ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Monthly utility data for all City of Boston accounts. This data comes from Boston’s Enterprise Energy Management System. This software tool serves as the system of record for all municipal utility expenditures and energy/water use.
This dataset, compiled by NREL using data from ABB, the Velocity Suite (http://energymarketintel.com/) and the U.S. Energy Information Administration dataset 861 (http://www.eia.gov/electricity/data/eia861/), provides average residential, commercial and industrial electricity rates with likely zip codes for both investor owned utilities (IOU) and non-investor owned utilities. Note: the files include average rates for each utility (not average rates per zip code), but not the detailed rate structure data found in the OpenEI U.S. Utility Rate Database (https://openei.org/apps/USURDB/).
The Utility Energy Registry (UER) is a database platform that provides streamlined public access to aggregated community-scale utility-reported energy data. The UER is intended to promote and facilitate community-based energy planning and energy use awareness and engagement. On April 19, 2018, the New York State Public Service Commission (PSC) issued the Order Adopting the Utility Energy Registry under regulatory CASE 17-M-0315. The order requires utilities under its regulation to develop and report community energy use data to the UER. This dataset includes electricity and natural gas usage data reported at the ZIP Code level collected under a data protocol in effect between 2016 and 2021. Other UER datasets include energy use data reported at the city, town, village, and county level. Data collected after 2021 were collected according to a modified protocol. Those data may be found at https://data.ny.gov/Energy-Environment/Utility-Energy-Registry-Monthly-ZIP-Code-Energy-Us/g2x3-izm4. Data in the UER can be used for several important purposes such as planning community energy programs, developing community greenhouse gas emissions inventories, and relating how certain energy projects and policies may affect a particular community. It is important to note that the data are subject to privacy screening and fields that fail the privacy screen are withheld. The New York State Energy Research and Development Authority (NYSERDA) offers objective information and analysis, innovative programs, technical expertise, and support to help New Yorkers increase energy efficiency, save money, use renewable energy, and accelerate economic growth. reduce reliance on fossil fuels. To learn more about NYSERDA’s programs, visit nyserda.ny.gov or follow us on X, Facebook, YouTube, or Instagram.
This dataset summarizes the utility use and expenditures data for FY19 through FY23 for Executive Branch agencies. The data was pulled from the state's utility tracking system, EnergyCAP, on February 10, 2025, with the exception of the waste disposal data, which was pulled from Core-CT, the state's human resource management and financials system. The data below may be incomplete and will be updated with more current data as it becomes available.
The Utility Energy Registry (UER) is a database platform that provides streamlined public access to aggregated community-scale energy data. The UER is intended to promote and facilitate community-based energy planning and energy use awareness and engagement. On April 19, 2018, the New York State Public Service Commission (PSC) issued the Order Adopting the Utility Energy Registry under regulatory CASE 17-M-0315. The order requires utilities and CCA administrators under its regulation to develop and report community energy use data to the UER. This dataset includes electricity and natural gas usage data reported by utilities at the county level. Other UER datasets include energy use data reported at the city, town, and village, and ZIP code level. Data in the UER can be used for several important purposes such as planning community energy programs, developing community greenhouse gas emissions inventories, and relating how certain energy projects and policies may affect a particular community. It is important to note that the data are subject to privacy screening and fields that fail the privacy screen are withheld. The New York State Energy Research and Development Authority (NYSERDA) offers objective information and analysis, innovative programs, technical expertise, and support to help New Yorkers increase energy efficiency, save money, use renewable energy, and reduce reliance on fossil fuels. To learn more about NYSERDA’s programs, visit nyserda.ny.gov or follow us on X, Facebook, YouTube, or Instagram.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
PUDL v2025.2.0 Data Release
This is our regular quarterly release for 2025Q1. It includes updates to all the datasets that are published with quarterly or higher frequency, plus initial verisons of a few new data sources that have been in the works for a while.
One major change this quarter is that we are now publishing all processed PUDL data as Apache Parquet files, alongside our existing SQLite databases. See Data Access for more on how to access these outputs.
