89 datasets found
  1. a

    Cuyahoga County GIS Web Mapping

    • gis-cuyahoga.hub.arcgis.com
    • geospatial.gis.cuyahogacounty.gov
    Updated Mar 30, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cuyahoga County (2017). Cuyahoga County GIS Web Mapping [Dataset]. https://gis-cuyahoga.hub.arcgis.com/datasets/cuyahoga-county-gis-web-mapping
    Explore at:
    Dataset updated
    Mar 30, 2017
    Dataset authored and provided by
    Cuyahoga County
    Description

    Web-based GIS mapping application.Contains all available GIS and mapping resources for Cuyahoga County.Use the application to explore data using the available search, identify, and query tools; markup the map with the drawing tools; export the map to a geo-referenced image file; print the map to PDF with a custom title and include a legend and scale.View the 'Help Guide' for FAQs, tool tips, and additional information about the application and the data.

  2. Geographic Management Information System

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Jun 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.usaid.gov (2024). Geographic Management Information System [Dataset]. https://catalog.data.gov/dataset/geographic-management-information-system
    Explore at:
    Dataset updated
    Jun 25, 2024
    Dataset provided by
    United States Agency for International Developmenthttps://usaid.gov/
    Description

    The Geographic Management Information System (GeoMIS) is a FISMA Moderate minor application built using ArcGIS Server and portal, Microsoft SQL, and a web-facing front-end. The system can be accessed over the internet via https://www.usaidgiswbg.com using a web browser. GeoMIS is based on a commercial off-the-shelf product developed by Esri. Esri is creates geographic information system (GIS) software, web GIS and geodatabase management applications and is based in California. GeoMISIt is maintained by an Israeli company, Systematics (see Attachment 3) which is EsriI's agent in Israel. The mission has an annual maintenance contract with Systematics for GeoMIS. GeoMIS has 100 users from USAID staff (USA Direct Hire and Foreign Service Nationals) and 200 users from USAID contractors and grantees. The system is installed at USAID WBG office in Tel Aviv/Israel inside the computer room in the DMZ. It has no interconnections with any other system.

  3. Federal Railroad Administration GIS Web Mapping Application

    • catalog.data.gov
    • data.transportation.gov
    • +3more
    Updated Oct 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Railroad Administration (2024). Federal Railroad Administration GIS Web Mapping Application [Dataset]. https://catalog.data.gov/dataset/federal-railroad-administration-gis-web-mapping-application
    Explore at:
    Dataset updated
    Oct 10, 2024
    Dataset provided by
    Federal Railroad Administrationhttp://www.fra.dot.gov/
    Description

    The GIS Web Mapping Application is design to have the look and feel as Google Earth. The primary functionality is to provide the user information about FRA's rail lines, rail crossings, freight stations, and mileposting.

  4. w

    Pattern-based GIS for understanding content of very large Earth Science...

    • data.wu.ac.at
    • data.amerigeoss.org
    xml
    Updated Jan 25, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Aeronautics and Space Administration (2018). Pattern-based GIS for understanding content of very large Earth Science datasets [Dataset]. https://data.wu.ac.at/schema/data_gov/YjExMzg1ZWMtNTkzOC00ZjhiLTkwZmEtNmM0NDk0ZmI3YmVm
    Explore at:
    xmlAvailable download formats
    Dataset updated
    Jan 25, 2018
    Dataset provided by
    National Aeronautics and Space Administration
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    The research focus in the field of remotely sensed imagery has shifted from collection and warehousing of data ' tasks for which a mature technology already exists, to auto-extraction of information and knowledge discovery from this valuable resource ' tasks for which technology is still under active development. In particular, intelligent algorithms for analysis of very large rasters, either high resolutions images or medium resolution global datasets, that are becoming more and more prevalent, are lacking. We propose to develop the Geospatial Pattern Analysis Toolbox (GeoPAT) a computationally efficient, scalable, and robust suite of algorithms that supports GIS processes such as segmentation, unsupervised/supervised classification of segments, query and retrieval, and change detection in giga-pixel and larger rasters. At the core of the technology that underpins GeoPAT is the novel concept of pattern-based image analysis. Unlike pixel-based or object-based (OBIA) image analysis, GeoPAT partitions an image into overlapping square scenes containing 1,000'100,000 pixels and performs further processing on those scenes using pattern signature and pattern similarity ' concepts first developed in the field of Content-Based Image Retrieval. This fusion of methods from two different areas of research results in orders of magnitude performance boost in application to very large images without sacrificing quality of the output.

