Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 2 rows and is filtered where the book is The Country Life book for the young rider. It features 7 columns including author, publication date, language, and book publisher.
The United States Census Bureau’s international dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the dataset includes midyear population figures broken down by age and gender assignment at birth. Additionally, time-series data is provided for attributes including fertility rates, birth rates, death rates, and migration rates.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.census_bureau_international.
What countries have the longest life expectancy? In this query, 2016 census information is retrieved by joining the mortality_life_expectancy and country_names_area tables for countries larger than 25,000 km2. Without the size constraint, Monaco is the top result with an average life expectancy of over 89 years!
SELECT
age.country_name,
age.life_expectancy,
size.country_area
FROM (
SELECT
country_name,
life_expectancy
FROM
bigquery-public-data.census_bureau_international.mortality_life_expectancy
WHERE
year = 2016) age
INNER JOIN (
SELECT
country_name,
country_area
FROM
bigquery-public-data.census_bureau_international.country_names_area
where country_area > 25000) size
ON
age.country_name = size.country_name
ORDER BY
2 DESC
/* Limit removed for Data Studio Visualization */
LIMIT
10
Which countries have the largest proportion of their population under 25? Over 40% of the world’s population is under 25 and greater than 50% of the world’s population is under 30! This query retrieves the countries with the largest proportion of young people by joining the age-specific population table with the midyear (total) population table.
SELECT
age.country_name,
SUM(age.population) AS under_25,
pop.midyear_population AS total,
ROUND((SUM(age.population) / pop.midyear_population) * 100,2) AS pct_under_25
FROM (
SELECT
country_name,
population,
country_code
FROM
bigquery-public-data.census_bureau_international.midyear_population_agespecific
WHERE
year =2017
AND age < 25) age
INNER JOIN (
SELECT
midyear_population,
country_code
FROM
bigquery-public-data.census_bureau_international.midyear_population
WHERE
year = 2017) pop
ON
age.country_code = pop.country_code
GROUP BY
1,
3
ORDER BY
4 DESC /* Remove limit for visualization*/
LIMIT
10
The International Census dataset contains growth information in the form of birth rates, death rates, and migration rates. Net migration is the net number of migrants per 1,000 population, an important component of total population and one that often drives the work of the United Nations Refugee Agency. This query joins the growth rate table with the area table to retrieve 2017 data for countries greater than 500 km2.
SELECT
growth.country_name,
growth.net_migration,
CAST(area.country_area AS INT64) AS country_area
FROM (
SELECT
country_name,
net_migration,
country_code
FROM
bigquery-public-data.census_bureau_international.birth_death_growth_rates
WHERE
year = 2017) growth
INNER JOIN (
SELECT
country_area,
country_code
FROM
bigquery-public-data.census_bureau_international.country_names_area
Historic (none)
United States Census Bureau
Terms of use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/international-census-data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for RETIREMENT AGE WOMEN reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Unemployment rates of young people (15-29) by age group and country’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from http://data.europa.eu/88u/dataset/https-www-datenportal-bmbf-de-portal-0-55 on 16 January 2022.
--- Dataset description provided by original source is as follows ---
Table 0.55: Unemployment rates of young people (15-29) by age group and country
--- Original source retains full ownership of the source dataset ---
Abstract copyright UK Data Service and data collection copyright owner.
The Young Lives survey is an innovative long-term project investigating the changing nature of childhood poverty in four developing countries. The study is being conducted in Ethiopia, India, Peru and Vietnam and has tracked the lives of 12,000 children over a 20-year period, through 5 (in-person) survey rounds (Round 1-5) and, with the latest survey round (Round 6) conducted over the phone in 2020 and 2021 as part of the Listening to Young Lives at Work: COVID-19 Phone Survey.Young Lives research has expanded to explore linking geographical data collected during the rounds to external datasets. Matching Young Lives data with administrative and geographic datasets significantly increases the scope for research in several areas, and may allow researchers to identify sources of exogenous variation for more convincing causal analysis on policy and/or early life circumstances.
