100+ datasets found
  1. AI Training Data Market will grow at a CAGR of 23.50% from 2024 to 2031.

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Updated Jun 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research (2025). AI Training Data Market will grow at a CAGR of 23.50% from 2024 to 2031. [Dataset]. https://www.cognitivemarketresearch.com/ai-training-data-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jun 15, 2025
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    According to Cognitive Market Research, the global Ai Training Data market size is USD 1865.2 million in 2023 and will expand at a compound annual growth rate (CAGR) of 23.50% from 2023 to 2030.

    The demand for Ai Training Data is rising due to the rising demand for labelled data and diversification of AI applications.
    Demand for Image/Video remains higher in the Ai Training Data market.
    The Healthcare category held the highest Ai Training Data market revenue share in 2023.
    North American Ai Training Data will continue to lead, whereas the Asia-Pacific Ai Training Data market will experience the most substantial growth until 2030.
    

    Market Dynamics of AI Training Data Market

    Key Drivers of AI Training Data Market

    Rising Demand for Industry-Specific Datasets to Provide Viable Market Output
    

    A key driver in the AI Training Data market is the escalating demand for industry-specific datasets. As businesses across sectors increasingly adopt AI applications, the need for highly specialized and domain-specific training data becomes critical. Industries such as healthcare, finance, and automotive require datasets that reflect the nuances and complexities unique to their domains. This demand fuels the growth of providers offering curated datasets tailored to specific industries, ensuring that AI models are trained with relevant and representative data, leading to enhanced performance and accuracy in diverse applications.

    In July 2021, Amazon and Hugging Face, a provider of open-source natural language processing (NLP) technologies, have collaborated. The objective of this partnership was to accelerate the deployment of sophisticated NLP capabilities while making it easier for businesses to use cutting-edge machine-learning models. Following this partnership, Hugging Face will suggest Amazon Web Services as a cloud service provider for its clients.

    (Source: about:blank)

    Advancements in Data Labelling Technologies to Propel Market Growth
    

    The continuous advancements in data labelling technologies serve as another significant driver for the AI Training Data market. Efficient and accurate labelling is essential for training robust AI models. Innovations in automated and semi-automated labelling tools, leveraging techniques like computer vision and natural language processing, streamline the data annotation process. These technologies not only improve the speed and scalability of dataset preparation but also contribute to the overall quality and consistency of labelled data. The adoption of advanced labelling solutions addresses industry challenges related to data annotation, driving the market forward amidst the increasing demand for high-quality training data.

    In June 2021, Scale AI and MIT Media Lab, a Massachusetts Institute of Technology research centre, began working together. To help doctors treat patients more effectively, this cooperation attempted to utilize ML in healthcare.

    www.ncbi.nlm.nih.gov/pmc/articles/PMC7325854/

    Restraint Factors Of AI Training Data Market

    Data Privacy and Security Concerns to Restrict Market Growth
    

    A significant restraint in the AI Training Data market is the growing concern over data privacy and security. As the demand for diverse and expansive datasets rises, so does the need for sensitive information. However, the collection and utilization of personal or proprietary data raise ethical and privacy issues. Companies and data providers face challenges in ensuring compliance with regulations and safeguarding against unauthorized access or misuse of sensitive information. Addressing these concerns becomes imperative to gain user trust and navigate the evolving landscape of data protection laws, which, in turn, poses a restraint on the smooth progression of the AI Training Data market.

    How did COVID–19 impact the Ai Training Data market?

    The COVID-19 pandemic has had a multifaceted impact on the AI Training Data market. While the demand for AI solutions has accelerated across industries, the availability and collection of training data faced challenges. The pandemic disrupted traditional data collection methods, leading to a slowdown in the generation of labeled datasets due to restrictions on physical operations. Simultaneously, the surge in remote work and the increased reliance on AI-driven technologies for various applications fueled the need for diverse and relevant training data. This duali...

  2. D

    AI Training Dataset Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). AI Training Dataset Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-ai-training-dataset-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    AI Training Dataset Market Outlook



    The global AI training dataset market size was valued at approximately USD 1.2 billion in 2023 and is projected to reach USD 6.5 billion by 2032, growing at a compound annual growth rate (CAGR) of 20.5% from 2024 to 2032. This substantial growth is driven by the increasing adoption of artificial intelligence across various industries, the necessity for large-scale and high-quality datasets to train AI models, and the ongoing advancements in AI and machine learning technologies.