    GeoPAT v.1.0 already exists as the GRASS GIS add-on that has been developed and tested on medium resolution continental-scale datasets including the National Land Cover Dataset and the National Elevation Dataset. Proposed project will develop GeoPAT v.2.0 ' much improved and extended version of the present software. We estimate an overall entry TRL for GeoPAT v.1.0 to be 3-4 and the planned exit TRL for GeoPAT v.2.0 to be 5-6. Moreover, several new important functionalities will be added. Proposed improvements includes conversion of GeoPAT from being the GRASS add-on to stand-alone software capable of being integrated with other systems, full implementation of web-based interface, writing new modules to extent it applicability to high resolution images/rasters and medium resolution climate data, extension to spatio-temporal domain, enabling hierarchical search and segmentation, development of improved pattern signature and their similarity measures, parallelization of the code, implementation of divide and conquer strategy to speed up selected modules.

    The proposed technology will contribute to a wide range of Earth Science investigations and missions through enabling extraction of information from diverse types of very large datasets. Analyzing the entire dataset without the need of sub-dividing it due to software limitations offers important advantage of uniformity and consistency. We propose to demonstrate the utilization of GeoPAT technology on two specific applications. The first application is a web-based, real time, visual search engine for local physiography utilizing query-by-example on the entire, global-extent SRTM 90 m resolution dataset. User selects region where process of interest is known to occur and the search engine identifies other areas around the world with similar physiographic character and thus potential for similar process. The second application is monitoring urban areas in their entirety at the high resolution including mapping of impervious surface and identifying settlements for improved disaggregation of census data.

  5. T

    GIS data for TXSELECT Version 1.0

    • dataverse.tdl.org
    zip
    Updated Mar 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shubham Jain; Shubham Jain; Raghavan Srinivasan; Thomas J. Helton; Raghupathy Karthikeyan; Raghavan Srinivasan; Thomas J. Helton; Raghupathy Karthikeyan (2024). GIS data for TXSELECT Version 1.0 [Dataset]. http://doi.org/10.18738/T8/FWJVKW
    Explore at:
    zip(602275438), zip(2658864376), zip(670451463)Available download formats
    Dataset updated
    Mar 13, 2024
    Dataset provided by
    Texas Data Repository
    Authors
    Shubham Jain; Shubham Jain; Raghavan Srinivasan; Thomas J. Helton; Raghupathy Karthikeyan; Raghavan Srinivasan; Thomas J. Helton; Raghupathy Karthikeyan
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This repository serves as a comprehensive data archive for GIS data utilized in the development of TXSELECT (tx.select.tamu.edu). Contents include raw, processed, and intermediate GIS datasets (watershed boundaries, land cover, soil type, census blocks etc.), used to create input files for TXSELECT using the code available at this site - https://github.com/shubhamjain15/TX-SELECT.

  6. d

    SOFIA - Metadata - Development of an Internet-Based GIS to Visualize ATLSS...

    • datadiscoverystudio.org
    • dataone.org
    • +2more
    Updated May 21, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). SOFIA - Metadata - Development of an Internet-Based GIS to Visualize ATLSS Datasets for Resource Managers. [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/443f494a12f148398137c009968b38bf/html
    Explore at:
    Dataset updated
    May 21, 2018
    Description

    description: The ATLSS Data Visualization System was designed to make it simple to view and analyze Spatially-Explicit Species Index (SESI) models.; abstract: The ATLSS Data Visualization System was designed to make it simple to view and analyze Spatially-Explicit Species Index (SESI) models.

  7. H

    Data from: Clearing your Desk! Software and Data Services for Collaborative...

