Income of individuals by age group, sex and income source, Canada, provinces and selected census metropolitan areas, annual.
This table presents income shares, thresholds, tax shares, and total counts of individual Canadian tax filers, with a focus on high income individuals (95% income threshold, 99% threshold, etc.). Income thresholds are based on national threshold values, regardless of selected geography; for example, the number of Nova Scotians in the top 1% will be calculated as the number of taxfiling Nova Scotians whose total income exceeded the 99% national income threshold. Different definitions of income are available in the table namely market, total, and after-tax income, both with and without capital gains.
Families of tax filers; Single-earner and dual-earner census families by number of children (final T1 Family File; T1FF).
For detailed information, visit the Tucson Equity Priority Index StoryMap.Download the layer's data dictionaryNote: This layer is symbolized to display the percentile distribution of the Limited Resources Sub-Index. However, it includes all data for each indicator and sub-index within the citywide census tracts TEPI.What is the Tucson Equity Priority Index (TEPI)?The Tucson Equity Priority Index (TEPI) is a tool that describes the distribution of socially vulnerable demographics. It categorizes the dataset into 5 classes that represent the differing prioritization needs based on the presence of social vulnerability: Low (0-20), Low-Moderate (20-40), Moderate (40-60), Moderate-High (60-80) High (80-100). Each class represents 20% of the dataset’s features in order of their values. The features within the Low (0-20) classification represent the areas that, when compared to all other locations in the study area, have the lowest need for prioritization, as they tend to have less socially vulnerable demographics. The features that fall into the High (80-100) classification represent the 20% of locations in the dataset that have the greatest need for prioritization, as they tend to have the highest proportions of socially vulnerable demographics. How is social vulnerability measured?The Tucson Equity Priority Index (TEPI) examines the proportion of vulnerability per feature using 11 demographic indicators:Income Below Poverty: Households with income at or below the federal poverty level (FPL), which in 2023 was $14,500 for an individual and $30,000 for a family of fourUnemployment: Measured as the percentage of unemployed persons in the civilian labor forceHousing Cost Burdened: Homeowners who spend more than 30% of their income on housing expenses, including mortgage, maintenance, and taxesRenter Cost Burdened: Renters who spend more than 30% of their income on rentNo Health Insurance: Those without private health insurance, Medicare, Medicaid, or any other plan or programNo Vehicle Access: Households without automobile, van, or truck accessHigh School Education or Less: Those highest level of educational attainment is a High School diploma, equivalency, or lessLimited English Ability: Those whose ability to speak English is "Less Than Well."People of Color: Those who identify as anything other than Non-Hispanic White Disability: Households with one or more physical or cognitive disabilities Age: Groups that tend to have higher levels of vulnerability, including children (those below 18), and seniors (those 65 and older)An overall percentile value is calculated for each feature based on the total proportion of the above indicators in each area. How are the variables combined?These indicators are divided into two main categories that we call Thematic Indices: Economic and Personal Characteristics. The two thematic indices are further divided into five sub-indices called Tier-2 Sub-Indices. Each Tier-2 Sub-Index contains 2-3 indicators. Indicators are the datasets used to measure vulnerability within each sub-index. The variables for each feature are re-scaled using the percentile normalization method, which converts them to the same scale using values between 0 to 100. The variables are then combined first into each of the five Tier-2 Sub-Indices, then the Thematic Indices, then the overall TEPI using the mean aggregation method and equal weighting. The resulting dataset is then divided into the five classes, where:High Vulnerability (80-100%): Representing the top classification, this category includes the highest 20% of regions that are the most socially vulnerable. These areas require the most focused attention. Moderate-High Vulnerability (60-80%): This upper-middle classification includes areas with higher levels of vulnerability compared to the median. While not the highest, these areas are more vulnerable than a majority of the dataset and should be considered for targeted interventions. Moderate Vulnerability (40-60%): Representing the middle or median quintile, this category includes areas of average vulnerability. These areas may show a balanced mix of high and low vulnerability. Detailed examination of specific indicators is recommended to understand the nuanced needs of these areas. Low-Moderate Vulnerability (20-40%): Falling into the lower-middle classification, this range includes areas that are less vulnerable than most but may still exhibit certain vulnerable characteristics. These areas typically have a mix of lower and higher indicators, with the lower values predominating. Low Vulnerability (0-20%): This category represents the bottom classification, encompassing the lowest 20% of data points. Areas in this range are the least vulnerable, making them the most resilient compared to all other features in the dataset.