Some potentially breaking changes to be aware of:
In the EIA Form 930 – Hourly and Daily Balancing Authority Operations Report a number of new energy sources have been added, and some old energy sources have been split into more granular categories. See Changes in energy source granularity over time.
We are now running the EPA’s CAMD to EIA unit crosswalk code for each individual year starting from 2018, rather than just 2018 and 2021, resulting in more connections between these two datasets and changes to some sub-plant IDs. See the note below for more details.
Many thanks to the organizations who make these regular updates possible! Especially GridLab, RMI, and the ZERO Lab at Princeton University. If you rely on PUDL and would like to help ensure that the data keeps flowing, please consider joining them as a PUDL Sustainer, as we are still fundraising for 2025.
New Data
EIA 176
Add a couple of semi-transformed interim EIA-176 (natural gas sources and dispositions) tables. They aren’t yet being written to the database, but are one step closer. See #3555 and PRs #3590, #3978. Thanks to @davidmudrauskas for moving this dataset forward.
Extracted these interim tables up through the latest 2023 data release. See #4002 and #4004.
EIA 860
Added EIA 860 Multifuel table. See #3438 and #3946.
FERC 1
Added three new output tables containing granular utility accounting data. See #4057, #3642 and the table descriptions in the data dictionary:
out_ferc1_yearly_detailed_income_statements
out_ferc1_yearly_detailed_balance_sheet_assets
out_ferc1_yearly_detailed_balance_sheet_liabilities
SEC Form 10-K Parent-Subsidiary Ownership
We have added some new tables describing the parent-subsidiary company ownership relationships reported in the SEC’s Form 10-K, Exhibit 21 “Subsidiaries of the Registrant”. Where possible these tables link the SEC filers or their subsidiary companies to the corresponding EIA utilities. This work was funded by a grant from the Mozilla Foundation. Most of the ML models and data preparation took place in the mozilla-sec-eia repository separate from the main PUDL ETL, as it requires processing hundreds of thousands of PDFs and the deployment of some ML experiment tracking infrastructure. The new tables are handed off as nearly finished products to the PUDL ETL pipeline. Note that these are preliminary, experimental data products and are known to be incomplete and to contain errors. Extracting data tables from unstructured PDFs and the SEC to EIA record linkage are necessarily probabalistic processes.
See PRs #4026, #4031, #4035, #4046, #4048, #4050 and check out the table descriptions in the PUDL data dictionary:
out_sec10k_parents_and_subsidiaries
core_sec10k_quarterly_filings
core_sec10k_quarterly_exhibit_21_company_ownership
core_sec10k_quarterly_company_information
Expanded Data Coverage
EPA CEMS
Added 2024 Q4 of CEMS data. See #4041 and #4052.
EPA CAMD EIA Crosswalk
In the past, the crosswalk in PUDL has used the EPA’s published crosswalk (run with 2018 data), and an additional crosswalk we ran with 2021 EIA 860 data. To ensure that the crosswalk reflects updates in both EIA and EPA data, we re-ran the EPA R code which generates the EPA CAMD EIA crosswalk with 4 new years of data: 2019, 2020, 2022 and 2023. Re-running the crosswalk pulls the latest data from the CAMD FACT API, which results in some changes to the generator and unit IDs reported on the EPA side of the crosswalk, which feeds into the creation of core_epa_assn_eia_epacamd.
The changes only result in the addition of new units and generators in the EPA data, with no changes to matches at the plant level. However, the updates to generator and unit IDs have resulted in changes to the subplant IDs - some EIA boilers and generators which previously had no matches to EPA data have now been matched to EPA unit data, resulting in an overall reduction in the number of rows in the core_epa_assn_eia_epacamd_subplant_ids table. See issues #4039 and PR #4056 for a discussion of the changes observed in the course of this update.
EIA 860M
Added EIA 860m through December 2024. See #4038 and #4047.
EIA 923
Added EIA 923 monthly data through September 2024. See #4038 and #4047.