    • beta.hydroshare.org
    • hydroshare.org
    zip
    Updated Dec 18, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Tarboton (2015). Clearing your Desk! Software and Data Services for Collaborative Web Based GIS Analysis [Dataset]. https://beta.hydroshare.org/resource/1302db3c1a76475ea7e87d7ba881f549/
    Explore at:
    zip(4.5 MB)Available download formats
    Dataset updated
    Dec 18, 2015
    Dataset provided by
    HydroShare
    Authors
    David Tarboton
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Can your desktop computer crunch the large GIS datasets that are becoming increasingly common across the geosciences? Do you have access to or the know-how to take advantage of advanced high performance computing (HPC) capability? Web based cyberinfrastructure takes work off your desk or laptop computer and onto infrastructure or "cloud" based data and processing servers. This talk will describe the HydroShare collaborative environment and web based services being developed to support the sharing and processing of hydrologic data and models. HydroShare supports the upload, storage, and sharing of a broad class of hydrologic data including time series, geographic features and raster datasets, multidimensional space-time data, and other structured collections of data. Web service tools and a Python client library provide researchers with access to HPC resources without requiring them to become HPC experts. This reduces the time and effort spent in finding and organizing the data required to prepare the inputs for hydrologic models and facilitates the management of online data and execution of models on HPC systems. This presentation will illustrate the use of web based data and computation services from both the browser and desktop client software. These web-based services implement the Terrain Analysis Using Digital Elevation Model (TauDEM) tools for watershed delineation, generation of hydrology-based terrain information, and preparation of hydrologic model inputs. They allow users to develop scripts on their desktop computer that call analytical functions that are executed completely in the cloud, on HPC resources using input datasets stored in the cloud, without installing specialized software, learning how to use HPC, or transferring large datasets back to the user's desktop. These cases serve as examples for how this approach can be extended to other models to enhance the use of web and data services in the geosciences.

    Slides for AGU 2015 presentation IN51C-03, December 18, 2015

  8. a

    RTB Mapping application

    • hub.arcgis.com
    • data.amerigeoss.org
    • +1more
    Updated Aug 12, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS StoryMaps (2015). RTB Mapping application [Dataset]. https://hub.arcgis.com/datasets/81ea77e8b5274b879b9d71010d8743aa
    Explore at:
    Dataset updated
    Aug 12, 2015
    Dataset authored and provided by
    ArcGIS StoryMaps
    Description

    RTB Maps is a cloud-based electronic Atlas. We used ArGIS 10 for Desktop with Spatial Analysis Extension, ArcGIS 10 for Server on-premise, ArcGIS API for Javascript, IIS web services based on .NET, and ArcGIS Online combining data on the cloud with data and applications on our local server to develop an Atlas that brings together many of the map themes related to development of roots, tubers and banana crops. The Atlas is structured to allow our participating scientists to understand the distribution of the crops and observe the spatial distribution of many of the obstacles to production of these crops. The Atlas also includes an application to allow our partners to evaluate the importance of different factors when setting priorities for research and development. The application uses weighted overlay analysis within a multi-criteria decision analysis framework to rate the importance of factors when establishing geographic priorities for research and development.Datasets of crop distribution maps, agroecology maps, biotic and abiotic constraints to crop production, poverty maps and other demographic indicators are used as a key inputs to multi-objective criteria analysis.Further metadata/references can be found here: http://gisweb.ciat.cgiar.org/RTBmaps/DataAvailability_RTBMaps.htmlDISCLAIMER, ACKNOWLEDGMENTS AND PERMISSIONS:This service is provided by Roots, Tubers and Bananas CGIAR Research Program as a public service. Use of this service to retrieve information constitutes your awareness and agreement to the following conditions of use.This online resource displays GIS data and query tools subject to continuous updates and adjustments. The GIS data has been taken from various, mostly public, sources and is supplied in good faith.RTBMaps GIS Data Disclaimer• The data used to show the Base Maps is supplied by ESRI.• The data used to show the photos over the map is supplied by Flickr.• The data used to show the videos over the map is supplied by Youtube.• The population map is supplied to us by CIESIN, Columbia University and CIAT.• The Accessibility map is provided by Global Environment Monitoring Unit - Joint Research Centre of the European Commission. Accessibility maps are made for a specific purpose and they cannot be used as a generic dataset to represent "the accessibility" for a given study area.• Harvested area and yield for banana, cassava, potato, sweet potato and yam for the year 200, is provided by EarthSat (University of Minnesota’s Institute on the Environment-Global Landscapes initiative and McGill University’s Land Use and the Global Environment lab). Dataset from Monfreda C., Ramankutty N., and Foley J.A. 2008.• Agroecology dataset: global edapho-climatic zones for cassava based on mean growing season, temperature, number of dry season months, daily temperature range and seasonality. Dataset from CIAT (Carter et al. 1992)• Demography indicators: Total and Rural Population from Center for International Earth Science Information Network (CIESIN) and CIAT 2004.• The FGGD prevalence of stunting map is a global raster datalayer with a resolution of 5 arc-minutes. The percentage of stunted children under five years old is reported according to the lowest available sub-national administrative units: all pixels within the unit boundaries will have the same value. Data have been compiled by FAO from different sources: Demographic and Health Surveys (DHS), UNICEF MICS, WHO Global Database on Child Growth and Malnutrition, and national surveys. Data provided by FAO – GIS Unit 2007.• Poverty dataset: Global poverty headcount and absolute number of poor. Number of people living on less than $1.25 or $2.00 per day. Dataset from IFPRI and CIATTHE RTBMAPS GROUP MAKES NO WARRANTIES OR GUARANTEES, EITHER EXPRESSED OR IMPLIED AS TO THE COMPLETENESS, ACCURACY, OR CORRECTNESS OF THE DATA PORTRAYED IN THIS PRODUCT NOR ACCEPTS ANY LIABILITY, ARISING FROM ANY INCORRECT, INCOMPLETE OR MISLEADING INFORMATION CONTAINED THEREIN. ALL INFORMATION, DATA AND DATABASES ARE PROVIDED "AS IS" WITH NO WARRANTY, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, FITNESS FOR A PARTICULAR PURPOSE. By accessing this website and/or data contained within the databases, you hereby release the RTB group and CGCenters, its employees, agents, contractors, sponsors and suppliers from any and all responsibility and liability associated with its use. In no event shall the RTB Group or its officers or employees be liable for any damages arising in any way out of the use of the website, or use of the information contained in the databases herein including, but not limited to the RTBMaps online Atlas product.APPLICATION DEVELOPMENT:• Desktop and web development - Ernesto Giron E. (GeoSpatial Consultant) e.giron.e@gmail.com• GIS Analyst - Elizabeth Barona. (Independent Consultant) barona.elizabeth@gmail.comCollaborators:Glenn Hyman, Bernardo Creamer, Jesus David Hoyos, Diana Carolina Giraldo Soroush Parsa, Jagath Shanthalal, Herlin Rodolfo Espinosa, Carlos Navarro, Jorge Cardona and Beatriz Vanessa Herrera at CIAT, Tunrayo Alabi and Joseph Rusike from IITA, Guy Hareau, Reinhard Simon, Henry Juarez, Ulrich Kleinwechter, Greg Forbes, Adam Sparks from CIP, and David Brown and Charles Staver from Bioversity International.Please note these services may be unavailable at times due to maintenance work.Please feel free to contact us with any questions or problems you may be having with RTBMaps.