For detailed information, visit the Tucson Equity Priority Index StoryMap.Download the Data DictionaryWhat is the Tucson Equity Priority Index (TEPI)?The Tucson Equity Priority Index (TEPI) is a tool that describes the distribution of socially vulnerable demographics. It categorizes the dataset into 5 classes that represent the differing prioritization needs based on the presence of social vulnerability: Low (0-20), Low-Moderate (20-40), Moderate (40-60), Moderate-High (60-80) High (80-100). Each class represents 20% of the dataset’s features in order of their values. The features within the Low (0-20) classification represent the areas that, when compared to all other locations in the study area, have the lowest need for prioritization, as they tend to have less socially vulnerable demographics. The features that fall into the High (80-100) classification represent the 20% of locations in the dataset that have the greatest need for prioritization, as they tend to have the highest proportions of socially vulnerable demographics. How is social vulnerability measured?The Tucson Equity Priority Index (TEPI) examines the proportion of vulnerability per feature using 11 demographic indicators:Income Below Poverty: Households with income at or below the federal poverty level (FPL), which in 2023 was $14,500 for an individual and $30,000 for a family of fourUnemployment: Measured as the percentage of unemployed persons in the civilian labor forceHousing Cost Burdened: Homeowners who spend more than 30% of their income on housing expenses, including mortgage, maintenance, and taxesRenter Cost Burdened: Renters who spend more than 30% of their income on rentNo Health Insurance: Those without private health insurance, Medicare, Medicaid, or any other plan or programNo Vehicle Access: Households without automobile, van, or truck accessHigh School Education or Less: Those highest level of educational attainment is a High School diploma, equivalency, or lessLimited English Ability: Those whose ability to speak English is "Less Than Well."People of Color: Those who identify as anything other than Non-Hispanic White Disability: Households with one or more physical or cognitive disabilities Age: Groups that tend to have higher levels of vulnerability, including children (those below 18), and seniors (those 65 and older)An overall percentile value is calculated for each feature based on the total proportion of the above indicators in each area. How are the variables combined?These indicators are divided into two main categories that we call Thematic Indices: Economic and Personal Characteristics. The two thematic indices are further divided into five sub-indices called Tier-2 Sub-Indices. Each Tier-2 Sub-Index contains 2-3 indicators. Indicators are the datasets used to measure vulnerability within each sub-index. The variables for each feature are re-scaled using the percentile normalization method, which converts them to the same scale using values between 0 to 100. The variables are then combined first into each of the five Tier-2 Sub-Indices, then the Thematic Indices, then the overall TEPI using the mean aggregation method and equal weighting. The resulting dataset is then divided into the five classes, where:High Vulnerability (80-100%): Representing the top classification, this category includes the highest 20% of regions that are the most socially vulnerable. These areas require the most focused attention. Moderate-High Vulnerability (60-80%): This upper-middle classification includes areas with higher levels of vulnerability compared to the median. While not the highest, these areas are more vulnerable than a majority of the dataset and should be considered for targeted interventions. Moderate Vulnerability (40-60%): Representing the middle or median quintile, this category includes areas of average vulnerability. These areas may show a balanced mix of high and low vulnerability. Detailed examination of specific indicators is recommended to understand the nuanced needs of these areas. Low-Moderate Vulnerability (20-40%): Falling into the lower-middle classification, this range includes areas that are less vulnerable than most but may still exhibit certain vulnerable characteristics. These areas typically have a mix of lower and higher indicators, with the lower values predominating. Low Vulnerability (0-20%): This category represents the bottom classification, encompassing the lowest 20% of data points. Areas in this range are the least vulnerable, making them the most resilient compared to all other features in the dataset.
Dataset Title: A Gold Standard Corpus for Activity Information (GoSCAI)
Dataset Curators: The Epidemiology & Biostatistics Section of the NIH Clinical Center Rehabilitation Medicine Department
Dataset Version: 1.0 (May 16, 2025)
Dataset Citation and DOI: NIH CC RMD Epidemiology & Biostatistics Section. (2025). A Gold Standard Corpus for Activity Information (GoSCAI) [Data set]. Zenodo. doi: 10.5281/zenodo.15528545
This data statement is for a gold standard corpus of de-identified clinical notes that have been annotated for human functioning information based on the framework of the WHO's International Classification of Functioning, Disability and Health (ICF). The corpus includes 484 notes from a single institution within the United States written in English in a clinical setting. This dataset was curated for the purpose of training natural language processing models to automatically identify, extract, and classify information on human functioning at the whole-person, or activity, level.
This dataset is curated to be a publicly available resource for the development and evaluation of methods for the automatic extraction and classification of activity-level functioning information as defined in the ICF. The goals of data curation are to 1) create a corpus of a size that can be manually deidentified and annotated, 2) maximize the density and diversity of functioning information of interest, and 3) allow public dissemination of the data.
Language Region: en-US
Prose Description: English as written by native and bilingual English speakers in a clinical setting
The language users represented in this dataset are medical and clinical professionals who work in a research hospital setting. These individuals hold professional degrees corresponding to their respective specialties. Specific demographic characteristics of the language users such as age, gender, or race/ethnicity were not collected.
The annotator group consisted of five people, 33 to 76 years old, including four females and one male. Socioeconomically, they came from the middle and upper-middle income classes. Regarding first language, three annotators had English as their first language, one had Chinese, and one had Spanish. Proficiency in English, the language of the data being annotated, was native for three of the annotators and bilingual for the other two. The annotation team included clinical rehabilitation domain experts with backgrounds in occupational therapy, physical therapy, and individuals with public health and data science expertise. Prior to annotation, all annotators were trained on the specific annotation process using established guidelines for the given domain, and annotators were required to achieve a specified proficiency level prior to annotating notes in this corpus.
