4 datasets found
  1. T

    Titanium - Price Data

    • tradingeconomics.com
    • tr.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated May 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2022). Titanium - Price Data [Dataset]. https://tradingeconomics.com/commodity/titanium
    Explore at:
    json, csv, excel, xmlAvailable download formats
    Dataset updated
    May 25, 2022
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jun 8, 2017 - Jul 11, 2025
    Area covered
    World
    Description

    Titanium traded flat at 50.50 CNY/KG on July 11, 2025. Over the past month, Titanium's price has remained flat, but it is still 4.12% higher than a year ago, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. This dataset includes a chart with historical data for Titanium.

  2. Titanium-Zircon Mineralisation (DMIRS-012)

    • data.gov.au
    esri mapserver, fgdb +4
    Updated Jan 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Energy, Mines, Industry Regulation and Safety (2025). Titanium-Zircon Mineralisation (DMIRS-012) [Dataset]. https://data.gov.au/dataset/ds-wa-4ed3dc86-16ea-44ba-855b-05b05ed9baff
    Explore at:
    shp, fgdb, geopackage, esri mapserver, wms, wfsAvailable download formats
    Dataset updated
    Jan 6, 2025
    Dataset provided by
    Department of Energy, Mines, Industry Regulation and Safetyhttp://www.dmp.wa.gov.au/index.aspx
    Description

    The titanium-zircon mineral industry operates in the high-profile settled parts of the Swan Coastal Plain of SW Australia. Currently probably several billion dollars-worth of minerals are sterilized …Show full descriptionThe titanium-zircon mineral industry operates in the high-profile settled parts of the Swan Coastal Plain of SW Australia. Currently probably several billion dollars-worth of minerals are sterilized by urban, commercial and industrial developments in the region. Maps showing the distribution of the known deposits are an essential dataset needed by State and local Government agencies and authorities, and must be available widely to enable planning to avoid setting up the scenario where deposits are sterilized. This dataset was formally known as Titanium-Zircon Mineralisation (DMP-023)

  3. A

    Data from: The Bronson Files, Dataset 5, Field 105, 2014

    • data.amerigeoss.org
    csv, jpeg, pdf, qt +2
    Updated Aug 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2022). The Bronson Files, Dataset 5, Field 105, 2014 [Dataset]. https://data.amerigeoss.org/dataset/the-bronson-files-dataset-5-field-105-2014-14f0b
    Explore at:
    csv, zip, pdf, xls, qt, jpegAvailable download formats
    Dataset updated
    Aug 24, 2022
    Dataset provided by
    United States
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Dr. Kevin Bronson provides a second year of nitrogen and water management in wheat agricultural research dataset for compute. Ten irrigation treatments from a linear sprinkler were combined with nitrogen treatments. This dataset includes notation of field events and operations, an intermediate analysis mega-table of correlated and calculated parameters, including laboratory analysis results generated during the experimentation, plus high resolution plot level intermediate data tables of SAS process output, as well as the complete raw data sensor records and logger outputs.

    This proximal terrestrial high-throughput plant phenotyping data examples our early tri-metric field method, where a geo-referenced 5Hz crop canopy height, temperature and spectral signature are recorded coincident to indicate a plant health status. In this development period, our Proximal Sensing Cart Mark1 (PSCM1) platform suspends a single cluster of sensors on a dual sliding vertical placement armature.

    Experimental design and operational details of research conducted are contained in related published articles, however further description of the measured data signals as well as germane commentary is herein offered.

    The primary component of this dataset is the Holland Scientific (HS) CropCircle ACS-470 reflectance numbers. Which as derived here, consist of raw active optical band-pass values, digitized onboard the sensor product. Data is delivered as sequential serialized text output including the associated GPS information. Typically this is a production agriculture support technology, enabling an efficient precision application of nitrogen fertilizer. We used this optical reflectance sensor technology to investigate plant agronomic biology, as the ACS-470 is a unique performance product being not only rugged and reliable but illumination active and filter customizable.

    Individualized ACS-470 sensor detector behavior and subsequent index calculation influence can be understood through analysis of white-panel and other known target measurements. When a sensor is held 120cm from a titanium dioxide white painted panel, a normalized unity value of 1.0 is set for each detector. To generate this dataset we used a Holland Scientific SC-1 device and set the 1.0 unity value (field normalize) on each sensor individually, before each data collection, and without using any channel gain boost. The SC-1 field normalization device allows a communications connection to a Windows machine, where company provided sensor control software enables the necessary sensor normalization routine, and a real-time view of streaming sensor data.

    This type of active proximal multi-spectral reflectance data may be perceived as inherently “noisy”; however basic analytical description consistently resolves a biological patterning, and more advanced statistical analysis is suggested to achieve discovery. Sources of polychromatic reflectance are inherent in the environment; and can be influenced by surface features like wax or water, or presence of crystal mineralization; varying bi-directional reflectance in the proximal space is a model reality, and directed energy emission reflection sampling is expected to support physical understanding of the underling passive environmental system.