  9. D

    Rural & Statewide GIS/Data Needs (HEPGIS)

    • data.transportation.gov
    • data.virginia.gov
    • +4more
    application/rdfxml +5
    Updated Dec 18, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Rural & Statewide GIS/Data Needs (HEPGIS) [Dataset]. https://data.transportation.gov/w/5kih-wu4c/m7rw-edbr?cur=jw0kTouqKWL&from=K8eGH3VuCwH
    Explore at:
    application/rdfxml, xml, csv, tsv, json, application/rssxmlAvailable download formats
    Dataset updated
    Dec 18, 2018
    Description

    HEPGIS is a web-based interactive geographic map server that allows users to navigate and view geo-spatial data, print maps, and obtain data on specific features using only a web browser. It includes geo-spatial data used for transportation planning. HEPGIS previously received ARRA funding for development of Economically distressed Area maps. It is also being used to demonstrate emerging trends to address MPO and statewide planning regulations/requirements , enhanced National Highway System, Primary Freight Networks, commodity flows and safety data . HEPGIS has been used to help implement MAP-21 regulations and will help implement the Grow America Act, particularly related to Ladder of Opportunities and MPO reforms.

  10. e

    Geodatabase for the Baltimore Ecosystem Study Spatial Data

    • portal.edirepository.org
    • search.dataone.org
    application/vnd.rar
    Updated May 4, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jarlath O'Neal-Dunne; Morgan Grove (2012). Geodatabase for the Baltimore Ecosystem Study Spatial Data [Dataset]. http://doi.org/10.6073/pasta/377da686246f06554f7e517de596cd2b
    Explore at:
    application/vnd.rar(29574980 kilobyte)Available download formats
    Dataset updated
    May 4, 2012
    Dataset provided by
    EDI
    Authors
    Jarlath O'Neal-Dunne; Morgan Grove
    Time period covered
    Jan 1, 1999 - Jun 1, 2014
    Area covered
    Description

    The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making.

       BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions.
    
    
       Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself.
    
    
       For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise.
    
    
       Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. 
    
    
       This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery.
    