The notes in the dataset were written as part of clinical care within a U.S. research hospital between May 2008 and November 2019. These notes were written by health professionals asynchronously following the patient encounter to document the interaction and support continuity of care. The intended audience of these notes were clinicians involved in the patients' care. The included notes come from nine disciplines - neuropsychology, occupational therapy, physical medicine (physiatry), physical therapy, psychiatry, recreational therapy, social work, speech language pathology, and vocational rehabilitation. The notes were curated to support research on natural language processing for functioning information between 2018 and 2024.
The final corpus was derived from a set of clinical notes extracted from the hospital electronic medical record (EMR) for the purpose of clinical research. The original data include character-based digital content originally. We work in ASCII 8 or UNICODE encoding, and therefore part of our pre-processing includes running encoding detection and transformation from encodings such as Windows-1252 or ISO-8859 format to our preferred format.
On the larger corpus, we applied sampling to match our curation rationale. Given the resource constraints of manual annotation, we set out to create a dataset of 500 clinical notes, which would exclude notes over 10,000 characters in length.
To promote density and diversity, we used five note characteristics as sampling criteria. We used the text length as expressed in number of characters. Next, we considered the discipline group as derived from note type metadata and describes which discipline a note originated from: occupational and vocational therapy (OT/VOC), physical therapy (PT), recreation therapy (RT), speech and language pathology (SLP), social work (SW), or miscellaneous (MISC, including psychiatry, neurology and physiatry). These disciplines were selected for collecting the larger corpus because their notes are likely to include functioning information. Existing information extraction tools were used to obtain annotation counts in four areas of functioning and provided a note’s annotation count, annotation density (annotation count divided by text length), and domain count (number of domains with at least 1 annotation).
We used stratified sampling across the 6 discipline groups to ensure discipline diversity in the corpus. Because of low availability, 50 notes were sampled from SLP with relaxed criteria, and 90 notes each from the 5 other discipline groups with stricter criteria. Sampled SLP notes were those with the highest annotation density that had an annotation count of at least 5 and a domain count of at least 2. Other notes were sampled by highest annotation count and lowest text length, with a minimum annotation count of 15 and minimum domain count of 3.
The notes in the resulting sample included certain types of PHI and PII. To prepare for public dissemination, all sensitive or potentially identifying information was manually annotated in the notes and replaced with substituted content to ensure readability and enough context needed for machine learning without exposing any sensitive information. This de-identification effort was manually reviewed to ensure no PII or PHI exposure and correct any resulting readability issues. Notes about pediatric patients were excluded. No intent was made to sample multiple notes from the same patient. No metadata is provided to group notes other than by note type, discipline, or discipline group. The dataset is not organized beyond the provided metadata, but publications about models trained on this dataset should include information on the train/test splits used.
All notes were sentence-segmented and tokenized using the spaCy en_core_web_lg model with additional rules for sentence segmentation customized to the dataset. Notes are stored in an XML format readable by the GATE annotation software (https://gate.ac.uk/family/developer.html), which stores annotations separately in annotation sets.
As the clinical notes were extracted directly from the EMR in text format, the capture quality was determined to be high. The clinical notes did not have to be converted from other data formats, which means this dataset is free from noise introduced by conversion processes such as optical character recognition.
Because of the effort required to manually deidentify and annotate notes, this corpus is limited in terms of size and representation. The curation decisions skewed note selection towards specific disciplines and note types to increase the likelihood of encountering information on functioning. Some subtypes of functioning occur infrequently in the data, or not at all. The deidentification of notes was done in a manner to preserve natural language as it would occur in the notes, but some information is lost, e.g. on rare diseases.
Information on the manual annotation process is provided in the annotation guidelines for each of the four domains:
- Communication & Cognition (https://zenodo.org/records/13910167)
- Mobility (https://zenodo.org/records/11074838)
- Self-Care & Domestic Life (SCDL) (https://zenodo.org/records/11210183)
- Interpersonal Interactions & Relationships (IPIR) (https://zenodo.org/records/13774684)
Inter-annotator agreement was established on development datasets described in the annotation guidelines prior to the annotation of this gold standard corpus.
The gold standard corpus consists of 484 documents, which include 35,147 sentences in total. The distribution of annotated information is provided in the table below.
Domain |
Number of Annotated Sentences |
% of All Sentences |
Mean Number of Annotated Sentences per Document |
Communication & Cognition |
6033 |
17.2% |
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
About
The Synthetic Sweden Mobility (SySMo) model provides a simplified yet statistically realistic microscopic representation of the real population of Sweden. The agents in this synthetic population contain socioeconomic attributes, household characteristics, and corresponding activity plans for an average weekday. This agent-based modelling approach derives the transportation demand from the agents’ planned activities using various transport modes (e.g., car, public transport, bike, and walking).