    Soil in view of the sensor does decrease the raw detection amplitude of the target color returned and can add a soil reflection signal component. Yet that return accurately represents a largely two-dimensional cover and intensity signal of the target material present within each view. It does however, not represent a reflection of the plant material solely because it can contain additional features in view. Expect NDVI values greater than 0.1 when sensing plants and saturating more around 0.8, rather than the typical 0.9 of passive NDVI.

    The active signal does not transmit energy to penetrate, perhaps past LAI 2.1 or less, compared to what a solar induced passive reflectance sensor would encounter. However the focus of our active sensor scan is on the uppermost expanded canopy leaves, and they are positioned to intercept the major solar energy. Active energy sensors are more easy to direct, and in our capture method we target a consistent sensor height that is 1m above the average canopy height, and maintaining a rig travel speed target around 1.5 mph, with sensors parallel to earth ground in a nadir view.

    We consider these CropCircle raw detector returns to be more “instant” in generation, and “less-filtered” electronically, while onboard the “black-box” device, than are other reflectance products which produce vegetation indices as averages of multiple detector samples in time.

    It is known through internal sensor performance tracking across our entire location inventory, that sensor body temperature change affects sensor raw detector returns in minor and undescribed yet apparently consistent ways.

    Holland Scientific 5Hz CropCircle active optical reflectance ACS-470 sensors, that were measured on the GeoScout digital propriety serial data logger, have a stable output format as defined by firmware version. Fifteen collection events are presented.

    Different numbers of csv data files were generated based on field operations, and there were a few short duration instances where GPS signal was lost. Multiple raw data files when present, including white panel measurements before or after field collections, were combined into one file, with the inclusion of the null value placeholder -9999. Two CropCircle sensors, numbered 2 and 3, were used, supplying data in a lined format, where variables are repeated for each sensor. This created a discrete data row for each individual sensor measurement instance.

    We offer six high-throughput single pixel spectral colors, recorded at 530, 590, 670, 730, 780, and 800nm. The filtered band-pass was 10nm, except for the NIR, which was set to 20 and supplied an increased signal (including an increased noise).

    Dual, or tandem approach, CropCircle paired sensor usage empowers additional vegetation index calculations, such as:
    DATT = (r800-r730)/(r800-r670)
    DATTA = (r800-r730)/(r800-r590)
    MTCI = (r800-r730)/(r730-r670)
    CIRE = (r800/r730)-1
    CI = (r800/r590)-1
    CCCI = NDRE/NDVIR800
    PRI = (r590-r530)/(r590+r530)
    CI800 = ((r800/r590)-1)
    CI780 = ((r780/r590)-1)

    The Campbell Scientific (CS) environmental data recording of small range (0 to 5 v) voltage sensor signals are accurate and largely shielded from electronic thermal induced influence, or other such factors by design. They were used as was descriptively recommended by the company. A high precision clock timing, and a recorded confluence of custom metrics, allow the Campbell Scientific raw data signal acquisitions a high research value generally, and have delivered baseline metrics in our plant phenotyping program. Raw electrical sensor signal captures were recorded at the maximum digital resolution, and could be re-processed in whole, while the subsequent onboard calculated metrics were often data typed at a lower memory precision and served our research analysis.

    Improved Campbell Scientific data at 5Hz is presented for nine collection events, where thermal, ultrasonic displacement, and additional GPS metrics were recorded. Ultrasonic height metrics generated by the Honeywell sensor and present in this dataset, represent successful phenotypic recordings. The Honeywell ultrasonic displacement sensor has worked well in this application because of its 180Khz signal frequency that ranges 2m space. Air temperature is still a developing metric, a thermocouple wire junction (TC) placed in free air with a solar shade produced a low-confidence passive ambient air temperature.

    Campbell Scientific logger derived data output is structured in a column format, with multiple sensor data values present in each data row. One data row represents one program output cycle recording across the sensing array, as there was no onboard logger data averaging or down sampling. Campbell Scientific data is first recorded in binary format onboard the data logger, and then upon data retrieval, converted to ASCII text via the PC based LoggerNet CardConvert application. Here, our full CS raw data output, that includes a four-line header structure, was truncated to a typical single row header of variable names. The -9999 placeholder value was inserted for null instances.

    There is canopy thermal data from three view vantages. A nadir sensor view, and looking forward and backward down the plant row at a 30 degree angle off nadir. The high confidence Apogee Instruments SI-111 type infrared radiometer, non-contact thermometer, serial number 1022 was in a front position looking forward away from the platform, number 1023 with a nadir view was in middle position, and sensor number 1052 was in a rear position and looking back toward the platform frame. We have a long and successful history testing and benchmarking performance, and deploying Apogee Instruments infrared radiometers in field experimentation. They are biologically spectral window relevant sensors and return a fast update 0.2C accurate average surface temperature, derived from what is (geometrically weighted) in their field of view.