    One of the primary growth factors in the AI training dataset market is the exponential increase in data generation across multiple sectors. With the proliferation of internet usage, the expansion of IoT devices, and the digitalization of industries, there is an unprecedented volume of data being generated daily. This data is invaluable for training AI models, enabling them to learn and make more accurate predictions and decisions. Moreover, the need for diverse and comprehensive datasets to improve AI accuracy and reliability is further propelling market growth.



    Another significant factor driving the market is the rising investment in AI and machine learning by both public and private sectors. Governments around the world are recognizing the potential of AI to transform economies and improve public services, leading to increased funding for AI research and development. Simultaneously, private enterprises are investing heavily in AI technologies to gain a competitive edge, enhance operational efficiency, and innovate new products and services. These investments necessitate high-quality training datasets, thereby boosting the market.



    The proliferation of AI applications in various industries, such as healthcare, automotive, retail, and finance, is also a major contributor to the growth of the AI training dataset market. In healthcare, AI is being used for predictive analytics, personalized medicine, and diagnostic automation, all of which require extensive datasets for training. The automotive industry leverages AI for autonomous driving and vehicle safety systems, while the retail sector uses AI for personalized shopping experiences and inventory management. In finance, AI assists in fraud detection and risk management. The diverse applications across these sectors underline the critical need for robust AI training datasets.



    As the demand for AI applications continues to grow, the role of Ai Data Resource Service becomes increasingly vital. These services provide the necessary infrastructure and tools to manage, curate, and distribute datasets efficiently. By leveraging Ai Data Resource Service, organizations can ensure that their AI models are trained on high-quality and relevant data, which is crucial for achieving accurate and reliable outcomes. The service acts as a bridge between raw data and AI applications, streamlining the process of data acquisition, annotation, and validation. This not only enhances the performance of AI systems but also accelerates the development cycle, enabling faster deployment of AI-driven solutions across various sectors.



    Regionally, North America currently dominates the AI training dataset market due to the presence of major technology companies and extensive R&D activities in the region. However, Asia Pacific is expected to witness the highest growth rate during the forecast period, driven by rapid technological advancements, increasing investments in AI, and the growing adoption of AI technologies across various industries in countries like China, India, and Japan. Europe and Latin America are also anticipated to experience significant growth, supported by favorable government policies and the increasing use of AI in various sectors.



    Data Type Analysis



    The data type segment of the AI training dataset market encompasses text, image, audio, video, and others. Each data type plays a crucial role in training different types of AI models, and the demand for specific data types varies based on the application. Text data is extensively used in natural language processing (NLP) applications such as chatbots, sentiment analysis, and language translation. As the use of NLP is becoming more widespread, the demand for high-quality text datasets is continually rising. Companies are investing in curated text datasets that encompass diverse languages and dialects to improve the accuracy and efficiency of NLP models.



    Image data is critical for computer vision application

  3. G

    Artificial Intelligence (AI) Training Dataset Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Aug 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Artificial Intelligence (AI) Training Dataset Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/artificial-intelligence-training-dataset-market-global-industry-analysis
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Aug 4, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Artificial Intelligence (AI) Training Dataset Market Outlook



    According to our latest research, the global Artificial Intelligence (AI) Training Dataset market size reached USD 3.15 billion in 2024, reflecting robust industry momentum. The market is expanding at a notable CAGR of 20.8% and is forecasted to attain USD 20.92 billion by 2033. This impressive growth is primarily attributed to the surging demand for high-quality, annotated datasets to fuel machine learning and deep learning models across diverse industry verticals. The proliferation of AI-driven applications, coupled with rapid advancements in data labeling technologies, is further accelerating the adoption and expansion of the AI training dataset market globally.




    One of the most significant growth factors propelling the AI training dataset market is the exponential rise in data-driven AI applications across industries such as healthcare, automotive, retail, and finance. As organizations increasingly rely on AI-powered solutions for automation, predictive analytics, and personalized customer experiences, the need for large, diverse, and accurately labeled datasets has become critical. Enhanced data annotation techniques, including manual, semi-automated, and fully automated methods, are enabling organizations to generate high-quality datasets at scale, which is essential for training sophisticated AI models. The integration of AI in edge devices, smart sensors, and IoT platforms is further amplifying the demand for specialized datasets tailored for unique use cases, thereby fueling market growth.




    Another key driver is the ongoing innovation in machine learning and deep learning algorithms, which require vast and varied training data to achieve optimal performance. The increasing complexity of AI models, especially in areas such as computer vision, natural language processing, and autonomous systems, necessitates the availability of comprehensive datasets that accurately represent real-world scenarios. Companies are investing heavily in data collection, annotation, and curation services to ensure their AI solutions can generalize effectively and deliver reliable outcomes. Additionally, the rise of synthetic data generation and data augmentation techniques is helping address challenges related to data scarcity, privacy, and bias, further supporting the expansion of the AI training dataset market.