This open data repository contains four datasets:
(1) Synthetic Agents,
(2) Activity Plans of the Agents,
(3) Travel Trajectories of the Agents, and
(4) Road Network (EPSG: 3006)
(OpenStreetMap data were retrieved on August 28, 2023, from https://download.geofabrik.de/europe.html, and GTFS data were retrieved on September 6, 2023 from https://samtrafiken.se/)
The database can serve as input to assess the potential impacts of new transportation technologies, infrastructure changes, and policy interventions on the mobility patterns of the Swedish population.
Methodology
This dataset contains statistically simulated 10.2 million agents representing the population of Sweden, their socio-economic characteristics and the activity plan for an average weekday. For preparing data for the MATSim simulation, we randomly divided all the agents into 10 batches. Each batch's agents are then simulated in MATSim using the multi-modal network combining road networks and public transit data in Sweden using the package pt2matsim (https://github.com/matsim-org/pt2matsim).
The agents' daily activity plans along with the road network serve as the primary inputs in the MATSim environment which ensures iterative replanning while aiming for a convergence on optimal activity plans for all the agents. Subsequently, the individual mobility trajectories of the agents from the MATSim simulation are retrieved.
The activity plans of the individual agents extracted from the MATSim simulation output data are then further processed. All agents with negative utility score and negative activity time corresponding to at least one activity are filtered out as the ‘infeasible’ agents. The dataset ‘Synthetic Agents’ contains all synthetic agents regardless of their ‘feasibility’ (0=excluded & 1=included in plans and trajectories). In the other datasets, only agents with feasible activity plans are included.
The simulation setup adheres to the MATSim 13.0 benchmark scenario, with slight adjustments. The strategy for replanning integrates BestScore (60%), TimeAllocationMutator (30%), and ReRoute (10%)— the percentages denote the proportion of agents utilizing these strategies. In each iteration of the simulation, the agents adopt these strategies to adjust their activity plans. The "BestScore" strategy retains the plan with the highest score from the previous iteration, selecting the most successful strategy an agent has employed up until that point. The "TimeAllocationMutator" modifies the end times of activities by introducing random shifts within a specified range, allowing for the exploration of different schedules. The "ReRoute" strategy enables agents to alter their current routes, potentially optimizing travel based on updated information or preferences. These strategies are detailed further in W. Axhausen et al. (2016) work, which provides comprehensive insights into their implementation and impact within the context of transport simulation modeling.
Data Description
(1) Synthetic Agents
This dataset contains all agents in Sweden and their socioeconomic characteristics.
The attribute ‘feasibility’ has two categories: feasible agents (73%), and infeasible agents (27%). Infeasible agents are agents with negative utility score and negative activity time corresponding to at least one activity.
File name: 1_syn_pop_all.parquet
Column
Description
Data type
Unit
PId
Agent ID
Integer
-
Deso Zone code of Demographic statistical areas (DeSO)1
kommun
Municipality code
marital
Marital Status (single/ couple/ child)
sex
Gender (0 = Male, 1 = Female)
age
Age
HId
A unique identifier for households
HHtype
Type of households (single/ couple/ other)
HHsize
Number of people living in the households
num_babies
Number of children less than six years old in the household
employment Employment Status (0 = Not Employed, 1 = Employed)
studenthood Studenthood Status (0 = Not Student, 1 = Student)
income_class Income Class (0 = No Income, 1 = Low Income, 2 = Lower-middle Income, 3 = Upper-middle Income, 4 = High Income)
num_cars Number of cars owned by an individual
HHcars Number of cars in the household
feasibility
Status of the individual (1=feasible, 0=infeasible)
1 https://www.scb.se/vara-tjanster/oppna-data/oppna-geodata/deso--demografiska-statistikomraden/
(2) Activity Plans of the Agents
The dataset contains the car agents’ (agents that use cars on the simulated day) activity plans for a simulated average weekday.
File name: 2_plans_i.parquet, i = 0, 1, 2, ..., 8, 9. (10 files in total)
Column
Description
Data type
Unit
act_purpose
Activity purpose (work/ home/ school/ other)
String
-
PId
Agent ID
Integer
-
act_end
End time of activity (0:00:00 – 23:59:59)
String
hour:minute:seco
nd
act_id
Activity index of each agent
Integer
-
mode
Transport mode to reach the activity location
String
-
POINT_X
Coordinate X of activity location (SWEREF99TM)
Float
metre
POINT_Y
Coordinate Y of activity location (SWEREF99TM)
Float
metre
dep_time
Departure time (0:00:00 – 23:59:59)
String
hour:minute:seco
nd
score
Utility score of the simulation day as obtained from MATSim
Float
-
trav_time
Travel time to reach the activity location
String
hour:minute:seco
nd
trav_time_min
Travel time in decimal minute
Float
minute
act_time
Activity duration in decimal minute
Float
minute
distance
Travel distance between the origin and the destination
Float
km
speed
Travel speed to reach the activity location
Float
km/h
(3) Travel Trajectories of the Agents
This dataset contains the driving trajectories of all the agents on the road network, and the public transit vehicles used by these agents, including buses, ferries, trams etc. The files are produced by MATSim simulations and organised into 10 *.parquet’ files (representing different batches of simulation) corresponding to each plan file.