EIA Bulk Electricity Data
Updated the EIA Bulk Electricity data to include data published up through 2024-11-01. See #4042 and PR #4051.
EIA 930
Updated the EIA 930 data to include data published up through the beginning of February 2025. See #4040 and PR #4054. 10 new energy sources were added and 3 were retired; see Changes in energy source granularity over time for more information.
Bug Fixes
Fix an accidentally swapped set of starting balance / ending balance column rename parameters in the pre-2021 DBF derived data that feeds into core_ferc1_yearly_other_regulatory_liabilities_sched278. See issue #3952 and PRs #3969, #3979. Thanks to @yolandazzz13 for making this fix.
Added preliminary data validation checks for several FERC 1 tables that were missing it #3860.
Fix spelling of Lake Huron and Lake Saint Clair in out_vcerare_hourly_available_capacity_factor and related tables. See issue #4007 and PR #4029.
Quality of Life Improvements
We added a sources parameter to pudl.metadata.classes.DataSource.from_id() in order to make it possible to use the pudl-archiver repository to archive datasets that won’t necessarily be ingested into PUDL. See this PUDL archiver issue and PRs #4003 and #4013.
Other PUDL v2025.2.0 Resources
PUDL v2025.2.0 Data Dictionary
PUDL v2025.2.0 Documentation
PUDL in the AWS Open Data Registry
PUDL v2025.2.0 in a free, public AWS S3 bucket: s3://pudl.catalyst.coop/v2025.2.0/
PUDL v2025.2.0 in a requester-pays GCS bucket: gs://pudl.catalyst.coop/v2025.2.0/
Zenodo archive of the PUDL GitHub repo for this release
PUDL v2025.2.0 release on GitHub
PUDL v2025.2.0 package in the Python Package Index (PyPI)
Contact Us
If you're using PUDL, we would love to hear from you! Even if it's just a note to let us know that you exist, and how you're using the software or data. Here's a bunch of different ways to get in touch:
Follow us on GitHub
Use the PUDL Github issue tracker to let us know about any bugs or data issues you encounter
GitHub Discussions is where we provide user support.
Watch our GitHub Project to see what we're working on.
Email us at hello@catalyst.coop for private communications.
On Mastodon: @CatalystCoop@mastodon.energy
On BlueSky: @catalyst.coop
On Twitter: @CatalystCoop
Connect with us on LinkedIn
Play with our data and notebooks on Kaggle
Combine our data with ML models on HuggingFace
Learn more about us on our website: https://catalyst.coop
Subscribe to our announcements list for email updates.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Utilities Earnings in Mississippi (MSEUTI) from Q1 1998 to Q4 2024 about utilities, MS, earnings, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All Employees: Transportation and Utilities: Utilities in Michigan was 19.50000 Thous. of Persons in March of 2025, according to the United States Federal Reserve. Historically, All Employees: Transportation and Utilities: Utilities in Michigan reached a record high of 22.00000 in July of 2022 and a record low of 19.00000 in October of 2012. Trading Economics provides the current actual value, an historical data chart and related indicators for All Employees: Transportation and Utilities: Utilities in Michigan - last updated from the United States Federal Reserve on June of 2025.
Utility Data for the City of Rockwall, TX
The Utility Energy Registry (UER) is a database platform that provides streamlined public access to aggregated community-scale utility-reported energy data. The UER is intended to promote and facilitate community-based energy planning and energy use awareness and engagement. On April 19, 2018, the New York State Public Service Commission (PSC) issued the Order Adopting the Utility Energy Registry under regulatory CASE 17-M-0315. The order requires utilities under its regulation to develop and report community energy use data to the UER.
This dataset includes electricity and natural gas usage data reported at the ZIP Code level collected under a data protocol in effect between 2016 and 2021. Other UER datasets include energy use data reported at the city, town, village, and county level. Data collected after 2021 were collected according to a modified protocol. Those data may be found at https://data.ny.gov/Energy-Environment/Utility-Energy-Registry-Monthly-ZIP-Code-Energy-Us/g2x3-izm4.