Young Lives: Data Matching Series, 1900-2021 includes the following linked datasets:
1. Climate Matched Datasets (four YL study countries): Community-level GPS data has been matched with temperature and precipitation data from the University of Delaware. Climate variables are offered at the community level, with a panel data structure spanning across years and months. Hence, each community has a unique value of precipitation (variable PRCP) and temperature (variable TEMP), for each year and month pairing for the period 1900-2017.
2. COVID-19 Matched Dataset (Peru only): The YL Phone Survey Calls data has been matched with external data sources (The Peruvian Ministry of Health and the National Information System of Deaths in Peru). The matched dataset includes the total number of COVID cases per 1,000 inhabitants, the total number of COVID deaths by district and per 1,000 inhabitants; the total number of excess deaths per 1,000 inhabitants and the number of lockdown days in each Young Lives district in Peru during August 2020 to December 2021.
Further information is available in the PDF reports included in the study documentation.
Climate Matched Datasets: 5 variables including anonymised community identifier, monthly average temperature, monthly total precipitation, and year and month of climate data.
COVID-19 Matched Dataset (Peru): 29 variables to covering anonymised respondent identifier, cumulative number of COVID-19 cases per 1,000 inhabitants, fatalities, migration, vaccine distribution, and lockdown conditions implemented by the Peruvian government in areas where YL participants were living at the time of the Phone Survey Calls.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for RETIREMENT AGE MEN reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
World Countries Generalized represents generalized boundaries for the countries of the world as of August 2022. The generalized political boundaries improve draw performance and effectiveness at a global or continental level. This layer is best viewed out beyond a scale of 1:5,000,000.This layer's geography was developed by Esri and sourced from Garmin International, Inc., the U.S. Central Intelligence Agency (The World Factbook), and the National Geographic Society for use as a world basemap. It is updated annually as country names or significant borders change.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Young people neither in employment nor in education and training by sex, age, country of birth and NUTS 2 regions (NEET rates)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://data.europa.eu/data/datasets/cwnmeehtbc9o3t6mazbgw on 11 September 2021.
--- No further description of dataset provided by original source ---
--- Original source retains full ownership of the source dataset ---
Dataset for content analysis published in "Hornikx, J., Meurs, F. van, Janssen, A., & Heuvel, J. van den (2020). How brands highlight country of origin in magazine advertising: A content analysis. Journal of Global Marketing, 33 (1), 34-45."
*Abstract (taken from publication)
Aichner (2014) proposes a classification of ways in which brands communicate their country of origin (COO). The current, exploratory study is the first to empirically investigate the frequency with which brands employ such COO markers in magazine advertisements. An analysis of about 750 ads from the British, Dutch, and Spanish editions of Cosmopolitan showed that the prototypical ‘made in’ marker was rarely used, and that ‘COO embedded in company name’ and ‘use of COO language’ were most frequently employed. In all, 36% of the total number of ads contained at least one COO marker, underlining the importance of the COO construct.
*Methodology (taken from publication)
Sample
The use of COO markers in advertising was examined in print advertisements from three different countries to increase the robustness of the findings. Given the exploratory nature of this study, two practical selection criteria guided our country choice: the three countries included both smaller and larger countries in Europe, and they represented languages that the team was familiar with in order to reliably code the advertisements on the relevant variables. The three European countries selected were the Netherlands, Spain, and the United Kingdom. The dataset for the UK was discarded for testing H1 about the use of English as a foreign language, as will be explained in more detail in the coding procedure.
The magazine Cosmopolitan was chosen as the source of advertisements. The choice for one specific magazine title reduces the generalizability of the findings (i.e., limited to the corresponding products and target consumers), but this magazine was chosen intentionally because an informal analysis suggested that it carried advertising for a large number of product categories that are considered ethnic products, such as cosmetics, watches, and shoes (Usunier & Cestre, 2007). This suggestion was corroborated in the main analysis: the majority of the ads in the corpus referred to a product that Usunier and Cestre (2007) classify as ethnic products. Table 2 provides a description of the product categories and brands referred to in the advertisements. Ethnic products have a prototypical COO in the minds of consumers (e.g., cosmetics – France), which makes it likely that the COOs are highlighted through the use of COO markers.