    Data gaps do exist beyond null value -9999 designations, there are some instances when GPS signal was lost, or rarely on HS GeoScout logger error. GPS information may be missing at the start of data recording. However once the receiver supplies a signal the values will populate. Likewise there may be missing information at the end of a data collection, where the GPS signal was lost but sensors continue to record along with the data logger timestamping.

    In the raw CS data, collections 1 through 7 are represented by only one table file, where the UTC from the GPS

  4. A

    ‘The Bronson Files, Dataset 4, Field 105, 2013’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Aug 1, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2013). ‘The Bronson Files, Dataset 4, Field 105, 2013’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-the-bronson-files-dataset-4-field-105-2013-7c96/e98343bf/?iid=003-106&v=presentation
    Explore at:
    Dataset updated
    Aug 1, 2013
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘The Bronson Files, Dataset 4, Field 105, 2013’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/392f69f2-aa43-4e90-970d-33c36e011c19 on 11 February 2022.

    --- Dataset description provided by original source is as follows ---

    Dr. Kevin Bronson provides this unique nitrogen and water management in wheat agricultural research dataset for compute. Ten irrigation treatments from a linear sprinkler were combined with nitrogen treatments. This dataset includes notation of field events and operations, an intermediate analysis mega-table of correlated and calculated parameters, including laboratory analysis results generated during the experimentation, plus high resolution plot level intermediate data tables of SAS process output, as well as the complete raw sensors records and logger outputs.

    This data was collected during the beginning time period of our USDA Maricopa terrestrial proximal high-throughput plant phenotyping tri-metric method generation, where a 5Hz crop canopy height, temperature and spectral signature are recorded coincident to indicate a plant health status. In this early development period, our Proximal Sensing Cart Mark1 (PSCM1) platform supplants people carrying the CropCircle (CC) sensors, and with an improved view mechanical performance result.

    Experimental design and operational details of research conducted are contained in related published articles, however further description of the measured data signals as well as germane commentary is herein offered.

    The primary component of this dataset is the Holland Scientific (HS) CropCircle ACS-470 reflectance numbers. Which as derived here, consist of raw active optical band-pass values, digitized onboard the sensor product. Data is delivered as sequential serialized text output including the associated GPS information. Typically this is a production agriculture support technology, enabling an efficient precision application of nitrogen fertilizer. We used this optical reflectance sensor technology to investigate plant agronomic biology, as the ACS-470 is a unique performance product being not only rugged and reliable but illumination active and filter customizable.

    Individualized ACS-470 sensor detector behavior and subsequent index calculation influence can be understood through analysis of white-panel and other known target measurements. When a sensor is held 120cm from a titanium dioxide white painted panel, a normalized unity value of 1.0 is set for each detector. To generate this dataset we used a Holland Scientific SC-1 device and set the 1.0 unity value (field normalize) on each sensor individually, before each data collection, and without using any channel gain boost. The SC-1 field normalization device allows a communications connection to a Windows machine, where company provided sensor control software enables the necessary sensor normalization routine, and a real-time view of streaming sensor data.

    This type of active proximal multi-spectral reflectance data may be perceived as inherently “noisy”; however basic analytical description consistently resolves a biological patterning, and more advanced statistical analysis is suggested to achieve discovery. Sources of polychromatic reflectance are inherent in the environment; and can be influenced by surface features like wax or water, or presence of crystal mineralization; varying bi-directional reflectance in the proximal space is a model reality, and directed energy emission reflection sampling is expected to support physical understanding of the underling passive environmental system.

    Soil in view of the sensor does decrease the raw detection amplitude of the target color returned and can add a soil reflection signal component. Yet that return accurately represents a largely two-dimensional cover and intensity signal of the target material present within each view. It does however, not represent a reflection of the plant material solely because it can contain additional features in view. Expect NDVI values greater than 0.1 when sensing plants and saturating more around 0.8, rather than the typical 0.9 of passive NDVI.

    The active signal does not transmit energy to penetrate, perhaps past LAI 2.1 or less, compared to what a solar induced passive reflectance sensor would encounter. However the focus of our active sensor scan is on the uppermost expanded canopy leaves, and they are positioned to intercept the major solar energy. Active energy sensors are more easy to direct, and in our capture method we target a consistent sensor height that is 1m above the average canopy height, and maintaining a rig travel speed target around 1.5 mph, with sensors parallel to earth ground in a nadir view.

