Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is one which highlights the demographics of Upper-Middle Class people living in Gachibowli, Hyderabad, India and attempts to, through various methods of statistical analysis, establish a relationship between several of these demographic details.
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the Middle Eastern Human Face with Occlusion Dataset, meticulously curated to enhance face recognition models and support the development of advanced occlusion detection systems, biometric identification systems, KYC models, and other facial recognition technologies.
This dataset comprises over 3,000 human facial images, divided into participant-wise sets with each set including:
The dataset includes contributions from a diverse network of individuals across Middle Eastern countries:
To ensure high utility and robustness, all images are captured under varying conditions:
Each facial image set is accompanied by detailed metadata for each participant, including:
This metadata is essential for training models that can accurately recognize and identify human faces with occlusions across different demographics and conditions.
This facial image dataset is ideal for various applications in the field of computer vision, including but not limited to:
We understand the evolving nature of AI and machine
Income of individuals by age group, sex and income source, Canada, provinces and selected census metropolitan areas, annual.
This table presents income shares, thresholds, tax shares, and total counts of individual Canadian tax filers, with a focus on high income individuals (95% income threshold, 99% threshold, etc.). Income thresholds are based on national threshold values, regardless of selected geography; for example, the number of Nova Scotians in the top 1% will be calculated as the number of taxfiling Nova Scotians whose total income exceeded the 99% national income threshold. Different definitions of income are available in the table namely market, total, and after-tax income, both with and without capital gains.
Families of tax filers; Single-earner and dual-earner census families by number of children (final T1 Family File; T1FF).
For detailed information, visit the Tucson Equity Priority Index StoryMap.Download the Data DictionaryWhat is the Tucson Equity Priority Index (TEPI)?The Tucson Equity Priority Index (TEPI) is a tool that describes the distribution of socially vulnerable demographics. It categorizes the dataset into 5 classes that represent the differing prioritization needs based on the presence of social vulnerability: Low (0-20), Low-Moderate (20-40), Moderate (40-60), Moderate-High (60-80) High (80-100). Each class represents 20% of the dataset’s features in order of their values. The features within the Low (0-20) classification represent the areas that, when compared to all other locations in the study area, have the lowest need for prioritization, as they tend to have less socially vulnerable demographics. The features that fall into the High (80-100) classification represent the 20% of locations in the dataset that have the greatest need for prioritization, as they tend to have the highest proportions of socially vulnerable demographics. How is social vulnerability measured?The Tucson Equity Priority Index (TEPI) examines the proportion of vulnerability per feature using 11 demographic indicators:Income Below Poverty: Households with income at or below the federal poverty level (FPL), which in 2023 was $14,500 for an individual and $30,000 for a family of fourUnemployment: Measured as the percentage of unemployed persons in the civilian labor forceHousing Cost Burdened: Homeowners who spend more than 30% of their income on housing expenses, including mortgage, maintenance, and taxesRenter Cost Burdened: Renters who spend more than 30% of their income on rentNo Health Insurance: Those without private health insurance, Medicare, Medicaid, or any other plan or programNo Vehicle Access: Households without automobile, van, or truck accessHigh School Education or Less: Those highest level of educational attainment is a High School diploma, equivalency, or lessLimited English Ability: Those whose ability to speak English is "Less Than Well."People of Color: Those who identify as anything other than Non-Hispanic White Disability: Households with one or more physical or cognitive disabilities Age: Groups that tend to have higher levels of vulnerability, including children (those below 18), and seniors (those 65 and older)An overall percentile value is calculated for each feature based on the total proportion of the above indicators in each area. How are the variables combined?These indicators are divided into two main categories that we call Thematic Indices: Economic and Personal Characteristics. The two thematic indices are further divided into five sub-indices called Tier-2 Sub-Indices. Each Tier-2 Sub-Index contains 2-3 indicators. Indicators are the datasets used to measure vulnerability within each sub-index. The variables for each feature are re-scaled using the percentile normalization method, which converts them to the same scale using values between 0 to 100. The variables are then combined first into each of the five Tier-2 Sub-Indices, then the Thematic Indices, then the overall TEPI using the mean aggregation method and equal weighting. The resulting dataset is then divided into the five classes, where:High Vulnerability (80-100%): Representing the top classification, this category includes the highest 20% of regions that are the most socially vulnerable. These areas require the most focused attention. Moderate-High Vulnerability (60-80%): This upper-middle classification includes areas with higher levels of vulnerability compared to the median. While not the highest, these areas are more vulnerable than a majority of the dataset and should be considered for targeted interventions. Moderate Vulnerability (40-60%): Representing the middle or median quintile, this category includes areas of average vulnerability. These areas may show a balanced mix of high and low vulnerability. Detailed examination of specific indicators is recommended to understand the nuanced needs of these areas. Low-Moderate Vulnerability (20-40%): Falling into the lower-middle classification, this range includes areas that are less vulnerable than most but may still exhibit certain vulnerable characteristics. These areas typically have a mix of lower and higher indicators, with the lower values predominating. Low Vulnerability (0-20%): This category represents the bottom classification, encompassing the lowest 20% of data points. Areas in this range are the least vulnerable, making them the most resilient compared to all other features in the dataset.