Data in the UER can be used for several important purposes such as planning community energy programs, developing community greenhouse gas emissions inventories, and relating how certain energy projects and policies may affect a particular community. It is important to note that the data are subject to privacy screening and fields that fail the privacy screen are withheld.
The New York State Energy Research and Development Authority (NYSERDA) offers objective information and analysis, innovative programs, technical expertise, and support to help New Yorkers increase energy efficiency, save money, use renewable energy, and accelerate economic growth. reduce reliance on fossil fuels. To learn more about NYSERDA’s programs, visit nyserda.ny.gov or follow us on X, Facebook, YouTube, or Instagram.
This spreadsheet contains information reported by over 200 investor-owned utilities to the Federal Energy Regulatory Commission in the annual filing FERC Form 1 for the years 1994-2019. It contains 1) annual capital costs for new transmission, distribution, and administrative infrastructure; 2) annual operation and maintenance costs for transmission, distribution, and utility business administration; 3) total annual MWh sales and sales by customer class; 4) annual peak demand in MW; and 5) total customer count and the number of customers by class. Annual spending on new capital infrastructure is read from pages 204 to 207 of FERC Form 1, titled Electric Plant in Service. Annual transmission capital additions are recorded from Line 58, Column C - Total Transmission Plant Additions. Likewise, annual distribution capital additions are recorded from Line 75, Column C - Total Distribution Plant Additions. Administrative capital additions are recorded from Line 5, Column C - Total Intangible Plant Additions, and Line 99, Column C - Total General Plant Additions. Operation and maintenance costs associated with transmission, distribution, and utility administration are read from pages 320 to 323 of FERC Form 1, titled Electric Operation and Maintenance Expenses. Annual transmission operation and maintenance are recorded from Line 99, Column B - Total Transmission Operation Expenses for Current Year, and Line 111, Column B - Total Transmission Maintenance Expenses for Current Year. Likewise, annual distribution operation and maintenance costs are recorded from Line 144, Column B - Total Distribution Operation Expenses, and Line 155, Column B - Total Distribution Maintenance Expenses. Administrative operation and maintenance costs are recorded from: Line 164, Column B - Total Customers Accounts Expenses; Line 171, Column B - Total Customer Service and Information Expenses; Line 178, Column B - Total Sales Expenses; and Line 197, Column B - Total Administrative and General Expenses. The annual peak demand in MW over the year is read from page 401, titled Monthly Peaks and Output. The monthly peak demand is listed in Lines 29 to 40, Column D. The maximum of these monthly reports during each year is taken as the annual peak demand in MW. The annual energy sales and customer count data come from page 300, Electric Operating Revenues. The values are provided in Line 2 - Residential Sales, Line 4 - Commercial Sales, Line 5 - Industrial Sales, and Line 10 - Total Sales to Ultimate Consumers. More information about the database is available in an associated report published by the University of Texas at Austin Energy Institute: https://live-energy-institute.pantheonsite.io/sites/default/files/UTAustin_FCe_TDA_2016.pdf Also see an associated paper published in the journal Energy Policy: Fares, Robert L., and Carey W. King. "Trends in transmission, distribution, and administration costs for US investor-owned electric utilities." Energy Policy 105 (2017): 354-362. https://doi.org/10.1016/j.enpol.2017.02.036 All data come from the Federal Energy Regulatory Commission FERC Form 1 Database available in Microsoft Visual FoxPro Format: https://www.ferc.gov/docs-filing/forms/form-1/data.asp
https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
Utility and Energy Analytics Market Segmented by Deployment (On-Premises, Cloud and Hybrid), Component (Software, Services and More), Application (Meter Operations and Data Management, Load and Generation Forecasting and More), End-User (Generation Utilities, Transmission and Distribution Operators and More) Utility Type (Electric, Gas and More), and Geography. The Market Forecasts are Provided in Terms of Value (USD).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This feature class represents electric power retail service territories. These are areas serviced by electric power utilities responsible for the retail sale of electric power to local customers, whether residential, industrial, or commercial. The following updates have been made since the previous release: 7 features added, numerous geometries improved, and geographic coverage expanded to include American Samoa, Guam, Northern Mariana Islands, and Virgin Islands.