File name: 3_events_i.parquet, i = 0, 1, 2, ..., 8, 9. (10 files in total)
Column
Description
Data type
Unit
time
Time in second in a simulation day (0-86399)
Integer
second
type
Event type defined by MATSim simulation*
String
person
Agent ID
Integer
link
Nearest road link consistent with the road network
String
vehicle
Vehicle ID identical to person
Integer
from_node
Start node of the link
Integer
to_node
End node of the link
Integer
One typical episode of MATSim simulation events: Activity ends (actend) -> Agent’s vehicle enters traffic (vehicle enters traffic) -> Agent’s vehicle moves from previous road segment to its next connected one (left link) -> Agent’s vehicle leaves traffic for activity (vehicle leaves traffic) -> Activity starts (actstart)
(4) Road Network
This dataset contains the road network.
File name: 4_network.shp
Column
Description
Data type
Unit
length
The length of road link
Float
metre
freespeed
Free speed
Float
km/h
capacity
Number of vehicles
Integer
permlanes
Number of lanes
Integer
oneway
Whether the segment is one-way (0=no, 1=yes)
Integer
modes
Transport mode
String
from_node
Start node of the link
Integer
to_node
End node of the link
Integer
geometry
LINESTRING (SWEREF99TM)
geometry
metre
Additional Notes
This research is funded by the RISE Research Institutes of Sweden, the Swedish Research Council for Sustainable Development (Formas, project number 2018-01768), and Transport Area of Advance, Chalmers.
Contributions
YL designed the simulation, analyzed the simulation data, and, along with CT, executed the simulation. CT, SD, FS, and SY conceptualized the model (SySMo), with CT and SD further developing the model to produce agents and their activity plans. KG wrote the data document. All authors reviewed, edited, and approved the final document.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
India Proportion of People Living Below 50 Percent Of Median Income: % data was reported at 9.800 % in 2021. This records a decrease from the previous number of 10.000 % for 2020. India Proportion of People Living Below 50 Percent Of Median Income: % data is updated yearly, averaging 6.200 % from Dec 1977 (Median) to 2021, with 14 observations. The data reached an all-time high of 10.300 % in 2019 and a record low of 5.100 % in 2004. India Proportion of People Living Below 50 Percent Of Median Income: % data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s India – Table IN.World Bank.WDI: Social: Poverty and Inequality. The percentage of people in the population who live in households whose per capita income or consumption is below half of the median income or consumption per capita. The median is measured at 2017 Purchasing Power Parity (PPP) using the Poverty and Inequality Platform (http://www.pip.worldbank.org). For some countries, medians are not reported due to grouped and/or confidential data. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the mean household income for each of the five quintiles in Winchester, VA, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income Levels:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Winchester median household income. You can refer the same here
The data is based on mobile streams on Orange relay antennas. ** Attendance at the various MEL Euro 2016 venues:** * FanZone of Lille * Indoor stadium * Outdoor Stadium * All the different zones These data are derived from the geolocation of mobile flows analysed by Orange, and were aimed at: the adequacy between population concentrations and the security means deployed at Euro 2016. * * * _ _ _ _ The different socio-professional classes according to this dataset (SOURCE: ORANGE): ** ** Dynamic Urban Young executives in the city center, overequipped in NICT ** ** Easy family urban High-income families, living in the city center and having a high consumption of NICT ** ** Urban middle class Young people, students, with average income ** ** Popular Social diversity, low-income families ** ** Unfavoured urban Low-income, NICT-refractory families or low-resource clients ** ** Peri-urban growing Intermediate CSP families, social mix ** ** Easy family member Families with good incomes, living in recent pavilions, equipped with NICT ** ** Dynamic rural Intermediate CSPs, growing ** ** Rural worker CSP modest, workers with modest incomes, living in old pavilions, little equipped with NICT ** ** Traditional rural Older population, living in old pavilions, little equipped with NICT ** ** Secondary residence Older population, holiday location * * * ** ** ** ** GLOSSARY FOR ALL EURO 2016 DATA GAMES (SOURCE: ORANGE) **** ** ** Study area Area covered by the Orange network, where data from the mobile network was collected. ** ** Residents Persons whose billing address is that of the department (North). ** ** Resident excursionists Residents of the department who did not sleep in the study area in the evening and the day before the study day ** ** French Tourists People billed in France but not in the department ** ** French tourist excursionists French tourists who did not sleep in the study area in the evening and the day before the study day ** ** Foreign Tourists Persons with a foreign motive ** ** Foreign tourist excursionists Foreign tourists who did not sleep in the study area in the evening and the day before the study day ** ** Night places Breakdown of the department into several zones, on which are counted the nights spent on the department ** ** Visitors Persons present at least 1 hour between 00:00 and 00:00 in the study area ** ** The "#" in the data When the data is less than or equal to 20 people, the CNIL does not allow to enter the value. Thus, between 1 and 20 people, the data is replaced by "#". When the data is "0", it means that no mobile has been captured.