    The market is also benefiting from the growing emphasis on ethical AI and regulatory compliance, particularly in data-sensitive sectors like healthcare, finance, and government. Organizations are prioritizing the use of high-quality, unbiased, and diverse datasets to mitigate algorithmic bias and ensure transparency in AI decision-making processes. This focus on responsible AI development is driving demand for curated datasets that adhere to strict quality and privacy standards. Moreover, the emergence of data marketplaces and collaborative data-sharing initiatives is making it easier for organizations to access and exchange valuable training data, fostering innovation and accelerating AI adoption across multiple domains.




    From a regional perspective, North America currently dominates the AI training dataset market, accounting for the largest revenue share in 2024, driven by significant investments in AI research, a mature technology ecosystem, and the presence of leading AI companies and data annotation service providers. Europe and Asia Pacific are also witnessing rapid growth, with increasing government support for AI initiatives, expanding digital infrastructure, and a rising number of AI startups. While North America sets the pace in terms of technological innovation, Asia Pacific is expected to exhibit the highest CAGR during the forecast period, fueled by the digital transformation of emerging economies and the proliferation of AI applications across various industry sectors.





    Data Type Analysis



    The AI training dataset market is segmented by data type into Text, Image/Video, Audio, and Others, each playing a crucial role in powering different AI applications. Text da

  4. v

    AI Training Dataset Market By Type (Text, Image/Video), By Vertical (IT,...

    • verifiedmarketresearch.com
    pdf,excel,csv,ppt
    Updated Dec 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Verified Market Research (2024). AI Training Dataset Market By Type (Text, Image/Video), By Vertical (IT, Automotive, Government, Healthcare), And Region for 2026-2032 [Dataset]. https://www.verifiedmarketresearch.com/product/ai-training-dataset-market/
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Dec 27, 2024
    Dataset authored and provided by
    Verified Market Research
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2026 - 2032
    Area covered
    Global
    Description

    The rapid adoption of AI technologies across various industries, including healthcare, finance, and autonomous vehicles, is driving the demand for high-quality training datasets essential for developing accurate AI models. According to the analyst from Verified Market Research, the AI Training Dataset Market surpassed the market size of USD 1555.58 Million valued in 2024 to reach a valuation of USD 7564.52 Million by 2032.

    The expanding scope of AI applications beyond traditional sectors is fueling growth in the AI Training Dataset Market. This increased demand for Inventory Tags the market to grow at a CAGR of 21.86% from 2026 to 2032.

    AI Training Dataset Market: Definition/ Overview

    An AI training dataset is defined as a comprehensive collection of data that has been meticulously curated and annotated to train artificial intelligence algorithms and machine learning models. These datasets are fundamental for AI systems as they enable the recognition of patterns.

  5. U

    U.S. AI Training Dataset Market Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated May 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). U.S. AI Training Dataset Market Report [Dataset]. https://www.archivemarketresearch.com/reports/us-ai-training-dataset-market-4957
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    May 19, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    United States
    Variables measured
    Market Size
    Description

    The U.S. AI Training Dataset Market size was valued at USD 590.4 million in 2023 and is projected to reach USD 1880.70 million by 2032, exhibiting a CAGR of 18.0 % during the forecasts period. The U. S. AI training dataset market deals with the generation, selection, and organization of datasets used in training artificial intelligence. These datasets contain the requisite information that the machine learning algorithms need to infer and learn from. Conducts include the advancement and improvement of AI solutions in different fields of business like transport, medical analysis, computing language, and money related measurements. The applications include training the models for activities such as image classification, predictive modeling, and natural language interface. Other emerging trends are the change in direction of more and better-quality, various and annotated data for the improvement of model efficiency, synthetic data generation for data shortage, and data confidentiality and ethical issues in dataset management. Furthermore, due to arising technologies in artificial intelligence and machine learning, there is a noticeable development in building and using the datasets. Recent developments include: In February 2024, Google struck a deal worth USD 60 million per year with Reddit that will give the former real-time access to the latter’s data and use Google AI to enhance Reddit’s search capabilities. , In February 2024, Microsoft announced around USD 2.1 billion investment in Mistral AI to expedite the growth and deployment of large language models. The U.S. giant is expected to underpin Mistral AI with Azure AI supercomputing infrastructure to provide top-notch scale and performance for AI training and inference workloads. .