Middlesex Water is a leading regulated water utility company that supplies drinking water to over 900,000 residents in New Jersey and Pennsylvania. Founded in 1859, the company has a rich history of providing essential services to its customers.
Today, Middlesex Water is committed to delivering high-quality water and excellent customer service. The company's data sets reflect its dedication to transparency and openness, offering insights into its operations, management, and infrastructure. Whether you're an analyst, researcher, or simply interested in learning more about the water industry, Middlesex Water's data provides a unique window into the company's activities and operations.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Gross Domestic Product: Utilities (22) in Nebraska (NEUTILNQGSP) from Q1 2005 to Q1 2025 about utilities, NE, GSP, private industries, private, industry, GDP, and USA.
The Utility Rate Database (URDB) is a free storehouse of rate structure information from utilities in the United States. Here, you can search for your utilities and rates to find out exactly how you are charged for your electric energy usage. Understanding this information can help reduce your bill, for example, by running your appliances during off-peak hours (times during the day when electricity prices are less expensive) and help you make more informed decisions regarding your energy usage.
Rates are also extremely important to the energy analysis community for accurately determining the value and economics of distributed generation such as solar and wind power. In the past, collecting rates has been an effort duplicated across many institutions. Rate collection can be tedious and slow, however, with the introduction of the URDB, OpenEI aims to change how analysis of rates is performed. The URDB allows anyone to access these rates in a computer-readable format for use in their tools and models. OpenEI provides an API for software to automatically download the appropriate rates, thereby allowing detailed economic analysis to be done without ever having to directly handle complex rate structures. Essentially, rate collection and processing that used to take weeks or months can now be done in seconds!
NREL’s System Advisor Model (formerly Solar Advisor Model or SAM), currently has the ability to communicate with the OpenEI URDB over the internet. SAM can download any rate from the URDB directly into the program, thereby enabling users to conduct detailed studies on various power systems ranging in size from a small residential rooftop solar system to large utility scale installations. Other applications available at NREL, such as OpenPV and IMBY, will also utilize the URDB data.
Upcoming features include better support for entering net metering parameters, maps to summarize the data, geolocation capabilities, and hundreds of additional rates!
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The Utilities Data Analytics industry has witnessed significant growth in recent years, driven by increasing demand for improved operational efficiency, customer engagement, and asset management. The market size reached XXX million in 2025 and is projected to expand at a CAGR of XX% during the forecast period (2025-2033). Growing adoption of advanced technologies such as IoT, AI, and machine learning, coupled with government initiatives to modernize utility infrastructure, fuels market expansion. The Utilities Data Analytics market is segmented by type (Energy Analytics, Customer Analytics, Asset Analytics, Operations Analytics, Financial Analytics) and application (Electricity, Water, Gas, Other). Energy Analytics holds a dominant market share due to increased adoption for energy optimization and demand forecasting. Additionally, the market is characterized by key industry players including AspenTech, Vertica, Deloitte, Engineered Intelligence, Heavy.ai, Cloudera, SAS, Oracle, Saviant, Loamics Suite, WNS, Adatis, Keyrus, KNIME, Voltaware, Tantalus, ATS, 4M Analytics, Seeq, TIBCO, Quantzig, SparkBeyond, Live Earth, and others. Geographically, North America and Asia Pacific account for significant market shares, with growing adoption of advanced metering infrastructure (AMI) and smart grid technologies contributing to regional growth.
This dataset is a fusion of three data types (operations and maintenance tickets, weather data, and production data) that was used to support machine learning analysis and evaluation of drivers for low performance at photovoltaic (PV) sites during compound, extreme weather events. After being processed with machine learning, the data was used in the "Evaluation of Extreme Weather Impacts on Utility-scale Photovoltaic Plant Performance in the United States" manuscript. Additional details are captured in the associated manuscript.