We know that students at elite universities tend to be from high-income families, and that graduates are more likely to end up in high-status or high-income jobs. But very little public data has been available on university admissions practices. This dataset, collected by Opportunity Insights, gives extensive detail on college application and admission rates for 139 colleges and universities across the United States, including data on the incomes of students. How do admissions practices vary by institution, and are wealthy students overrepresented?
Education equality is one of the most contested topics in society today. It can be defined and explored in many ways, from accessible education to disabled/low-income/rural students to the cross-generational influence of doctorate degrees and tenure track positions. One aspect of equality is the institutions students attend. Consider the “Ivy Plus” universities, which are all eight Ivy League schools plus MIT, Stanford, Duke, and Chicago. Although less than half of one percent of Americans attend Ivy-Plus colleges, they account for more than 10% of Fortune 500 CEOs, a quarter of U.S. Senators, half of all Rhodes scholars, and three-fourths of Supreme Court justices appointed in the last half-century.
A 2023 study (Chetty et al, 2023) tried to understand how these elite institutions affect educational equality:
Do highly selective private colleges amplify the persistence of privilege across generations by taking students from high-income families and helping them obtain high-status, high-paying leadership positions? Conversely, to what extent could such colleges diversify the socioeconomic backgrounds of society’s leaders by changing their admissions policies?
To answer these questions, they assembled a dataset documenting the admission and attendance rate for 13 different income bins for 139 selective universities around the country. They were able to access and link not only student SAT/ACT scores and high school grades, but also parents’ income through their tax records, students’ post-college graduate school enrollment or employment (including earnings, employers, and occupations), and also for some selected colleges, their internal admission ratings for each student. This dataset covers students in the entering classes of 2010–2015, or roughly 2.4 million domestic students.
They found that children from families in the top 1% (by income) are more than twice as likely to attend an Ivy-Plus college as those from middle-class families with comparable SAT/ACT scores, and two-thirds of this gap can be attributed to higher admission rates with similar scores, with the remaining third due to the differences in rates of application and matriculation (enrollment conditional on admission). This is not a shocking conclusion, but we can further explore elite college admissions by socioeconomic status to understand the differences between elite private colleges and public flagships admission practices, and to reflect on the privilege we have here and to envision what a fairer higher education system could look like.
The data has been aggregated by university and by parental income level, grouped into 13 income brackets. The income brackets are grouped by percentile relative to the US national income distribution, so for instance the 75.0 bin represents parents whose incomes are between the 70th and 80th percentile. The top two bins overlap: the 99.4 bin represents parents between the 99 and 99.9th percentiles, while the 99.5 bin represents parents in the top 1%.
Each row represents students’ admission and matriculation outcomes from one income bracket at a given university. There are 139 colleges covered in this dataset.
The variables include an array of different college-level-income-binned estimates for things including attendance rate (both raw and reweighted by SAT/ACT scores), application rate, and relative attendance rate conditional on application, also with respect to specific test score bands for each college and in/out-of state. Colleges are categorized into six tiers: Ivy Plus, other elite schools (public and private), highly selective public/private, and selective public/private, with selectivity generally in descending order. It also notes whether a college is public and/or flagship, where “flagship” means public flagship universities. Furthermore, they also report the relative application rate for each income bin within specific test bands, which are 50-point bands that had the most attendees in each school tier/category.
Several values are reported in “test-score-reweighted” form. These values control for SAT score: they are calculated separately for each SAT score value, then averaged with weights based on the distribution of SAT scores at the institution.
Note that since private schools typically don’t differentiate between in-...
The International Social Survey Programme (ISSP) is a continuous programme of cross-national collaboration running annual surveys on topics important for the social sciences. The programme started in 1984 with four founding members - Australia, Germany, Great Britain, and the United States – and has now grown to almost 50 member countries from all over the world. As the surveys are designed for replication, they can be used for both, cross-national and cross-time comparisons. Each ISSP module focuses on a specific topic, which is repeated in regular time intervals. Please, consult the documentation for details on how the national ISSP surveys are fielded. The present study focuses on questions about social inequality.