  6. Data sources used by companies for training AI models South Korea 2024

    • statista.com
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Data sources used by companies for training AI models South Korea 2024 [Dataset]. https://www.statista.com/statistics/1452822/south-korea-data-sources-for-training-artificial-intelligence-models/
    Explore at:
    Dataset updated
    May 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Sep 2024 - Nov 2024
    Area covered
    South Korea
    Description

    As of 2024, customer data was the leading source of information used to train artificial intelligence (AI) models in South Korea, with nearly ** percent of surveyed companies answering that way. About ** percent responded to use public sector support initiatives.

  7. A

    AI Training Data Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Aug 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). AI Training Data Report [Dataset]. https://www.datainsightsmarket.com/reports/ai-training-data-1500199
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Aug 8, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The AI training data market is experiencing robust growth, driven by the increasing adoption of artificial intelligence across diverse sectors. The market's expansion is fueled by the escalating demand for high-quality data to train sophisticated AI models, enabling improved accuracy and performance in applications like computer vision, natural language processing, and machine learning. The market size in 2025 is estimated at $15 billion, projecting a Compound Annual Growth Rate (CAGR) of 25% from 2025 to 2033. This significant growth trajectory is underpinned by several key factors: the proliferation of AI-powered applications across industries, advancements in AI algorithms requiring larger and more diverse datasets, and the rising availability of data annotation tools and platforms. However, challenges remain, including data privacy concerns, the high cost of data acquisition and annotation, and the need for skilled professionals to manage and curate these vast datasets. The market is segmented by data type (text, image, video, audio), application (autonomous vehicles, healthcare, finance), and region, with North America currently holding the largest market share due to early adoption of AI technologies and the presence of major technology companies. Key players in the market, such as Google (Kaggle), Amazon Web Services, Microsoft, and Appen Limited, are strategically investing in developing advanced data annotation tools and expanding their data acquisition capabilities to cater to this burgeoning demand. The competitive landscape is characterized by both established players and emerging startups, leading to innovation in data acquisition techniques, data quality control, and the development of specialized data annotation services. The future of the market is poised for further expansion, driven by the growing adoption of AI in emerging technologies like the metaverse and the Internet of Things (IoT), along with increasing government investments in AI research and development. Addressing data privacy concerns and fostering ethical data collection practices will be crucial to sustainable growth in the coming years. This will involve greater transparency and robust regulatory frameworks.

  8. A

    Artificial Intelligence Training Dataset Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Artificial Intelligence Training Dataset Report [Dataset]. https://www.archivemarketresearch.com/reports/artificial-intelligence-training-dataset-38645
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global Artificial Intelligence (AI) Training Dataset market is projected to reach $1605.2 million by 2033, exhibiting a CAGR of 9.4% from 2025 to 2033. The surge in demand for AI training datasets is driven by the increasing adoption of AI and machine learning technologies in various industries such as healthcare, financial services, and manufacturing. Moreover, the growing need for reliable and high-quality data for training AI models is further fueling the market growth. Key market trends include the increasing adoption of cloud-based AI training datasets, the emergence of synthetic data generation, and the growing focus on data privacy and security. The market is segmented by type (image classification dataset, voice recognition dataset, natural language processing dataset, object detection dataset, and others) and application (smart campus, smart medical, autopilot, smart home, and others). North America is the largest regional market, followed by Europe and Asia Pacific. Key companies operating in the market include Appen, Speechocean, TELUS International, Summa Linguae Technologies, and Scale AI. Artificial Intelligence (AI) training datasets are critical for developing and deploying AI models. These datasets provide the data that AI models need to learn, and the quality of the data directly impacts the performance of the model. The AI training dataset market landscape is complex, with many different providers offering datasets for a variety of applications. The market is also rapidly evolving, as new technologies and techniques are developed for collecting, labeling, and managing AI training data.

  9. h

    sample-dcpr-ai-training-data

    • huggingface.co
    Updated Jul 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sanyam Jain (2024). sample-dcpr-ai-training-data [Dataset]. https://huggingface.co/datasets/sanyamjain0315/sample-dcpr-ai-training-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 26, 2024
    Authors
    Sanyam Jain
    Description

    sanyamjain0315/sample-dcpr-ai-training-data dataset hosted on Hugging Face and contributed by the HF Datasets community

  10. AI median training data on the internet across various sources 2025

    • statista.com
    Updated May 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). AI median training data on the internet across various sources 2025 [Dataset]. https://www.statista.com/statistics/1611551/median-token-data-stocks-ai-training/
    Explore at:
    Dataset updated
    May 9, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    Worldwide
    Description

    AI training draws heavily from the whole web, the largest data source with trillions of tokens, followed by sources like the indexed web and common crawl. This represents the estimated finality of tokens available in 2025, leading to a potential blockage for any AI models training on them.