Dataset Title: A Gold Standard Corpus for Activity Information (GoSCAI)
Dataset Curators: The Epidemiology & Biostatistics Section of the NIH Clinical Center Rehabilitation Medicine Department
Dataset Version: 1.0 (May 16, 2025)
Dataset Citation and DOI: NIH CC RMD Epidemiology & Biostatistics Section. (2025). A Gold Standard Corpus for Activity Information (GoSCAI) [Data set]. Zenodo. doi: 10.5281/zenodo.15528545
This data statement is for a gold standard corpus of de-identified clinical notes that have been annotated for human functioning information based on the framework of the WHO's International Classification of Functioning, Disability and Health (ICF). The corpus includes 484 notes from a single institution within the United States written in English in a clinical setting. This dataset was curated for the purpose of training natural language processing models to automatically identify, extract, and classify information on human functioning at the whole-person, or activity, level.
This dataset is curated to be a publicly available resource for the development and evaluation of methods for the automatic extraction and classification of activity-level functioning information as defined in the ICF. The goals of data curation are to 1) create a corpus of a size that can be manually deidentified and annotated, 2) maximize the density and diversity of functioning information of interest, and 3) allow public dissemination of the data.
Language Region: en-US
Prose Description: English as written by native and bilingual English speakers in a clinical setting
The language users represented in this dataset are medical and clinical professionals who work in a research hospital setting. These individuals hold professional degrees corresponding to their respective specialties. Specific demographic characteristics of the language users such as age, gender, or race/ethnicity were not collected.
The annotator group consisted of five people, 33 to 76 years old, including four females and one male. Socioeconomically, they came from the middle and upper-middle income classes. Regarding first language, three annotators had English as their first language, one had Chinese, and one had Spanish. Proficiency in English, the language of the data being annotated, was native for three of the annotators and bilingual for the other two. The annotation team included clinical rehabilitation domain experts with backgrounds in occupational therapy, physical therapy, and individuals with public health and data science expertise. Prior to annotation, all annotators were trained on the specific annotation process using established guidelines for the given domain, and annotators were required to achieve a specified proficiency level prior to annotating notes in this corpus.
The notes in the dataset were written as part of clinical care within a U.S. research hospital between May 2008 and November 2019. These notes were written by health professionals asynchronously following the patient encounter to document the interaction and support continuity of care. The intended audience of these notes were clinicians involved in the patients' care. The included notes come from nine disciplines - neuropsychology, occupational therapy, physical medicine (physiatry), physical therapy, psychiatry, recreational therapy, social work, speech language pathology, and vocational rehabilitation. The notes were curated to support research on natural language processing for functioning information between 2018 and 2024.
The final corpus was derived from a set of clinical notes extracted from the hospital electronic medical record (EMR) for the purpose of clinical research. The original data include character-based digital content originally. We work in ASCII 8 or UNICODE encoding, and therefore part of our pre-processing includes running encoding detection and transformation from encodings such as Windows-1252 or ISO-8859 format to our preferred format.
On the larger corpus, we applied sampling to match our curation rationale. Given the resource constraints of manual annotation, we set out to create a dataset of 500 clinical notes, which would exclude notes over 10,000 characters in length.