The release of the cumulated ISSP ´Social Inequality´ modules for the years 1987, 1992, 1999 and 2009 consists of two separate datasets: ZA5890 and ZA5891. This documentation deals with the main dataset ZA5890. It contains all the cumulated variables, while the supplementary data file ZA5961 contains those variables that could not be cumulated for various reasons. However, they can be matched easily to the cumulated file if necessary. A comprehensive overview on the contents, the structure and basic coding rules of both data files can be found in the following guide:
Guide for the ISSP ´Social Inequality´ cumulation of the years 1987,1992, 1999 and 2009
Social Inequality I-IV:
Importance of social background and other factors as prerequisites for personal success in society (wealthy family, well-educated parents, good education, ambitions, natural ability, hard work, knowing the right people, political connections, person´s race and religion, the part of a country a person comes from, gender and political beliefs); chances to increase personal standard of living (social mobility); corruption as criteria for social mobility; importance of differentiated payment; higher payment with acceptance of increased responsibility; higher payment as incentive for additional qualification of workers; avoidability of inequality of society; increased income expectation as motivation for taking up studies; good profits for entrepreneurs as best prerequisite for increase in general standard of living; insufficient solidarity of the average population as reason for the persistence of social inequalities; opinion about own salary: actual occupational earning is adequate; income differences are too large in the respondent´s country; responsibility of government to reduce income differences; government should provide chances for poor children to go to university; jobs for everyone who wants one; government should provide a decent living standard for the unemployed and spend less on benefits for poor people; demand for basic income for all; opinion on taxes for people with high incomes; judgement on total taxation for recipients of high, middle and low incomes; justification of better medical supply and better education for richer people; perception of class conflicts between social groups in the country (poor and rich people, working class and middle class, unemployed and employed people, management and workers, farmers and city people, people at the top of society and people at the bottom, young people and older people); salary criteria (scale: job responsibility, years of education and training, supervising others, needed support for familiy and children, quality of job performance or hard work at the job); feeling of a just payment; perceived and desired social structure of country; self-placement within social structure of society; number of books in the parental home in the respondent´s youth (cultural resources); self-assessment of social class; level of status of respondent´s job compared to father (social mobility); self-employment, employee of a private company or business or government, occupation (ILO, ISCO 1988), type of job of respondent´s father in the respondent´s youth; mother´s occupation (ILO, ISCO 1988) in the respondent´s youth; respondent´s type of job in first and current (last) job; self-employment of respondent´ first job or worked for someone else.
Demograpy: sex; age; marital status; steady life partner; education of respondent: years of schooling and highest education level; current employment status; hours worked weekly; occupation (ILO, ISCO 1988); self-employment; supervising function at work; working-type: working for private or public sector or self-employed; if self-employed: number of employees; trade union membership; highest education level of father and mother; education of spouse or partner: years of schooling and highest education level; current employment status of spouse or partner; occupation of spouse or partner (ILO, ISCO 1988); self-employment of spouse or partner; size of household; household composition (children and adults); type of housing; party affiliation (left-right (derived from affiliation to a certain party); party affiliation (derived from...
https://www.incomebyzipcode.com/terms#TERMShttps://www.incomebyzipcode.com/terms#TERMS
A dataset listing the richest zip codes in Missouri per the most current US Census data, including information on rank and average income.
https://www.incomebyzipcode.com/terms#TERMShttps://www.incomebyzipcode.com/terms#TERMS
A dataset listing the richest zip codes in New Jersey per the most current US Census data, including information on rank and average income.
For detailed information, visit the Tucson Equity Priority Index StoryMap.Download the Data DictionaryWhat is the Tucson Equity Priority Index (TEPI)?The Tucson Equity Priority Index (TEPI) is a tool that describes the distribution of socially vulnerable demographics. It categorizes the dataset into 5 classes that represent the differing prioritization needs based on the presence of social vulnerability: Low (0-20), Low-Moderate (20-40), Moderate (40-60), Moderate-High (60-80) High (80-100). Each class represents 20% of the dataset’s features in order of their values. The features within the Low (0-20) classification represent the areas that, when compared to all other locations in the study area, have the lowest need for prioritization, as they tend to have less socially vulnerable demographics. The features that fall into the High (80-100) classification represent the 20% of locations in the dataset that have the greatest need for prioritization, as they tend to have the highest proportions of socially vulnerable demographics. How is social vulnerability measured?The Tucson Equity Priority Index (TEPI) examines the proportion of vulnerability per feature using 11 demographic indicators:Income Below Poverty: Households with income at or below the federal poverty level (FPL), which in 2023 was $14,500 for an individual and $30,000 for a family of fourUnemployment: Measured as the percentage of unemployed persons in the civilian labor forceHousing Cost Burdened: Homeowners who spend more than 30% of their income on housing expenses, including mortgage, maintenance, and taxesRenter Cost Burdened: Renters who spend more than 30% of their income on rentNo Health Insurance: Those without private health insurance, Medicare, Medicaid, or any other plan or programNo Vehicle Access: Households without automobile, van, or truck accessHigh School Education or Less: Those highest level of educational attainment is a High School diploma, equivalency, or lessLimited English Ability: Those whose ability to speak English is "Less Than Well."People of Color: Those who identify as anything other than Non-Hispanic White Disability: Households with one or more physical or cognitive disabilities Age: Groups that tend to have higher levels of vulnerability, including children (those below 18), and seniors (those 65 and older)An overall percentile value is calculated for each feature based on the total proportion of the above indicators in each area. How are the variables combined?These indicators are divided into two main categories that we call Thematic Indices: Economic and Personal Characteristics. The two thematic indices are further divided into five sub-indices called Tier-2 Sub-Indices. Each Tier-2 Sub-Index contains 2-3 indicators. Indicators are the datasets used to measure vulnerability within each sub-index. The variables for each feature are re-scaled using the percentile normalization method, which converts them to the same scale using values between 0 to 100. The variables are then combined first into each of the five Tier-2 Sub-Indices, then the Thematic Indices, then the overall TEPI using the mean aggregation method and equal weighting. The resulting dataset is then divided into the five classes, where:High Vulnerability (80-100%): Representing the top classification, this category includes the highest 20% of regions that are the most socially vulnerable. These areas require the most focused attention. Moderate-High Vulnerability (60-80%): This upper-middle classification includes areas with higher levels of vulnerability compared to the median. While not the highest, these areas are more vulnerable than a majority of the dataset and should be considered for targeted interventions. Moderate Vulnerability (40-60%): Representing the middle or median quintile, this category includes areas of average vulnerability. These areas may show a balanced mix of high and low vulnerability. Detailed examination of specific indicators is recommended to understand the nuanced needs of these areas. Low-Moderate Vulnerability (20-40%): Falling into the lower-middle classification, this range includes areas that are less vulnerable than most but may still exhibit certain vulnerable characteristics. These areas typically have a mix of lower and higher indicators, with the lower values predominating. Low Vulnerability (0-20%): This category represents the bottom classification, encompassing the lowest 20% of data points. Areas in this range are the least vulnerable, making them the most resilient compared to all other features in the dataset.