  11. P

    AI Training Dataset Market Size Worth $12,993.78 Million By 2032 | CAGR:...

    • polarismarketresearch.com
    Updated Jan 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Polaris Market Research (2025). AI Training Dataset Market Size Worth $12,993.78 Million By 2032 | CAGR: 21.5% [Dataset]. https://www.polarismarketresearch.com/press-releases/ai-training-dataset-market
    Explore at:
    Dataset updated
    Jan 2, 2025
    Dataset authored and provided by
    Polaris Market Research
    License

    https://www.polarismarketresearch.com/privacy-policyhttps://www.polarismarketresearch.com/privacy-policy

    Description

    Global AI Training Dataset Market size & share value expected to touch USD 12,993.78 million by 2032, to grow at a CAGR of 21.5% during the forecast period.

  12. Data sources used by public sector for training AI models South Korea 2022

    • statista.com
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Data sources used by public sector for training AI models South Korea 2022 [Dataset]. https://www.statista.com/statistics/1453708/south-korea-public-sector-ai-training-data/
    Explore at:
    Dataset updated
    May 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Aug 19, 2022 - Oct 21, 2022
    Area covered
    South Korea
    Description

    According to a survey conducted in 2022 in the public sector in South Korea, more than ** percent answered to use non-customer in-house data for training artificial intelligence (AI) models. More than a ***** of the surveyed public organizations were using public data.

  13. d

    Machine Learning (ML) Data | 800M+ B2B Profiles | AI-Ready for Deep Learning...

    • datarade.ai
    .json, .csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xverum, Machine Learning (ML) Data | 800M+ B2B Profiles | AI-Ready for Deep Learning (DL), NLP & LLM Training [Dataset]. https://datarade.ai/data-products/xverum-company-data-b2b-data-belgium-netherlands-denm-xverum
    Explore at:
    .json, .csvAvailable download formats
    Dataset provided by
    Xverum LLC
    Authors
    Xverum
    Area covered
    Dominican Republic, Sint Maarten (Dutch part), Cook Islands, Western Sahara, Oman, India, Norway, United Kingdom, Jordan, Barbados
    Description

    Xverum’s AI & ML Training Data provides one of the most extensive datasets available for AI and machine learning applications, featuring 800M B2B profiles with 100+ attributes. This dataset is designed to enable AI developers, data scientists, and businesses to train robust and accurate ML models. From natural language processing (NLP) to predictive analytics, our data empowers a wide range of industries and use cases with unparalleled scale, depth, and quality.

    What Makes Our Data Unique?

    Scale and Coverage: - A global dataset encompassing 800M B2B profiles from a wide array of industries and geographies. - Includes coverage across the Americas, Europe, Asia, and other key markets, ensuring worldwide representation.

    Rich Attributes for Training Models: - Over 100 fields of detailed information, including company details, job roles, geographic data, industry categories, past experiences, and behavioral insights. - Tailored for training models in NLP, recommendation systems, and predictive algorithms.

    Compliance and Quality: - Fully GDPR and CCPA compliant, providing secure and ethically sourced data. - Extensive data cleaning and validation processes ensure reliability and accuracy.

    Annotation-Ready: - Pre-structured and formatted datasets that are easily ingestible into AI workflows. - Ideal for supervised learning with tagging options such as entities, sentiment, or categories.

    How Is the Data Sourced? - Publicly available information gathered through advanced, GDPR-compliant web aggregation techniques. - Proprietary enrichment pipelines that validate, clean, and structure raw data into high-quality datasets. This approach ensures we deliver comprehensive, up-to-date, and actionable data for machine learning training.

    Primary Use Cases and Verticals

    Natural Language Processing (NLP): Train models for named entity recognition (NER), text classification, sentiment analysis, and conversational AI. Ideal for chatbots, language models, and content categorization.

    Predictive Analytics and Recommendation Systems: Enable personalized marketing campaigns by predicting buyer behavior. Build smarter recommendation engines for ecommerce and content platforms.

    B2B Lead Generation and Market Insights: Create models that identify high-value leads using enriched company and contact information. Develop AI systems that track trends and provide strategic insights for businesses.

    HR and Talent Acquisition AI: Optimize talent-matching algorithms using structured job descriptions and candidate profiles. Build AI-powered platforms for recruitment analytics.