    We consider these CropCircle raw detector returns to be more “instant” in generation, and “less-filtered” electronically, while onboard the “black-box” device, than are other reflectance products which produce vegetation indices as averages of multiple detector samples in time.

    It is known through internal sensor performance tracking across our entire location inventory, that sensor body temperature change affects sensor raw detector returns in minor and undescribed yet apparently consistent ways.

    Holland Scientific 5Hz CropCircle active optical reflectance ACS-470 sensors, that were measured on the GeoScout digital propriety serial data logger, have a stable output format as defined by firmware version.

    Different numbers of csv data files were generated based on field operations, and there were a few short duration instances where GPS signal was lost, multiple raw data files when present, including white panel measurements before or after field collections, were combined into one file, with the inclusion of the null value placeholder -9999. Two CropCircle sensors, numbered 2 and 3, were used supplying data in a lined format, where variables are repeated for each sensor, creating a discrete data row for each individual sensor measurement instance.

    We offer six high-throughput single pixel spectral colors, recorded at 530, 590, 670, 730, 780, and 800nm. The filtered band-pass was 10nm, except for the NIR, which was set to 20 and supplied an increased signal (including increased noise).

    Dual, or tandem, CropCircle sensor paired usage empowers additional vegetation index calculations such as:
    DATT = (r800-r730)/(r800-r670)
    DATTA = (r800-r730)/(r800-r590)
    MTCI = (r800-r730)/(r730-r670)
    CIRE = (r800/r730)-1
    CI = (r800/r590)-1
    CCCI = NDRE/NDVIR800
    PRI = (r590-r530)/(r590+r530)
    CI800 = ((r800/r590)-1)
    CI780 = ((r780/r590)-1)

    The Campbell Scientific (CS) environmental data recording of small range (0 to 5 v) voltage sensor signals are accurate and largely shielded from electronic thermal induced influence, or other such factors by design. They were used as was descriptively recommended by the company. A high precision clock timing, and a recorded confluence of custom metrics, allow the Campbell Scientific raw data signal acquisitions a high research value generally, and have delivered baseline metrics in our plant phenotyping program. Raw electrical sensor signal captures were recorded at the maximum digital resolution, and could be re-processed in whole, while the subsequent onboard calculated metrics were often data typed at a lower memory precision and served our research analysis.

    Improved Campbell Scientific data at 5Hz is presented for nine collection events, where thermal, ultrasonic displacement, and additional GPS metrics were recorded. Ultrasonic height metrics generated by the Honeywell sensor and present in this dataset, represent successful phenotypic recordings. The Honeywell ultrasonic displacement sensor has worked well in this application because of its 180Khz signal frequency that ranges 2m space. Air temperature is still a developing metric, a thermocouple wire junction (TC) placed in free air with a solar shade produced a low-confidence passive ambient air temperature.

    Campbell Scientific logger derived data output is structured in a column format, with multiple sensor data values present in each data row. One data row represents one program output cycle recording across the sensing array, as there was no onboard logger data averaging or down sampling. Campbell Scientific data is first recorded in binary format onboard the data logger, and then upon data retrieval, converted to ASCII text via the PC based LoggerNet CardConvert application. Here, our full CS raw data output, that includes a four-line header structure, was truncated to a typical single row header of variable names. The -9999 placeholder value was inserted for null instances.

    There is canopy thermal data from three view vantages. A nadir sensor view, and looking forward and backward down the plant row at a 30 degree angle off nadir. The high confidence Apogee Instruments SI-111 type infrared radiometer, non-contact thermometer, serial number 1052 was in a front position looking forward away from the platform, number 1023 with a nadir view was in middle position, and sensor number 1022 was in a rear position and looking back toward the platform frame, until after 4/10/2013 when the order was reversed. We have a long and successful history testing and benchmarking performance, and deploying Apogee Instruments infrared radiometers in field experimentation. They are biologically spectral window relevant sensors and return a fast update 0.2C accurate average surface temperature, derived from what is (geometrically weighted) in their field of view.

    Data gaps do exist beyond null value -9999 designations, there are some instances when GPS signal was lost, or rarely on HS GeoScout logger error. GPS information may be missing at the start of data recording.

  5. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2022). Titanium - Price Data [Dataset]. https://tradingeconomics.com/commodity/titanium

Titanium - Price Data

Titanium - Historical Dataset (2017-06-08/2025-07-11)

Explore at:
10 scholarly articles cite this dataset (View in Google Scholar)
json, csv, excel, xmlAvailable download formats
Dataset updated
May 25, 2022
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Jun 8, 2017 - Jul 11, 2025
Area covered
World
Description

Titanium traded flat at 50.50 CNY/KG on July 11, 2025. Over the past month, Titanium's price has remained flat, but it is still 4.12% higher than a year ago, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. This dataset includes a chart with historical data for Titanium.

Search
Clear search
Close search
Google apps
Main menu