To promote density and diversity, we used five note characteristics as sampling criteria. We used the text length as expressed in number of characters. Next, we considered the discipline group as derived from note type metadata and describes which discipline a note originated from: occupational and vocational therapy (OT/VOC), physical therapy (PT), recreation therapy (RT), speech and language pathology (SLP), social work (SW), or miscellaneous (MISC, including psychiatry, neurology and physiatry). These disciplines were selected for collecting the larger corpus because their notes are likely to include functioning information. Existing information extraction tools were used to obtain annotation counts in four areas of functioning and provided a note’s annotation count, annotation density (annotation count divided by text length), and domain count (number of domains with at least 1 annotation).
We used stratified sampling across the 6 discipline groups to ensure discipline diversity in the corpus. Because of low availability, 50 notes were sampled from SLP with relaxed criteria, and 90 notes each from the 5 other discipline groups with stricter criteria. Sampled SLP notes were those with the highest annotation density that had an annotation count of at least 5 and a domain count of at least 2. Other notes were sampled by highest annotation count and lowest text length, with a minimum annotation count of 15 and minimum domain count of 3.
The notes in the resulting sample included certain types of PHI and PII. To prepare for public dissemination, all sensitive or potentially identifying information was manually annotated in the notes and replaced with substituted content to ensure readability and enough context needed for machine learning without exposing any sensitive information. This de-identification effort was manually reviewed to ensure no PII or PHI exposure and correct any resulting readability issues. Notes about pediatric patients were excluded. No intent was made to sample multiple notes from the same patient. No metadata is provided to group notes other than by note type, discipline, or discipline group. The dataset is not organized beyond the provided metadata, but publications about models trained on this dataset should include information on the train/test splits used.
All notes were sentence-segmented and tokenized using the spaCy en_core_web_lg model with additional rules for sentence segmentation customized to the dataset. Notes are stored in an XML format readable by the GATE annotation software (https://gate.ac.uk/family/developer.html), which stores annotations separately in annotation sets.
As the clinical notes were extracted directly from the EMR in text format, the capture quality was determined to be high. The clinical notes did not have to be converted from other data formats, which means this dataset is free from noise introduced by conversion processes such as optical character recognition.
Because of the effort required to manually deidentify and annotate notes, this corpus is limited in terms of size and representation. The curation decisions skewed note selection towards specific disciplines and note types to increase the likelihood of encountering information on functioning. Some subtypes of functioning occur infrequently in the data, or not at all. The deidentification of notes was done in a manner to preserve natural language as it would occur in the notes, but some information is lost, e.g. on rare diseases.
Information on the manual annotation process is provided in the annotation guidelines for each of the four domains:
- Communication & Cognition (https://zenodo.org/records/13910167)
- Mobility (https://zenodo.org/records/11074838)
- Self-Care & Domestic Life (SCDL) (https://zenodo.org/records/11210183)
- Interpersonal Interactions & Relationships (IPIR) (https://zenodo.org/records/13774684)
Inter-annotator agreement was established on development datasets described in the annotation guidelines prior to the annotation of this gold standard corpus.
The gold standard corpus consists of 484 documents, which include 35,147 sentences in total. The distribution of annotated information is provided in the table below.
Domain |
Number of Annotated Sentences |
% of All Sentences |
Mean Number of Annotated Sentences per Document |
Communication & Cognition |
6033 |
17.2% |
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Slopes of the three income groups (low, middle & high) and their associated 95% confidence intervals (CI) obtained via non-parametric bootstrapping of individual income data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
About
The Synthetic Sweden Mobility (SySMo) model provides a simplified yet statistically realistic microscopic representation of the real population of Sweden. The agents in this synthetic population contain socioeconomic attributes, household characteristics, and corresponding activity plans for an average weekday. This agent-based modelling approach derives the transportation demand from the agents’ planned activities using various transport modes (e.g., car, public transport, bike, and walking).
This open data repository contains four datasets:
(1) Synthetic Agents,
(2) Activity Plans of the Agents,
(3) Travel Trajectories of the Agents, and
(4) Road Network (EPSG: 3006)
(OpenStreetMap data were retrieved on August 28, 2023, from https://download.geofabrik.de/europe.html, and GTFS data were retrieved on September 6, 2023 from https://samtrafiken.se/)
The database can serve as input to assess the potential impacts of new transportation technologies, infrastructure changes, and policy interventions on the mobility patterns of the Swedish population.