    How This Product Fits Into Xverum’s Broader Data Offering Xverum is a leading provider of structured, high-quality web datasets. While we specialize in B2B profiles and company data, we also offer complementary datasets tailored for specific verticals, including ecommerce product data, job listings, and customer reviews. The AI Training Data is a natural extension of our core capabilities, bridging the gap between structured data and machine learning workflows. By providing annotation-ready datasets, real-time API access, and customization options, we ensure our clients can seamlessly integrate our data into their AI development processes.

    Why Choose Xverum? - Experience and Expertise: A trusted name in structured web data with a proven track record. - Flexibility: Datasets can be tailored for any AI/ML application. - Scalability: With 800M profiles and more being added, you’ll always have access to fresh, up-to-date data. - Compliance: We prioritize data ethics and security, ensuring all data adheres to GDPR and other legal frameworks.

    Ready to supercharge your AI and ML projects? Explore Xverum’s AI Training Data to unlock the potential of 800M global B2B profiles. Whether you’re building a chatbot, predictive algorithm, or next-gen AI application, our data is here to help.

    Contact us for sample datasets or to discuss your specific needs.

  14. P

    U.S AI Training Dataset Market Size & Analysis, 2024-2032

    • polarismarketresearch.com
    Updated Apr 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Polaris Market Research (2024). U.S AI Training Dataset Market Size & Analysis, 2024-2032 [Dataset]. https://www.polarismarketresearch.com/industry-analysis/us-ai-training-dataset-market
    Explore at:
    Dataset updated
    Apr 26, 2024
    Dataset authored and provided by
    Polaris Market Research
    License

    https://www.polarismarketresearch.com/privacy-policyhttps://www.polarismarketresearch.com/privacy-policy

    Description

    U.S. AI training dataset market size will be valued at USD 2,137.26 Million in 2032 and is projected to grow at a (CAGR) of 17.7%.

  15. d

    Factori Machine Learning (ML) Data | 247 Countries Coverage | 5.2 B Event...

    • datarade.ai
    .csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Factori, Factori Machine Learning (ML) Data | 247 Countries Coverage | 5.2 B Event per Day [Dataset]. https://datarade.ai/data-products/factori-ai-ml-training-data-web-data-machine-learning-d-factori
    Explore at:
    .csvAvailable download formats
    Dataset authored and provided by
    Factori
    Area covered
    Sweden, Uzbekistan, Egypt, Faroe Islands, Japan, Cameroon, Palestine, Turks and Caicos Islands, Austria, Taiwan
    Description

    Factori's AI & ML training data is thoroughly tested and reviewed to ensure that what you receive on your end is of the best quality.

    Integrate the comprehensive AI & ML training data provided by Grepsr and develop a superior AI & ML model.

    Whether you're training algorithms for natural language processing, sentiment analysis, or any other AI application, we can deliver comprehensive datasets tailored to fuel your machine learning initiatives.

    Enhanced Data Quality: We have rigorous data validation processes and also conduct quality assurance checks to guarantee the integrity and reliability of the training data for you to develop the AI & ML models.

    Gain a competitive edge, drive innovation, and unlock new opportunities by leveraging the power of tailored Artificial Intelligence and Machine Learning training data with Factori.

    We offer web activity data of users that are browsing popular websites around the world. This data can be used to analyze web behavior across the web and build highly accurate audience segments based on web activity for targeting ads based on interest categories and search/browsing intent.

    Web Data Reach: Our reach data represents the total number of data counts available within various categories and comprises attributes such as Country, Anonymous ID, IP addresses, Search Query, and so on.

    Data Export Methodology: Since we collect data dynamically, we provide the most updated data and insights via a best-suited method at a suitable interval (daily/weekly/monthly).

    Data Attributes: Anonymous_id IDType Timestamp Estid Ip userAgent browserFamily deviceType Os Url_metadata_canonical_url Url_metadata_raw_query_params refDomain mappedEvent Channel searchQuery Ttd_id Adnxs_id Keywords Categories Entities Concepts

  16. r

    Ai Training Data Market Market Size Intelligence - Growth & Share Analysis

    • reportsanddata.com
    pdf,excel,csv,ppt
    Updated Jun 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Reports and Data (2024). Ai Training Data Market Market Size Intelligence - Growth & Share Analysis [Dataset]. https://www.reportsanddata.com/report-detail/ai-training-data-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jun 15, 2024
    Dataset authored and provided by
    Reports and Data
    License

    https://www.reportsanddata.com/privacy-policyhttps://www.reportsanddata.com/privacy-policy

    Time period covered
    2024 - 2030
    Area covered
    Global
    Description

    Ai Training Data Market research covering industry size, growth patterns, and market share analysis. Syndicated reports for business intelligence and strategic planning.