Cosmopolitan is an international magazine that has different local editions in the three countries. The magazine, which is targeted at younger women (18–35 years old), reaches more than three million young women per month through its online, social and print platforms in the Netherlands (Hearst Netherlands, 2016), has about 517,000 readers per month in Spain (PrNoticias, 2016) and about 1.18 million readers per month in the UK (Hearst Magazine U.K., 2016).
The sample consisted of all advertisements from all monthly issues that appeared in 2016 in the three countries. This whole-year cluster was selected so as to prevent potential seasonal influences (Neuendorf, 2002). In total, the corpus consisted of 745 advertisements, of which 111 were from the Dutch, 367 from the British and 267 from the Spanish Cosmopolitan. Two categories of ads were excluded in the selection process: (1) advertisements for subscription to Cosmopolitan itself, and (2) advertisements that were identical to ads that had appeared in another issue in one of the three countries. As a result, each advertisement was unique.
Coding procedure
For all advertisements, four variables were coded: product type, presence of types of COO markers, COO referred to, and the use of English as a COO marker. In the first place, product type was assessed by the two coders. Coders classified each product to one of the 32 product types. In order to assess the reliability of the codings, ten per cent of the ads were independently coded by a second coder. The interrater reliability of the variable product category was good (κ = .97, p < .000, 97.33% agreement between both coders). Table 2 lists the most frequent product types; the label ‘other’ covers 17 types of product, including charity, education, and furniture.
In the second place, it was recorded whether one or more of the COO markers occurred in a given ad. In the third place, if a marker was identified, it was assessed to which COO the markers referred. Table 1 lists the nine possible COO markers defined by Aichner (2014) and the COOs referred to, with examples taken from the current content analysis. The interrater reliability for the type of COO marker was very good (κ = .80, p < .000, 96.30% agreement between the coders), and the interrater reliability for COO referred to was...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about artists. It has 1 row and is filtered where the artworks is Profile of a Young Girl (Mädchenkopf, Profil). It features 9 columns including birth date, death date, country, and gender.
https://data.gov.tw/licensehttps://data.gov.tw/license
This dataset contains the analysis of the number of male and female recipients of the Global Young Business Potential Star on six continents since 2021.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about artists. It has 1 row and is filtered where the artworks is Young Man by Candlelight. It features 9 columns including birth date, death date, country, and gender.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Young Lives survey is an innovative long-term project investigating the changing nature of childhood poverty in four developing countries. The purpose of the project is to improve understanding of the causes and consequences of childhood poverty and examine how policies affect children's well-being, in order to inform the development of future policy and to target child welfare interventions more effectively. The objectives of the study are to provide good quality long-term data about the lives of children living in poverty, trace linkages between key policy changes and child welfare, and inform and respond to the needs of policymakers, planners and other stakeholders. Research activities of the project include the collection of data on a set of child welfare outcomes and their determinants and the monitoring of changes in policy, in order to explore the links between the policy environment and outcomes for children. The study is being conducted in Ethiopia, India (in Andhra Pradesh), Peru and Vietnam. These countries were selected because they reflect a range of cultural, geographical and social contexts and experience differing issues facing the developing world; high debt burden, emergence from conflict, and vulnerability to environmental conditions such as drought and flood. The Young Lives study aims to track the lives of 12,000 children over a 15-year period. This is the time-frame set by the UN to assess progress towards the Millennium Development Goals. Round 1 of the study followed 2,000 children (aged between 6 and 18 months in 2002) and their households, from both urban and rural communities, in each of the four countries (8,000 children in total). Data were also collected on an older cohort of 1,000 children aged 7 to 8 years in each country, in order to provide a basis for comparison with the younger children when they reach that age. Round 2 of the study returned to the