    
       See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt
    
    
       See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt
    
  11. a

    Data from: West Haven

    • hub.arcgis.com
    • geodata.ct.gov
    Updated Jan 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CT ECO (2024). West Haven [Dataset]. https://hub.arcgis.com/maps/CTECO::west-haven
    Explore at:
    Dataset updated
    Jan 3, 2024
    Dataset authored and provided by
    CT ECO
    Area covered
    Description

    This Feature Class was adjusted in 2014 as a part of the State of Connecticut’s Policy Intergovernmental Policy Division grant to the Southern Connecticut Regional Council of Governments for the Regional Web-Based GIS program project.The parcel dataset was developed by Sewall Co of Maine in 1999. It was created in NAD 83 State Plane Coordinate System. The parcel layer was digitized from the Town of West Haven's georeferenced tax maps, surveys, deeds and assessors map. Sewall conducted a fly-over in the late 90s producing aerial imagery. Updates as done on an as-needed basis by New England Geosystems.

  12. l

    SMMLCP GIS Data Layers

    • geohub.lacity.org
    Updated Jan 21, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2021). SMMLCP GIS Data Layers [Dataset]. https://geohub.lacity.org/items/594c161b58b547428ffd00911824c773
    Explore at:
    Dataset updated
    Jan 21, 2021
    Dataset authored and provided by
    County of Los Angeles
    Description

    These are the main layers that were used in the mapping and analysis for the Santa Monica Mountains Local Coastal Plan, which was adopted by the Board of Supervisors on August 26, 2014, and certified by the California Coastal Commission on October 10, 2014. Below are some links to important documents and web mapping applications, as well as a link to the actual GIS data:

    Plan Website – This has links to the actual plan, maps, and a link to our online web mapping application known as SMMLCP-NET. Click here for website. Online Web Mapping Application – This is the online web mapping application that shows all the layers associated with the plan. These are the same layers that are available for download below. Click here for the web mapping application. GIS Layers – This is a link to the GIS layers in the form of an ArcGIS Map Package, click here (LINK TO FOLLOW SOON) for ArcGIS Map Package (version 10.3). Also, included are layers in shapefile format. Those are included below.

    Below is a list of the GIS Layers provided (shapefile format):

    Recreation (Zipped - 5 MB - click here)

    Coastal Zone Campground Trails (2012 National Park Service) Backbone Trail Class III Bike Route – Existing Class III Bike Route – Proposed

    Scenic Resources (Zipped - 3 MB - click here)

    Significant Ridgeline State-Designated Scenic Highway State-Designated Scenic Highway 200-foot buffer Scenic Route Scenic Route 200-foot buffer Scenic Element

    Biological Resources (Zipped - 45 MB - click here)

    National Hydrography Dataset – Streams H2 Habitat (High Scrutiny) H1 Habitat H1 Habitat 100-foot buffer H1 Habitat Quiet Zone H2 Habitat H3 Habitat

    Hazards (Zipped - 8 MB - click here)

    FEMA Flood Zone (100-year flood plain) Liquefaction Zone (Earthquake-Induced Liquefaction Potential) Landslide Area (Earthquake-Induced Landslide Potential) Fire Hazard and Responsibility Area

    Zoning and Land Use (Zipped - 13 MB - click here)

    Malibu LCP – LUP (1986) Malibu LCP – Zoning (1986) Land Use Policy Zoning

    Other Layers (Zipped - 38 MB - click here)

    Coastal Commission Appeal Jurisdiction Community Names Santa Monica Mountains (SMM) Coastal Zone Boundary Pepperdine University Long Range Development Plan (LRDP) Rural Village

    Contact the L.A. County Dept. of Regional Planning's GIS Section if you have questions. Send to our email.

  13. S

    Two residential districts datasets from Kielce, Poland for building semantic...

    • scidb.cn
    Updated Sep 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agnieszka Łysak (2022). Two residential districts datasets from Kielce, Poland for building semantic segmentation task [Dataset]. http://doi.org/10.57760/sciencedb.02955
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 29, 2022
    Dataset provided by
    Science Data Bank
    Authors
    Agnieszka Łysak
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    Kielce, Poland
    Description