  17. P

    U.S. AI Training Dataset Market Size Worth $2,137.26 Million By 2032 | CAGR:...

    • polarismarketresearch.com
    Updated Jan 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Polaris Market Research (2025). U.S. AI Training Dataset Market Size Worth $2,137.26 Million By 2032 | CAGR: 17.7% [Dataset]. https://www.polarismarketresearch.com/press-releases/us-ai-training-dataset-market
    Explore at:
    Dataset updated
    Jan 2, 2025
    Dataset authored and provided by
    Polaris Market Research
    License

    https://www.polarismarketresearch.com/privacy-policyhttps://www.polarismarketresearch.com/privacy-policy

    Description

    U.S. AI training dataset Market growth with a 17.7?GR, projected to achieve a market size of USD 2,137.26 Million by 2032.

  18. A

    AI Training Dataset In Healthcare Market Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). AI Training Dataset In Healthcare Market Report [Dataset]. https://www.archivemarketresearch.com/reports/ai-training-dataset-in-healthcare-market-5352
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Jun 20, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    global
    Variables measured
    Market Size
    Description

    The AI Training Dataset In Healthcare Market size was valued at USD 341.8 million in 2023 and is projected to reach USD 1464.13 million by 2032, exhibiting a CAGR of 23.1 % during the forecasts period. The growth is attributed to the rising adoption of AI in healthcare, increasing demand for accurate and reliable training datasets, government initiatives to promote AI in healthcare, and technological advancements in data collection and annotation. These factors are contributing to the expansion of the AI Training Dataset In Healthcare Market. Healthcare AI training data sets are vital for building effective algorithms, and enhancing patient care and diagnosis in the industry. These datasets include large volumes of Electronic Health Records, images such as X-ray and MRI scans, and genomics data which are thoroughly labeled. They help the AI systems to identify trends, forecast and even help in developing unique approaches to treating the disease. However, patient privacy and ethical use of a patient’s information is of the utmost importance, thus requiring high levels of anonymization and compliance with laws such as HIPAA. Ongoing expansion and variety of datasets are crucial to address existing bias and improve the efficiency of AI for different populations and diseases to provide safer solutions for global people’s health.

  19. f

    Table1_Enhancing biomechanical machine learning with limited data:...

    • frontiersin.figshare.com
    pdf
    Updated Feb 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carlo Dindorf; Jonas Dully; Jürgen Konradi; Claudia Wolf; Stephan Becker; Steven Simon; Janine Huthwelker; Frederike Werthmann; Johanna Kniepert; Philipp Drees; Ulrich Betz; Michael Fröhlich (2024). Table1_Enhancing biomechanical machine learning with limited data: generating realistic synthetic posture data using generative artificial intelligence.pdf [Dataset]. http://doi.org/10.3389/fbioe.2024.1350135.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Feb 14, 2024
    Dataset provided by
    Frontiers
    Authors
    Carlo Dindorf; Jonas Dully; Jürgen Konradi; Claudia Wolf; Stephan Becker; Steven Simon; Janine Huthwelker; Frederike Werthmann; Johanna Kniepert; Philipp Drees; Ulrich Betz; Michael Fröhlich
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Objective: Biomechanical Machine Learning (ML) models, particularly deep-learning models, demonstrate the best performance when trained using extensive datasets. However, biomechanical data are frequently limited due to diverse challenges. Effective methods for augmenting data in developing ML models, specifically in the human posture domain, are scarce. Therefore, this study explored the feasibility of leveraging generative artificial intelligence (AI) to produce realistic synthetic posture data by utilizing three-dimensional posture data.Methods: Data were collected from 338 subjects through surface topography. A Variational Autoencoder (VAE) architecture was employed to generate and evaluate synthetic posture data, examining its distinguishability from real data by domain experts, ML classifiers, and Statistical Parametric Mapping (SPM). The benefits of incorporating augmented posture data into the learning process were exemplified by a deep autoencoder (AE) for automated feature representation.Results: Our findings highlight the challenge of differentiating synthetic data from real data for both experts and ML classifiers, underscoring the quality of synthetic data. This observation was also confirmed by SPM. By integrating synthetic data into AE training, the reconstruction error can be reduced compared to using only real data samples. Moreover, this study demonstrates the potential for reduced latent dimensions, while maintaining a reconstruction accuracy comparable to AEs trained exclusively on real data samples.Conclusion: This study emphasizes the prospects of harnessing generative AI to enhance ML tasks in the biomechanics domain.