Methodology
This dataset contains statistically simulated 10.2 million agents representing the population of Sweden, their socio-economic characteristics and the activity plan for an average weekday. For preparing data for the MATSim simulation, we randomly divided all the agents into 10 batches. Each batch's agents are then simulated in MATSim using the multi-modal network combining road networks and public transit data in Sweden using the package pt2matsim (https://github.com/matsim-org/pt2matsim).
The agents' daily activity plans along with the road network serve as the primary inputs in the MATSim environment which ensures iterative replanning while aiming for a convergence on optimal activity plans for all the agents. Subsequently, the individual mobility trajectories of the agents from the MATSim simulation are retrieved.
The activity plans of the individual agents extracted from the MATSim simulation output data are then further processed. All agents with negative utility score and negative activity time corresponding to at least one activity are filtered out as the ‘infeasible’ agents. The dataset ‘Synthetic Agents’ contains all synthetic agents regardless of their ‘feasibility’ (0=excluded & 1=included in plans and trajectories). In the other datasets, only agents with feasible activity plans are included.
The simulation setup adheres to the MATSim 13.0 benchmark scenario, with slight adjustments. The strategy for replanning integrates BestScore (60%), TimeAllocationMutator (30%), and ReRoute (10%)— the percentages denote the proportion of agents utilizing these strategies. In each iteration of the simulation, the agents adopt these strategies to adjust their activity plans. The "BestScore" strategy retains the plan with the highest score from the previous iteration, selecting the most successful strategy an agent has employed up until that point. The "TimeAllocationMutator" modifies the end times of activities by introducing random shifts within a specified range, allowing for the exploration of different schedules. The "ReRoute" strategy enables agents to alter their current routes, potentially optimizing travel based on updated information or preferences. These strategies are detailed further in W. Axhausen et al. (2016) work, which provides comprehensive insights into their implementation and impact within the context of transport simulation modeling.
Data Description
(1) Synthetic Agents
This dataset contains all agents in Sweden and their socioeconomic characteristics.
The attribute ‘feasibility’ has two categories: feasible agents (73%), and infeasible agents (27%). Infeasible agents are agents with negative utility score and negative activity time corresponding to at least one activity.
File name: 1_syn_pop_all.parquet
Column
Description
Data type
Unit
PId
Agent ID
Integer
-
Deso Zone code of Demographic statistical areas (DeSO)1
kommun
Municipality code
marital
Marital Status (single/ couple/ child)
sex
Gender (0 = Male, 1 = Female)
age
Age
HId
A unique identifier for households
HHtype
Type of households (single/ couple/ other)
HHsize
Number of people living in the households
num_babies
Number of children less than six years old in the household
employment Employment Status (0 = Not Employed, 1 = Employed)
studenthood Studenthood Status (0 = Not Student, 1 = Student)
income_class Income Class (0 = No Income, 1 = Low Income, 2 = Lower-middle Income, 3 = Upper-middle Income, 4 = High Income)
num_cars Number of cars owned by an individual
HHcars Number of cars in the household
feasibility
Status of the individual (1=feasible, 0=infeasible)
1 https://www.scb.se/vara-tjanster/oppna-data/oppna-geodata/deso--demografiska-statistikomraden/
(2) Activity Plans of the Agents
The dataset contains the car agents’ (agents that use cars on the simulated day) activity plans for a simulated average weekday.
File name: 2_plans_i.parquet, i = 0, 1, 2, ..., 8, 9. (10 files in total)
Column
Description
Data type
Unit
act_purpose
Activity purpose (work/ home/ school/ other)
String
-
PId
Agent ID
Integer
-
act_end
End time of activity (0:00:00 – 23:59:59)
String
hour:minute:seco
nd
act_id
Activity index of each agent
Integer
-
mode
Transport mode to reach the activity location
String
-
POINT_X
Coordinate X of activity location (SWEREF99TM)
Float
metre
POINT_Y
Coordinate Y of activity location (SWEREF99TM)
Float
metre
dep_time
Departure time (0:00:00 – 23:59:59)
String
hour:minute:seco
nd
score
Utility score of the simulation day as obtained from MATSim
Float
-
trav_time
Travel time to reach the activity location
String
hour:minute:seco
nd
trav_time_min
Travel time in decimal minute
Float
minute
act_time
Activity duration in decimal minute
Float
minute
distance
Travel distance between the origin and the destination
Float
km
speed
Travel speed to reach the activity location
Float
km/h
(3) Travel Trajectories of the Agents
This dataset contains the driving trajectories of all the agents on the road network, and the public transit vehicles used by these agents, including buses, ferries, trams etc. The files are produced by MATSim simulations and organised into 10 *.parquet’ files (representing different batches of simulation) corresponding to each plan file.