    Today, deep neural networks are widely used in many computer vision problems, also for geographic information systems (GIS) data. This type of data is commonly used for urban analyzes and spatial planning. We used orthophotographic images of two residential districts from Kielce, Poland for research including urban sprawl automatic analysis with Transformer-based neural network application.Orthophotomaps were obtained from Kielce GIS portal. Then, the map was manually masked into building and building surroundings classes. Finally, the ortophotomap and corresponding classification mask were simultaneously divided into small tiles. This approach is common in image data preprocessing for machine learning algorithms learning phase. Data contains two original orthophotomaps from Wietrznia and Pod Telegrafem residential districts with corresponding masks and also their tiled version, ready to provide as a training data for machine learning models.Transformed-based neural network has undergone a training process on the Wietrznia dataset, targeted for semantic segmentation of the tiles into buildings and surroundings classes. After that, inference of the models was used to test model's generalization ability on the Pod Telegrafem dataset. The efficiency of the model was satisfying, so it can be used in automatic semantic building segmentation. Then, the process of dividing the images can be reversed and complete classification mask retrieved. This mask can be used for area of the buildings calculations and urban sprawl monitoring, if the research would be repeated for GIS data from wider time horizon.Since the dataset was collected from Kielce GIS portal, as the part of the Polish Main Office of Geodesy and Cartography data resource, it may be used only for non-profit and non-commertial purposes, in private or scientific applications, under the law "Ustawa z dnia 4 lutego 1994 r. o prawie autorskim i prawach pokrewnych (Dz.U. z 2006 r. nr 90 poz 631 z późn. zm.)". There are no other legal or ethical considerations in reuse potential.Data information is presented below.wietrznia_2019.jpg - orthophotomap of Wietrznia districtmodel's - used for training, as an explanatory imagewietrznia_2019.png - classification mask of Wietrznia district - used for model's training, as a target imagewietrznia_2019_validation.jpg - one image from Wietrznia district - used for model's validation during training phasepod_telegrafem_2019.jpg - orthophotomap of Pod Telegrafem district - used for model's evaluation after training phasewietrznia_2019 - folder with wietrznia_2019.jpg (image) and wietrznia_2019.png (annotation) images, divided into 810 tiles (512 x 512 pixels each), tiles with no information were manually removed, so the training data would contain only informative tilestiles presented - used for the model during training (images and annotations for fitting the model to the data)wietrznia_2019_vaidation - folder with wietrznia_2019_validation.jpg image divided into 16 tiles (256 x 256 pixels each) - tiles were presented to the model during training (images for validation model's efficiency); it was not the part of the training datapod_telegrafem_2019 - folder with pod_telegrafem.jpg image divided into 196 tiles (256 x 265 pixels each) - tiles were presented to the model during inference (images for evaluation model's robustness)Dataset was created as described below.Firstly, the orthophotomaps were collected from Kielce Geoportal (https://gis.kielce.eu). Kielce Geoportal offers a .pst recent map from April 2019. It is an orthophotomap with a resolution of 5 x 5 pixels, constructed from a plane flight at 700 meters over ground height, taken with a camera for vertical photos. Downloading was done by WMS in open-source QGIS software (https://www.qgis.org), as a 1:500 scale map, then converted to a 1200 dpi PNG image.Secondly, the map from Wietrznia residential district was manually labelled, also in QGIS, in the same scope, as the orthophotomap. Annotation based on land cover map information was also obtained from Kielce Geoportal. There are two classes - residential building and surrounding. Second map, from Pod Telegrafem district was not annotated, since it was used in the testing phase and imitates situation, where there is no annotation for the new data presented to the model.Next, the images was converted to an RGB JPG images, and the annotation map was converted to 8-bit GRAY PNG image.Finally, Wietrznia data files were tiled to 512 x 512 pixels tiles, in Python PIL library. Tiles with no information or a relatively small amount of information (only white background or mostly white background) were manually removed. So, from the 29113 x 15938 pixels orthophotomap, only 810 tiles with corresponding annotations were left, ready to train the machine learning model for the semantic segmentation task. Pod Telegrafem orthophotomap was tiled with no manual removing, so from the 7168 x 7168 pixels ortophotomap were created 197 tiles with 256 x 256 pixels resolution. There was also image of one residential building, used for model's validation during training phase, it was not the part of the training data, but was a part of Wietrznia residential area. It was 2048 x 2048 pixel ortophotomap, tiled to 16 tiles 256 x 265 pixels each.