Increase the quality and quantity of electric and gas data that is made available to the public. More open data is needed to understand current trends and effectively provide input to our utility companies.
GIS In Utility Industry Market Size 2025-2029
The gis in utility industry market size is forecast to increase by USD 3.55 billion, at a CAGR of 19.8% between 2024 and 2029.
The utility industry's growing adoption of Geographic Information Systems (GIS) is driven by the increasing need for efficient and effective infrastructure management. GIS solutions enable utility companies to visualize, analyze, and manage their assets and networks more effectively, leading to improved operational efficiency and customer service. A notable trend in this market is the expanding application of GIS for water management, as utilities seek to optimize water distribution and reduce non-revenue water losses. However, the utility GIS market faces challenges from open-source GIS software, which can offer cost-effective alternatives to proprietary solutions. These open-source options may limit the functionality and support available to users, necessitating careful consideration when choosing a GIS solution. To capitalize on market opportunities and navigate these challenges, utility companies must assess their specific needs and evaluate the trade-offs between cost, functionality, and support when selecting a GIS provider. Effective strategic planning and operational execution will be crucial for success in this dynamic market.
What will be the Size of the GIS In Utility Industry Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free SampleThe Global Utilities Industry Market for Geographic Information Systems (GIS) continues to evolve, driven by the increasing demand for advanced data management and analysis solutions. GIS services play a crucial role in utility infrastructure management, enabling asset management, data integration, project management, demand forecasting, data modeling, data analytics, grid modernization, data security, field data capture, outage management, and spatial analysis. These applications are not static but rather continuously unfolding, with new patterns emerging in areas such as energy efficiency, smart grid technologies, renewable energy integration, network optimization, and transmission lines. Spatial statistics, data privacy, geospatial databases, and remote sensing are integral components of this evolving landscape, ensuring the effective management of utility infrastructure.
Moreover, the adoption of mobile GIS, infrastructure planning, customer service, asset lifecycle management, metering systems, regulatory compliance, GIS data management, route planning, environmental impact assessment, mapping software, GIS consulting, GIS training, smart metering, workforce management, location intelligence, aerial imagery, construction management, data visualization, operations and maintenance, GIS implementation, and IoT sensors is transforming the industry. The integration of these technologies and services facilitates efficient utility infrastructure management, enhancing network performance, improving customer service, and ensuring regulatory compliance. The ongoing evolution of the utilities industry market for GIS reflects the dynamic nature of the sector, with continuous innovation and adaptation to meet the changing needs of utility providers and consumers.
How is this GIS In Utility Industry Industry segmented?
The gis in utility industry industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. ProductSoftwareDataServicesDeploymentOn-premisesCloudGeographyNorth AmericaUSCanadaEuropeFranceGermanyRussiaMiddle East and AfricaUAEAPACChinaIndiaJapanSouth AmericaBrazilRest of World (ROW).
By Product Insights
The software segment is estimated to witness significant growth during the forecast period.In the utility industry, Geographic Information Systems (GIS) play a pivotal role in optimizing operations and managing infrastructure. Utilities, including electricity, gas, water, and telecommunications providers, utilize GIS software for asset management, infrastructure planning, network performance monitoring, and informed decision-making. The GIS software segment in the utility industry encompasses various solutions, starting with fundamental GIS software that manages and analyzes geographical data. Additionally, utility companies leverage specialized software for field data collection, energy efficiency, smart grid technologies, distribution grid design, renewable energy integration, network optimization, transmission lines, spatial statistics, data privacy, geospatial databases, GIS services, project management, demand forecasting, data modeling, data analytics, grid modernization, data security, field data capture, outage ma
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Monthly utility data for all City of Boston accounts. This data comes from Boston’s Enterprise Energy Management System. This software tool serves as the system of record for all municipal utility expenditures and energy/water use.