same children who were aged 1-year-old in Round 1 when they were aged approximately 5-years-old, and to the children aged 8-years-old in Round 1 when they were approximately 12-years-old. Round 3 of the study returned to the same children again when they were aged 7 to 8 years (the same as the older cohort in Round 1) and 14 to 15 years. It is envisaged that subsequent survey waves will take place in 2013 and 2016. Thus the younger children are being tracked from infancy to their mid-teens and the older children through into adulthood, when some will become parents themselves. Further information about the survey, including publications, can be downloaded from the Young Lives website. School Survey: A school survey was introduced into Young Lives in 2010, following the third round of the household survey, in order to capture detailed information about children’s experiences of schooling. It addressed two main research questions: • how do the relationships between poverty and child development manifest themselves and impact upon children's educational experiences and outcomes? • to what extent does children’s experience of school reinforce or compensate for disadvantage in terms of child development and poverty? The survey allows researchers to link longitudinal information on household and child characteristics from the household survey with data on the schools attended by the Young Lives children and children's achievements inside and outside the school. A wide range of stakeholders, including government representatives at national and sub-national levels, NGOs and donor organisations were involved in the design of the school survey, so the researchers could be sure that the ‘right questions’ were being asked to address major policy concerns. This consultation process means that policymakers already understand the context and potential of the Young Lives research and are interested to utilise the data and analysis to inform their policy decisions. The survey provides policy-relevant information on the relationship between child development (and its determinants) and children’s experience of school, including access, quality and progression. This combination of household, child and school-level data over time constitutes the comparative advantage of the Young Lives study. School Survey data are currently only available for India and Peru. The Peru data are available from the UK Data Archive under SN 7479. Further information is available from the Young Lives School Survey webpages.
Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
License information was derived automatically
Gazte Informazioa is a network of more than 70 services that make up the Youth Information Service of the Basque Country, made up of entities dependent on public administrations (such as Basque Government councils or town halls), universities and private entities (associations).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Young Lives: An International Study of Childhood Poverty is a collaborative project investigating the changing nature of childhood poverty in selected developing countries. The UK’s Department for International Development (DFID) is funding the first three-year phase of the project. Young Lives involves collaboration between Non Governmental Organisations (NGOs) and the academic sector. In the UK, the project is being run by Save the Children-UK together with an academic consortium that comprises the University of Reading, London School of Hygiene and Tropical Medicine, South Bank University, the Institute of Development Studies at Sussex University and the South African Medical Research Council. The study is being conducted in Ethiopia, India (in Andhra Pradesh), Peru and Vietnam. These countries were selected because they reflect a range of cultural, geographical and social contexts and experience differing issues facing the developing world; high debt burden, emergence from conflict, and vulnerability to environmental conditions such as drought and flood. Objectives of the study The Young Lives study has three broad objectives: • producing good quality panel data about the changing nature of the lives of children in poverty. • trace linkages between key policy changes and child poverty • informing and responding to the needs of policy makers, planners and other stakeholders There will also be a strong education and media element, both in the countries where the project takes place, and in the UK. The study takes a broad approach to child poverty, exploring not only household economic indicators such as assets and wealth, but also child centred poverty measures such as the child’s physical and mental health, growth, development and education. These child centred measures are age specific so the information collected by the study will change as the children get older. Further information about the survey, including publications, can be downloaded from the Young Lives website.