  14. Cal VTP Treatable Landscapes - Web Application

    • data.ca.gov
    • data.cnra.ca.gov
    • +2more
    Updated Apr 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CAL FIRE (2025). Cal VTP Treatable Landscapes - Web Application [Dataset]. https://data.ca.gov/dataset/cal-vtp-treatable-landscapes-web-application
    Explore at:
    html, arcgis geoservices rest apiAvailable download formats
    Dataset updated
    Apr 4, 2025
    Dataset provided by
    California Department of Forestry and Fire Protectionhttp://calfire.ca.gov/
    Authors
    CAL FIRE
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description
    This web application provides a viewing platform for the California Vegetation Treatment Program (CalVTP) Programmatic Environmental Impact Report (PEIR) web map. The purpose of this viewer is to allow the general public to view treatable areas as designated in the CalVTP PEIR. This web application will persist as long as the life of the CalVTP PEIR.

    GEOGRAPHIC SCOPE OF THE CalVTP: TREATABLE LANDSCAPE

    Appropriate areas within which to implement vegetation treatments as part of the CalVTP were identified by dividing the State Responsibility Area (SRA) into vegetation types from the California Wildlife Habitat Relationship (CWHR) system. Certain vegetation types were excluded because their wildfire risks are negligible (e.g., wet meadow, estuarine). Agricultural vegetation types were also excluded because this land is generally outside the SRA.

    Using this method, 20.3 million acres within the 31 million-acre SRA were identified that may be appropriate for vegetation treatments as part of the CalVTP. Throughout this PEIR, this area is called “treatable landscape” or "treatable areas".

    It is important to note that the treatable landscape represents areas suitable for CalVTP vegetation treatments, but projects will not necessarily occur in every location within the treatable landscape. The location and geographic extent of projects will be determined based on several factors, including environmental constraints and treatment objectives.

    Appendix PD-1 in the Final PEIR provides a description of Treatable Landscape Modeling. Download the CalVTP PEIR and Appendices here: Final Program Environmental Impact Report for the California Vegetation Treatment Program

    For more information, visit the 'https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcalfire-umb05.azurewebsites.net%2Fprojects-and-programs%2Fcalvtp-homepage-and-storymap%2F&data=05%7C02%7CTiffany.Meyer%40fire.ca.gov%7C6147a8bb77e143a223a008dd72fdb97e%7C447a4ca05405454dad68c98a520261f8%7C1%7C0%7C638793156239580211%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=0AVQW95%2FHC6BC1EmxsampHuj9rzoy5Blt72xC%2FyIZ8w%3D&reserved=0' rel='nofollow ugc'>CalVTP Homepage and Storymap.

  15. V

    Rural & Statewide GIS/Data Needs (HEPGIS) - PM 10

    • data.virginia.gov
    • data.transportation.gov
    • +1more
    html
    Updated May 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S Department of Transportation (2024). Rural & Statewide GIS/Data Needs (HEPGIS) - PM 10 [Dataset]. https://data.virginia.gov/dataset/rural-statewide-gis-data-needs-hepgis-pm-10
    Explore at:
    htmlAvailable download formats
    Dataset updated
    May 8, 2024
    Dataset provided by
    Federal Highway Administration
    Authors
    U.S Department of Transportation
    Description

    HEPGIS is a web-based interactive geographic map server that allows users to navigate and view geo-spatial data, print maps, and obtain data on specific features using only a web browser. It includes geo-spatial data used for transportation planning. HEPGIS previously received ARRA funding for development of Economically distressed Area maps. It is also being used to demonstrate emerging trends to address MPO and statewide planning regulations/requirements , enhanced National Highway System, Primary Freight Networks, commodity flows and safety data . HEPGIS has been used to help implement MAP-21 regulations and will help implement the Grow America Act, particularly related to Ladder of Opportunities and MPO reforms.

  16. National Hydrography Dataset Plus High Resolution

    • hub.arcgis.com
    • oregonwaterdata.org
    Updated Mar 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). National Hydrography Dataset Plus High Resolution [Dataset]. https://hub.arcgis.com/maps/f1f45a3ba37a4f03a5f48d7454e4b654
    Explore at:
    Dataset updated
    Mar 16, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  17. Rural & Statewide GIS/Data Needs (HEPGIS) - PM 2.5

    • catalog.data.gov
    • data.virginia.gov
    • +1more
    Updated May 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Highway Administration (2024). Rural & Statewide GIS/Data Needs (HEPGIS) - PM 2.5 [Dataset]. https://catalog.data.gov/dataset/rural-statewide-gis-data-needs-hepgis-pm-2-5
    Explore at:
    Dataset updated
    May 8, 2024
    Dataset provided by
    Federal Highway Administrationhttps://highways.dot.gov/
    Description

    HEPGIS is a web-based interactive geographic map server that allows users to navigate and view geo-spatial data, print maps, and obtain data on specific features using only a web browser. It includes geo-spatial data used for transportation planning. HEPGIS previously received ARRA funding for development of Economically distressed Area maps. It is also being used to demonstrate emerging trends to address MPO and statewide planning regulations/requirements , enhanced National Highway System, Primary Freight Networks, commodity flows and safety data . HEPGIS has been used to help implement MAP-21 regulations and will help implement the Grow America Act, particularly related to Ladder of Opportunities and MPO reforms.