File name: 3_events_i.parquet, i = 0, 1, 2, ..., 8, 9. (10 files in total)
Column
Description
Data type
Unit
time
Time in second in a simulation day (0-86399)
Integer
second
type
Event type defined by MATSim simulation*
String
person
Agent ID
Integer
link
Nearest road link consistent with the road network
String
vehicle
Vehicle ID identical to person
Integer
from_node
Start node of the link
Integer
to_node
End node of the link
Integer
One typical episode of MATSim simulation events: Activity ends (actend) -> Agent’s vehicle enters traffic (vehicle enters traffic) -> Agent’s vehicle moves from previous road segment to its next connected one (left link) -> Agent’s vehicle leaves traffic for activity (vehicle leaves traffic) -> Activity starts (actstart)
(4) Road Network
This dataset contains the road network.
File name: 4_network.shp
Column
Description
Data type
Unit
length
The length of road link
Float
metre
freespeed
Free speed
Float
km/h
capacity
Number of vehicles
Integer
permlanes
Number of lanes
Integer
oneway
Whether the segment is one-way (0=no, 1=yes)
Integer
modes
Transport mode
String
from_node
Start node of the link
Integer
to_node
End node of the link
Integer
geometry
LINESTRING (SWEREF99TM)
geometry
metre
Additional Notes
This research is funded by the RISE Research Institutes of Sweden, the Swedish Research Council for Sustainable Development (Formas, project number 2018-01768), and Transport Area of Advance, Chalmers.
Contributions
YL designed the simulation, analyzed the simulation data, and, along with CT, executed the simulation. CT, SD, FS, and SY conceptualized the model (SySMo), with CT and SD further developing the model to produce agents and their activity plans. KG wrote the data document. All authors reviewed, edited, and approved the final document.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ObjectiveThis study aims to assess the acceptability of a novel technology, MAchine Learning Application (MALA), among the mothers of newborns who required resuscitation.SettingThis study took place at Bharatpur Hospital, which is the second-largest public referral hospital with 13 000 deliveries per year in Nepal.DesignThis is a cross-sectional survey.Data collection and analysisData collection took place from January 21 to February 13, 2022. Self-administered questionnaires on acceptability (ranged 1–5 scale) were collected from participating mothers. The acceptability of the MALA system, which included video and audio recordings of the newborn resuscitation, was examined among mothers according to their age, parity, education level and technology use status using a stratified analysis.ResultsThe median age of 21 mothers who completed the survey was 25 years (range 18–37). Among them, 11 mothers (52.4%) completed their bachelor’s or master’s level of education, 13 (61.9%) delivered first child, 14 (66.7%) owned a computer and 16 (76.2%) carried a smartphone. Overall acceptability was high that all participating mothers positively perceived the novel technology with video and audio recordings of the infant’s care during resuscitation. There was no statistical difference in mothers’ acceptability of MALA system, when stratified by mothers’ age, parity, or technology usage (p>0.05). When the acceptability of the technology was stratified by mothers’ education level (up to higher secondary level vs. bachelor’s level or higher), mothers with Bachelor’s degree or higher more strongly felt that they were comfortable with the infant’s care being video recorded (p = 0.026) and someone using a tablet when observing the infant’s care (p = 0.046). Compared with those without a computer (n = 7), mothers who had a computer at home (n = 14) more strongly agreed that they were comfortable with someone observing the resuscitation activity of their newborns (71.4% vs. 14.3%) (p = 0.024).ConclusionThe novel technology using video and audio recordings for newborn resuscitation was accepted by mothers in this study. Its application has the potential to improve resuscitation quality in low-and-middle income settings, given proper informed consent and data protection measures are in place.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Global Economic, Environmental, Health, and Social indicators Ready for Analysis
This comprehensive dataset merges global economic, environmental, technological, and human development indicators from 2000 to 2020. Sourced and transformed from multiple public datasets via Google BigQuery, it is designed for advanced exploratory data analysis, machine learning, policy modeling, and sustainability research.