For detailed information, visit the Tucson Equity Priority Index StoryMap.Download the Data DictionaryWhat is the Tucson Equity Priority Index (TEPI)?The Tucson Equity Priority Index (TEPI) is a tool that describes the distribution of socially vulnerable demographics. It categorizes the dataset into 5 classes that represent the differing prioritization needs based on the presence of social vulnerability: Low (0-20), Low-Moderate (20-40), Moderate (40-60), Moderate-High (60-80) High (80-100). Each class represents 20% of the dataset’s features in order of their values. The features within the Low (0-20) classification represent the areas that, when compared to all other locations in the study area, have the lowest need for prioritization, as they tend to have less socially vulnerable demographics. The features that fall into the High (80-100) classification represent the 20% of locations in the dataset that have the greatest need for prioritization, as they tend to have the highest proportions of socially vulnerable demographics. How is social vulnerability measured?The Tucson Equity Priority Index (TEPI) examines the proportion of vulnerability per feature using 11 demographic indicators:Income Below Poverty: Households with income at or below the federal poverty level (FPL), which in 2023 was $14,500 for an individual and $30,000 for a family of fourUnemployment: Measured as the percentage of unemployed persons in the civilian labor forceHousing Cost Burdened: Homeowners who spend more than 30% of their income on housing expenses, including mortgage, maintenance, and taxesRenter Cost Burdened: Renters who spend more than 30% of their income on rentNo Health Insurance: Those without private health insurance, Medicare, Medicaid, or any other plan or programNo Vehicle Access: Households without automobile, van, or truck accessHigh School Education or Less: Those highest level of educational attainment is a High School diploma, equivalency, or lessLimited English Ability: Those whose ability to speak English is "Less Than Well."People of Color: Those who identify as anything other than Non-Hispanic White Disability: Households with one or more physical or cognitive disabilities Age: Groups that tend to have higher levels of vulnerability, including children (those below 18), and seniors (those 65 and older)An overall percentile value is calculated for each feature based on the total proportion of the above indicators in each area. How are the variables combined?These indicators are divided into two main categories that we call Thematic Indices: Economic and Personal Characteristics. The two thematic indices are further divided into five sub-indices called Tier-2 Sub-Indices. Each Tier-2 Sub-Index contains 2-3 indicators. Indicators are the datasets used to measure vulnerability within each sub-index. The variables for each feature are re-scaled using the percentile normalization method, which converts them to the same scale using values between 0 to 100. The variables are then combined first into each of the five Tier-2 Sub-Indices, then the Thematic Indices, then the overall TEPI using the mean aggregation method and equal weighting. The resulting dataset is then divided into the five classes, where:High Vulnerability (80-100%): Representing the top classification, this category includes the highest 20% of regions that are the most socially vulnerable. These areas require the most focused attention. Moderate-High Vulnerability (60-80%): This upper-middle classification includes areas with higher levels of vulnerability compared to the median. While not the highest, these areas are more vulnerable than a majority of the dataset and should be considered for targeted interventions. Moderate Vulnerability (40-60%): Representing the middle or median quintile, this category includes areas of average vulnerability. These areas may show a balanced mix of high and low vulnerability. Detailed examination of specific indicators is recommended to understand the nuanced needs of these areas. Low-Moderate Vulnerability (20-40%): Falling into the lower-middle classification, this range includes areas that are less vulnerable than most but may still exhibit certain vulnerable characteristics. These areas typically have a mix of lower and higher indicators, with the lower values predominating. Low Vulnerability (0-20%): This category represents the bottom classification, encompassing the lowest 20% of data points. Areas in this range are the least vulnerable, making them the most resilient compared to all other features in the dataset.
https://www.incomebyzipcode.com/terms#TERMShttps://www.incomebyzipcode.com/terms#TERMS
A dataset listing the richest zip codes in Puerto Rico per the most current US Census data, including information on rank and average income.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Income of individuals by age group, sex and income source, Canada, provinces and selected census metropolitan areas, annual.