Global 2018. Older LandScan Global data sets (LandScan 1998, 2000-2017) are available through site. These data set can be licensed for commercial and other applications through multiple third-party vendors. LandScan is developed using best available demographic (Census) and geographic data, remote sensing imagery analysis techniques within a multivariate dasymetric modeling framework to disaggregate census counts within an administrative boundary. Since no single population distribution model can account for the differences in spatial data availability, quality, scale, and accuracy as well as the differences in cultural settlement practices, LandScan population distribution is essentially a combination of locally adoptive models that are tailored to match the data conditions and geographical nature of each individual country and region.
Six metrics were used to determine Population Vulnerability: global population size, annual occurrence in the California Current System (CCS), percent of the population present in the CCS, threat status, breeding score, and annual adult survival. Global Population size (POP)—to determine population size estimates for each species we gathered information tabulated by American Bird Conservancy, Birdlife International, and other primary sources. Proportion of Population in CCS (CCSpop)—for each species, we generated the population size within the CCS by averaging region-wide population estimates, or by combining state estimates for California, Oregon, and Washington for each species (if estimates were not available for a region or state, “NA” was recorded in place of a value) and then dividing the CCSpop value by the estimated global population size (POP) to yield the percentage of the population occurring in the CCS. Annual Occurrence in the CCS (AO)—for each species, we estimated the number of months per year within the CCS and binned this estimate into three categories: 1–4 months, 5–8 months, or 9–12 months. Threat Status (TS)—for each species, we used the International Union for Conservation of Nature (IUCN) species threat status (IUCN 2014) and the U.S. Fish and Wildlife national threat status lists (USFWS 2014) to determine TS values for each species. If available, we also evaluated threat status values from state and international agencies. Breeding Score (BR)—we determined the degree to which a species breeds and feeds its young in the CCS according to 3 categories: breeds in the CCS, may breed in the CCS, or does not breed in the CCS. Adult Survival (AS)—for each species, we referenced information to estimate adult annual survival, because adult survival among marine birds in general is the most important demographic factor that can affect population growth rate and therefore inform vulnerability. These data support the following publication: Adams, J., Kelsey, E.C., Felis J.J., and Pereksta, D.M., 2016, Collision and displacement vulnerability among marine birds of the California Current System associated with offshore wind energy infrastructure: U.S. Geological Survey Open-File Report 2016-1154, 116 p., https://doi.org/10.3133/ofr20161154. These data were revisied in June 2017 and the revision published in August 2017. Please be advised to use CCS_vulnerability_FINAL_VERSION_v9_PV.csv
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description
This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.
Key Features
- Country: Name of the country.
- Density (P/Km2): Population density measured in persons per square kilometer.
- Abbreviation: Abbreviation or code representing the country.
- Agricultural Land (%): Percentage of land area used for agricultural purposes.
- Land Area (Km2): Total land area of the country in square kilometers.
- Armed Forces Size: Size of the armed forces in the country.
- Birth Rate: Number of births per 1,000 population per year.
- Calling Code: International calling code for the country.
- Capital/Major City: Name of the capital or major city.
- CO2 Emissions: Carbon dioxide emissions in tons.
- CPI: Consumer Price Index, a measure of inflation and purchasing power.
- CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
- Currency_Code: Currency code used in the country.
- Fertility Rate: Average number of children born to a woman during her lifetime.
- Forested Area (%): Percentage of land area covered by forests.
- Gasoline_Price: Price of gasoline per liter in local currency.
- GDP: Gross Domestic Product, the total value of goods and services produced in the country.
- Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
- Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
- Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
- Largest City: Name of the country's largest city.
- Life Expectancy: Average number of years a newborn is expected to live.
- Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
- Minimum Wage: Minimum wage level in local currency.
- Official Language: Official language(s) spoken in the country.
- Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
- Physicians per Thousand: Number of physicians per thousand people.
- Population: Total population of the country.
- Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
- Tax Revenue (%): Tax revenue as a percentage of GDP.
- Total Tax Rate: Overall tax burden as a percentage of commercial profits.
- Unemployment Rate: Percentage of the labor force that is unemployed.
- Urban Population: Percentage of the population living in urban areas.
- Latitude: Latitude coordinate of the country's location.
- Longitude: Longitude coordinate of the country's location.
Potential Use Cases
- Analyze population density and land area to study spatial distribution patterns.
- Investigate the relationship between agricultural land and food security.
- Examine carbon dioxide emissions and their impact on climate change.
- Explore correlations between economic indicators such as GDP and various socio-economic factors.
- Investigate educational enrollment rates and their implications for human capital development.
- Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
- Study labor market dynamics through indicators such as labor force participation and unemployment rates.
- Investigate the role of taxation and its impact on economic development.
- Explore urbanization trends and their social and environmental consequences.
The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.