This layer contains the latest 14 months of unemployment statistics from the U.S. Bureau of Labor Statistics (BLS). The data is offered at the nationwide, state, and county geography levels. Puerto Rico is included. These are not seasonally adjusted values.The layer is updated monthly with the newest unemployment statistics available from BLS. There are attributes in the layer that specify which month is associated to each statistic. Most current month: April 2025 (preliminary values at the state and county level)The attributes included for each month are:Unemployment rate (%)Count of unemployed populationCount of employed population in the labor forceCount of people in the labor forceData obtained from the U.S. Bureau of Labor Statistics. Data downloaded: May 28th, 2025Local Area Unemployment Statistics table download: https://www.bls.gov/lau/#tablesLocal Area Unemployment FTP downloads:State and CountyNationData Notes:This layer is updated automatically when the BLS releases their most current monthly statistics. The layer always contains the most recent estimates. It is updated within days of the BLS's county release schedule. BLS releases their county statistics roughly 2 months after-the-fact. The data is joined to 2023 TIGER boundaries from the U.S. Census Bureau.Monthly values are subject to revision over time.For national values, employed plus unemployed may not sum to total labor force due to rounding.As of the January 2022 estimates released on March 18th, 2022, BLS is reporting new data for the two new census areas in Alaska - Copper River and Chugach - and historical data for the previous census area - Valdez Cordova.As of the March 17th, 2025 release, BLS now reports data for 9 planning regions in Connecticut rather than the 8 previous counties.To better understand the different labor force statistics included in this map, see the diagram below from BLS:
The Lao People’s Democratic Republic (Lao PDR) is a land-locked, ethnically diverse and mountainous country with an estimated population at 6.8 million. It has the distinction of having the highest total fertility rate (TFR) among ASEAN countries in recent years. With one of the youngest populations in the region, Lao PDR is projected to benefit from the “demographic dividend” to theeconomy in the medium-term. However,this will be realized only if young women and young men are better equipped with the appropriate skills and knowledge, and new jobs are able to keep pace with the growth of the working age population.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Young Lives survey is an innovative long-term project investigating the changing nature of childhood poverty in four developing countries. The purpose of the project is to improve understanding of the causes and consequences of childhood poverty and examine how policies affect children's well-being, in order to inform the development of future policy and to target child welfare interventions more effectively. The study is being conducted in Ethiopia, India (in Andhra Pradesh), Peru and Vietnam. These countries were selected because they reflect a range of cultural, geographical and social contexts and experience differing issues facing the developing world; high debt burden, emergence from conflict, and vulnerability to environmental conditions such as drought and flood. The Young Lives study aims to track the lives of 12,000 children over a 15-year period, surveyed once every 3-4 years. Round 1 of Young Lives surveyed two groups of children in each country, at 1 year old and 5 years old. Round 2 returned to the same children who were then aged 5 and 12 years old. Round 3 surveyed the same children again at aged 7-8 years and 14-15 years, and Round 4 surveyed them at 12 and 19 years old. Thus the younger children are being tracked from infancy to their mid-teens and the older children through into adulthood, when some will become parents themselves. The survey consists of three main elements: a child questionnaire, a household questionnaire and a community questionnaire. The household data gathered is similar to other cross-sectional datasets (such as the World Bank's Living Standards Measurement Study). It covers a range of topics such as household composition, livelihood and assets, household expenditure, child health and access to basic services, and education. This is supplemented with additional questions that cover caregiver perceptions, attitudes, and aspirations for their child and the family. Young Lives also collects detailed time-use data for all family members, information about the child's weight and height (and that of caregivers), and tests the children for school outcomes (language comprehension and mathematics). An important element of the survey asks the children about their daily activities, their experiences and attitudes to work and school, their likes and dislikes, how they feel they are treated by other people, and their hopes and aspirations for the future. The community questionnaire provides background information about the social, economic and environmental context of each community. It covers topics such as ethnicity, religion, economic activity and employment, infrastructure and services, political representation and community networks, crime and environmental changes. The Young Lives survey is carried out by teams of local researchers, supported by the Principal Investigator and Data Manager in each country. Further information about the survey, including publications, can be downloaded from the a href="http://www.younglives.org.uk/content/school-survey-0" title="School Survey" School Survey /a webpages.
Abstract copyright UK Data Service and data collection copyright owner.
The Young Lives survey is an innovative long-term project investigating the changing nature of childhood poverty in four developing countries. The study is being conducted in Ethiopia, India, Peru and Vietnam and has tracked the lives of 12,000 children over a 20-year period, through 5 (in-person) survey rounds (Round 1-5) and, with the latest survey round (Round 6) conducted over the phone in 2020 and 2021 as part of the Listening to Young Lives at Work: COVID-19 Phone Survey.This study includes data and documentation for Round 2 only. Round 1 is available under SN 5307, Round 3 under SN 6853, Round 4 under SN 7931 and Round 5 under SN 8357.
Latest edition:
For the fourth edition (August 2022), the Peruvian Younger cohort data file (pechildlevel5yrold) has been updated to include the mother's health variables.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 2 rows and is filtered where the book is The Country Life book for the young rider. It features 7 columns including author, publication date, language, and book publisher.