  20. D

    Notable AI Models

    • epoch.ai
    csv
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Epoch AI (2025). Notable AI Models [Dataset]. https://epoch.ai/data/ai-models
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jul 24, 2025
    Dataset authored and provided by
    Epoch AI
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Global
    Variables measured
    https://epoch.ai/data/ai-models-documentation#records
    Measurement technique
    https://epoch.ai/data/ai-models-documentation#records
    Description

    Our most comprehensive database of AI models, containing over 800 models that are state of the art, highly cited, or otherwise historically notable. It tracks key factors driving machine learning progress and includes over 300 training compute estimates.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Cognitive Market Research (2025). AI Training Data Market will grow at a CAGR of 23.50% from 2024 to 2031. [Dataset]. https://www.cognitivemarketresearch.com/ai-training-data-market-report
Organization logo

AI Training Data Market will grow at a CAGR of 23.50% from 2024 to 2031.

Explore at:
pdf,excel,csv,pptAvailable download formats
Dataset updated
Jun 15, 2025
Dataset authored and provided by
Cognitive Market Research
License

https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

Time period covered
2021 - 2033
Area covered
Global
Description

According to Cognitive Market Research, the global Ai Training Data market size is USD 1865.2 million in 2023 and will expand at a compound annual growth rate (CAGR) of 23.50% from 2023 to 2030.

The demand for Ai Training Data is rising due to the rising demand for labelled data and diversification of AI applications.
Demand for Image/Video remains higher in the Ai Training Data market.
The Healthcare category held the highest Ai Training Data market revenue share in 2023.
North American Ai Training Data will continue to lead, whereas the Asia-Pacific Ai Training Data market will experience the most substantial growth until 2030.

Market Dynamics of AI Training Data Market

Key Drivers of AI Training Data Market

Rising Demand for Industry-Specific Datasets to Provide Viable Market Output

A key driver in the AI Training Data market is the escalating demand for industry-specific datasets. As businesses across sectors increasingly adopt AI applications, the need for highly specialized and domain-specific training data becomes critical. Industries such as healthcare, finance, and automotive require datasets that reflect the nuances and complexities unique to their domains. This demand fuels the growth of providers offering curated datasets tailored to specific industries, ensuring that AI models are trained with relevant and representative data, leading to enhanced performance and accuracy in diverse applications.

In July 2021, Amazon and Hugging Face, a provider of open-source natural language processing (NLP) technologies, have collaborated. The objective of this partnership was to accelerate the deployment of sophisticated NLP capabilities while making it easier for businesses to use cutting-edge machine-learning models. Following this partnership, Hugging Face will suggest Amazon Web Services as a cloud service provider for its clients.

(Source: about:blank)

Advancements in Data Labelling Technologies to Propel Market Growth

The continuous advancements in data labelling technologies serve as another significant driver for the AI Training Data market. Efficient and accurate labelling is essential for training robust AI models. Innovations in automated and semi-automated labelling tools, leveraging techniques like computer vision and natural language processing, streamline the data annotation process. These technologies not only improve the speed and scalability of dataset preparation but also contribute to the overall quality and consistency of labelled data. The adoption of advanced labelling solutions addresses industry challenges related to data annotation, driving the market forward amidst the increasing demand for high-quality training data.

In June 2021, Scale AI and MIT Media Lab, a Massachusetts Institute of Technology research centre, began working together. To help doctors treat patients more effectively, this cooperation attempted to utilize ML in healthcare.

www.ncbi.nlm.nih.gov/pmc/articles/PMC7325854/

Restraint Factors Of AI Training Data Market

Data Privacy and Security Concerns to Restrict Market Growth

A significant restraint in the AI Training Data market is the growing concern over data privacy and security. As the demand for diverse and expansive datasets rises, so does the need for sensitive information. However, the collection and utilization of personal or proprietary data raise ethical and privacy issues. Companies and data providers face challenges in ensuring compliance with regulations and safeguarding against unauthorized access or misuse of sensitive information. Addressing these concerns becomes imperative to gain user trust and navigate the evolving landscape of data protection laws, which, in turn, poses a restraint on the smooth progression of the AI Training Data market.

How did COVID–19 impact the Ai Training Data market?

The COVID-19 pandemic has had a multifaceted impact on the AI Training Data market. While the demand for AI solutions has accelerated across industries, the availability and collection of training data faced challenges. The pandemic disrupted traditional data collection methods, leading to a slowdown in the generation of labeled datasets due to restrictions on physical operations. Simultaneously, the surge in remote work and the increased reliance on AI-driven technologies for various applications fueled the need for diverse and relevant training data. This duali...

Search
Clear search
Close search
Google apps
Main menu