  18. d

    AFSC/ABL: ShoreZone Ground Stations, web-posted database in ArcGIS

    • catalog.data.gov
    • datadiscoverystudio.org
    • +4more
    Updated Jun 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (Point of Contact, Custodian) (2025). AFSC/ABL: ShoreZone Ground Stations, web-posted database in ArcGIS [Dataset]. https://catalog.data.gov/dataset/afsc-abl-shorezone-ground-stations-web-posted-database-in-arcgis1
    Explore at:
    Dataset updated
    Jun 1, 2025
    Dataset provided by
    (Point of Contact, Custodian)
    Description

    The web-posted Alaska Shore Station Database is a compilation of hundreds of intertidal sites that were visited and evaluated throughout the coastal waters of Alaska. At each station attempts are made to document all observed species and their assemblages, geomorphic features, measurements of beach length and slope, and gather photographic examples. This online database has been designed to integrate with the spatially explicit, Alaska ShoreZone web enabled GIS platform. The end result is a user friendly and accessible version of the Shore Station database with a queryable display of station locations, downloadable species lists and photos.

  19. a

    SMMNA GIS Data Layers

    • hub.arcgis.com
    • geohub.lacity.org
    • +2more
    Updated Feb 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2022). SMMNA GIS Data Layers [Dataset]. https://hub.arcgis.com/datasets/lacounty::smmna-gis-data-layers/about
    Explore at:
    Dataset updated
    Feb 2, 2022
    Dataset authored and provided by
    County of Los Angeles
    Description

    These are the main layers that were used in mapping and analysis for the Santa Monica Mountains North Area Plan, which was adopted by the Board of Supervisors on May 4, 2021. Below are some links to important documents and to actually GIS data.Plan Website - This has links to the actual plan, maps and all project related materials. Click here for website.Online Web Mapping Application - This is the online application that shows all of the layers associated with the plan. These are the same layers that will be available for download below. Click here for the web mapping application.GIS Layers - The main GIS layers used in the application are available below.Below is a list of the GIS layers provided (shapefile format):Environmental (Zipped - 4.4 MB - click here)Habitat Connectivity - Essential Connectivity Area (ECA)Vegetation Sensitivity (includes ArcGIS .lyr file for version 10.0 and higher)Scenic Resources (Zipped - 1.3 MB - click here)State-Designated Scenic Highway 200-foot buffer (Please see 'State-Designated Scenic Highway' on our Open Data site here)Scenic RouteScenic Route 200-foot buffer

  20. ACS Internet Access by Age and Race Variables - Boundaries

    • coronavirus-resources.esri.com
    • center-for-community-investment-lincolninstitute.hub.arcgis.com
    • +5more
    Updated Dec 7, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Internet Access by Age and Race Variables - Boundaries [Dataset]. https://coronavirus-resources.esri.com/maps/5a1b51d3c6374c3cbb7c9ff7acdba16b
    Explore at:
    Dataset updated
    Dec 7, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows computer ownership and internet access by age and race. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent of population age 18 to 64 in households with no computer. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B28005, B28003, B28009B, B28009C, B28009D, B28009E, B28009F, B28009G, B28009H, B28009I Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Cuyahoga County (2017). Cuyahoga County GIS Web Mapping [Dataset]. https://gis-cuyahoga.hub.arcgis.com/datasets/cuyahoga-county-gis-web-mapping

Cuyahoga County GIS Web Mapping

Explore at:
Dataset updated
Mar 30, 2017
Dataset authored and provided by
Cuyahoga County
Description

Web-based GIS mapping application.Contains all available GIS and mapping resources for Cuyahoga County.Use the application to explore data using the available search, identify, and query tools; markup the map with the drawing tools; export the map to a geo-referenced image file; print the map to PDF with a custom title and include a legend and scale.View the 'Help Guide' for FAQs, tool tips, and additional information about the application and the data.

Search
Clear search
Close search
Google apps
Main menu