Curated by combining and transforming data from the Google BigQuery Public Data program, this dataset offers a harmonized view of global development across more than 40 key indicators spanning over two decades (2000–2020). It supports research across multiple domains such as:
Includes calculated features:
years_since_2000
years_since_century
is_pandemic_period
(binary indicator for pandemic periods)Economic Indicators:
Environmental Indicators:
Technology & Connectivity:
Health & Education:
Governance & Resilience:
Approximately 18% of the entries in the region
and income_group
columns are null. This is primarily due to the inclusion of aggregate regions (e.g., Arab World, East Asia & Pacific, Africa Eastern and Southern) and non-country classifications (e.g., Early-demographic dividend, Central Europe and the Baltics). These entries represent groups of countries with diverse income levels and geographic characteristics, making it inappropriate or misleading to assign a single region or income classification. In some cases, the data source may have intentionally left these fields blank to avoid oversimplification or due to a lack of standardized classification.
VITAL SIGNS INDICATOR Jobs by Wage Level (EQ1)
FULL MEASURE NAME Distribution of jobs by low-, middle-, and high-wage occupations
LAST UPDATED January 2019
DESCRIPTION Jobs by wage level refers to the distribution of jobs by low-, middle- and high-wage occupations. In the San Francisco Bay Area, low-wage occupations have a median hourly wage of less than 80% of the regional median wage; median wages for middle-wage occupations range from 80% to 120% of the regional median wage, and high-wage occupations have a median hourly wage above 120% of the regional median wage.
DATA SOURCE California Employment Development Department OES (2001-2017) http://www.labormarketinfo.edd.ca.gov/data/oes-employment-and-wages.html
American Community Survey (2001-2017) http://api.census.gov
CONTACT INFORMATION vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator) Jobs are determined to be low-, middle-, or high-wage based on the median hourly wage of their occupational classification in the most recent year. Low-wage jobs are those that pay below 80% of the regional median wage. Middle-wage jobs are those that pay between 80% and 120% of the regional median wage. High-wage jobs are those that pay above 120% of the regional median wage. Regional median hourly wages are estimated from the American Community Survey and are published on the Vital Signs Income indicator page. For the national context analysis, occupation wage classifications are unique to each metro area. A low-wage job in New York, for instance, may be a middle-wage job in Miami. For the Bay Area in 2017, the median hourly wage for low-wage occupations was less than $20.86 per hour. For middle-wage jobs, the median ranged from $20.86 to $31.30 per hour; and for high-wage jobs, the median wage was above $31.30 per hour.
Occupational employment and wage information comes from the Occupational Employment Statistics (OES) program. Regional and subregional data is published by the California Employment Development Department. Metro data is published by the Bureau of Labor Statistics. The OES program collects data on wage and salary workers in nonfarm establishments to produce employment and wage estimates for some 800 occupations. Data from non-incorporated self-employed persons are not collected, and are not included in these estimates. Wage estimates represent a three-year rolling average.
Due to changes in reporting during the analysis period, subregion data from the EDD OES have been aggregated to produce geographies that can be compared over time. West Bay is San Mateo, San Francisco, and Marin counties. North Bay is Sonoma, Solano and Napa counties. East Bay is Alameda and Contra Costa counties. South Bay is Santa Clara County from 2001-2004 and Santa Clara and San Benito counties from 2005-2017.
Due to changes in occupation classifications during the analysis period, all occupations have been reassigned to 2010 SOC codes. For pre-2009 reporting years, all employment in occupations that were split into two or more 2010 SOC occupations are assigned to the first 2010 SOC occupation listed in the crosswalk table provided by the Census Bureau. This method assumes these occupations always fall in the same wage category, and sensitivity analysis of this reassignment method shows this is true in most cases.
In order to use OES data for time series analysis, several steps were taken to handle missing wage or employment data. For some occupations, such as airline pilots and flight attendants, no wage information was provided and these were removed from the analysis. Other occupations did not record a median hourly wage (mostly due to irregular work hours) but did record an annual average wage. Nearly all these occupations were in education (i.e. teachers). In this case, a 2080 hour-work year was assumed and [annual average wage/2080] was used as a proxy for median income. Most of these occupations were classified as high-wage, thus dispelling concern of underestimating a median wage for a teaching occupation that requires less than 2080 hours of work a year (equivalent to 12 months fulltime). Finally, the OES has missing employment data for occupations across the time series. To make the employment data comparable between years, gaps in employment data for occupations are ‘filled-in’ using linear interpolation if there are at least two years of employment data found in OES. Occupations with less than two years of employment data were dropped from the analysis. Over 80% of interpolated cells represent missing employment data for just one year in the time series. While this interpolating technique may impact year-over-year comparisons, the long-term trends represented in the analysis generally are accurate.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Poverty Headcount Ratio at $5.50 a Day: 2011 PPP: % of Population data was reported at 2.000 % in 2016. This stayed constant from the previous number of 2.000 % for 2013. United States US: Poverty Headcount Ratio at $5.50 a Day: 2011 PPP: % of Population data is updated yearly, averaging 1.500 % from Dec 1979 (Median) to 2016, with 11 observations. The data reached an all-time high of 2.000 % in 2016 and a record low of 1.200 % in 1986. United States US: Poverty Headcount Ratio at $5.50 a Day: 2011 PPP: % of Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Poverty. Poverty headcount ratio at $5.50 a day is the percentage of the population living on less than $5.50 a day at 2011 international prices. As a result of revisions in PPP exchange rates, poverty rates for individual countries cannot be compared with poverty rates reported in earlier editions.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. The aggregated numbers for low- and middle-income countries correspond to the totals of 6 regions in PovcalNet, which include low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia). See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Designed to collect new data related to housing, poverty, and urban life, the Milwaukee Area Renters Study (MARS) is an in-person survey of 1,086 households in Milwaukee. One person per household, usually an adult leaseholder, was interviewed. The MARS instrument was comprised of more than 250 unique items and administered in-person in English and Spanish. The University of Wisconsin Survey Center supervised data collection, which took place between 2009 and 2011. The MARS sample was limited to renters. Nationwide, the majority of low-income families live in rental housing, and most receive no federal housing assistance. Except in exceptional cities with very high housing costs, the rental population is comprised of some upper- and middle-class households who prefer renting and most of the cities’ low-income households who are excluded both from public housing and homeownership. To focus on urban renters in the private market, then, is to focus on the lived experience of most low-income families living in cities. MARS was funded by the John D. and Catherine T. MacArthur Foundation, through its “How Housing Matters” initiative.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data sharing holds promise to accelerate innovative discoveries through artificial intelligence (AI) and traditional analytics. However, it remains unclear whether these prospects translate into tangible benefits in improving health care and scientific progress. In this cross-sectional study, we investigate current data reuse practices and explore ways to enhance the use of existing data in clinical research, focusing on low- and middle-income countries. 643 clinical researchers and data professionals participated in the study. 55.5% analysed clinical trial data. 75.3% of data users analysed data from observational studies obtained mainly through personal requests or downloads from publicly available sources. Data was mainly used to influence the design of new studies or in pooled and individual patient-level data meta-analyses. Key benefits realised were career progression and academic qualification, with more gains reported by users affiliated with high-income and upper-middle-income countries (p = 0.046, chi = 8.0). Scientific progress through publications and collaborations was associated with gender (p = 0.012, chi = 10.9), with males more likely to contribute. Benefits to the public although minimal, were associated with career seniority (p = 0.001, chi = 18.8), with works by senior researchers being more likely to influence health policy or treatment guidelines. Although 54% of the respondents accessed at least 3 datasets in the past 5 years, 79.4% of data users encountered difficulty finding relevant data for planned analyses. Researchers affiliated with low and middle income institutions reported more difficulty interpreting data (p = 0.012, chi = 25.7), while challenges with language were regionally influenced (p = 0.000, chi = 51.3) and more commonly reported by researchers in Latin America and South and East Asia institutions. While the utilisation of shared data is lower than expected, focused efforts to enrich existing data with extensive metadata using standard terminologies can enhance data findability. Investment in training programmes, building professional networks, and mentorship in data science may improve the quality of data generated and increase researchers’ ability to use existing datasets.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is one which highlights the demographics of Upper-Middle Class people living in Gachibowli, Hyderabad, India and attempts to, through various methods of statistical analysis, establish a relationship between several of these demographic details.