As of June 2022, more than 500 hours of video were uploaded to YouTube every minute. This equates to approximately 30,000 hours of newly uploaded content per hour. The amount of content on YouTube has increased dramatically as consumer’s appetites for online video has grown. In fact, the number of video content hours uploaded every 60 seconds grew by around 40 percent between 2014 and 2020.
YouTube global users
Online video is one of the most popular digital activities worldwide, with 27 percent of internet users worldwide watching more than 17 hours of online videos on a weekly basis in 2023. It was estimated that in 2023 YouTube would reach approximately 900 million users worldwide. In 2022, the video platform was one of the leading media and entertainment brands worldwide, with a value of more than 86 billion U.S. dollars.
YouTube video content consumption
The most viewed YouTube channels of all time have racked up billions of viewers, millions of subscribers and cover a wide variety of topics ranging from music to cosmetics. The YouTube channel owner with the most video views is Indian music label T-Series, which counted 217.25 billion lifetime views. Other popular YouTubers are gaming personalities such as PewDiePie, DanTDM and Markiplier.
The global number of Youtube users in was forecast to continuously increase between 2024 and 2029 by in total 232.5 million users (+24.91 percent). After the ninth consecutive increasing year, the Youtube user base is estimated to reach 1.2 billion users and therefore a new peak in 2029. Notably, the number of Youtube users of was continuously increasing over the past years.User figures, shown here regarding the platform youtube, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Youtube users in countries like Africa and South America.
As of February 2025, India was the country with the largest YouTube audience by far, with approximately 491 million users engaging with the popular social video platform. The United States followed, with around 253 million YouTube viewers. Brazil came in third, with 144 million users watching content on YouTube. The United Kingdom saw around 54.8 million internet users engaging with the platform in the examined period. What country has the highest percentage of YouTube users? In July 2024, the United Arab Emirates was the country with the highest YouTube penetration worldwide, as around 94 percent of the country's digital population engaged with the service. In 2024, YouTube counted around 100 million paid subscribers for its YouTube Music and YouTube Premium services. YouTube mobile markets In 2024, YouTube was among the most popular social media platforms worldwide. In terms of revenues, the YouTube app generated approximately 28 million U.S. dollars in revenues in the United States in January 2024, as well as 19 million U.S. dollars in Japan.
This repository contains replication data for "Whose ideas are worth spreading? The representation of women and ethnic groups in TED talks".
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This is the statistics for the Top 10 songs of various spotify artists and their YouTube videos. The Creators above generated the data and uploaded it to Kaggle on February 6-7 2023. The license to use this data is "CC0: Public Domain", allowing the data to be copied, modified, distributed, and worked on without having to ask permission. The data is in numerical and textual CSV format as attached. This dataset contains the statistics and attributes of the top 10 songs of various artists in the world. As described by the creators above, it includes 26 variables for each of the songs collected from spotify. These variables are briefly described next:
Track: name of the song, as visible on the Spotify platform. Artist: name of the artist. Url_spotify: the Url of the artist. Album: the album in wich the song is contained on Spotify. Album_type: indicates if the song is relesead on Spotify as a single or contained in an album. Uri: a spotify link used to find the song through the API. Danceability: describes how suitable a track is for dancing based on a combination of musical elements including tempo, rhythm stability, beat strength, and overall regularity. A value of 0.0 is least danceable and 1.0 is most danceable. Energy: is a measure from 0.0 to 1.0 and represents a perceptual measure of intensity and activity. Typically, energetic tracks feel fast, loud, and noisy. For example, death metal has high energy, while a Bach prelude scores low on the scale. Perceptual features contributing to this attribute include dynamic range, perceived loudness, timbre, onset rate, and general entropy. Key: the key the track is in. Integers map to pitches using standard Pitch Class notation. E.g. 0 = C, 1 = C♯/D♭, 2 = D, and so on. If no key was detected, the value is -1. Loudness: the overall loudness of a track in decibels (dB). Loudness values are averaged across the entire track and are useful for comparing relative loudness of tracks. Loudness is the quality of a sound that is the primary psychological correlate of physical strength (amplitude). Values typically range between -60 and 0 db. Speechiness: detects the presence of spoken words in a track. The more exclusively speech-like the recording (e.g. talk show, audio book, poetry), the closer to 1.0 the attribute value. Values above 0.66 describe tracks that are probably made entirely of spoken words. Values between 0.33 and 0.66 describe tracks that may contain both music and speech, either in sections or layered, including such cases as rap music. Values below 0.33 most likely represent music and other non-speech-like tracks. Acousticness: a confidence measure from 0.0 to 1.0 of whether the track is acoustic. 1.0 represents high confidence the track is acoustic. Instrumentalness: predicts whether a track contains no vocals. "Ooh" and "aah" sounds are treated as instrumental in this context. Rap or spoken word tracks are clearly "vocal". The closer the instrumentalness value is to 1.0, the greater likelihood the track contains no vocal content. Values above 0.5 are intended to represent instrumental tracks, but confidence is higher as the value approaches 1.0. Liveness: detects the presence of an audience in the recording. Higher liveness values represent an increased probability that the track was performed live. A value above 0.8 provides strong likelihood that the track is live. Valence: a measure from 0.0 to 1.0 describing the musical positiveness conveyed by a track. Tracks with high valence sound more positive (e.g. happy, cheerful, euphoric), while tracks with low valence sound more negative (e.g. sad, depressed, angry). Tempo: the overall estimated tempo of a track in beats per minute (BPM). In musical terminology, tempo is the speed or pace of a given piece and derives directly from the average beat duration. Duration_ms: the duration of the track in milliseconds. Stream: number of streams of the song on Spotify. Url_youtube: url of the video linked to the song on Youtube, if it have any. Title: title of the videoclip on youtube. Channel: name of the channel that have published the video. Views: number of views. Likes: number of likes. Comments: number of comments. Description: description of the video on Youtube. Licensed: Indicates whether the video represents licensed content, which means that the content was uploaded to a channel linked to a YouTube content partner and then claimed by that partner. official_video: boolean value that indicates if the video found is the official video of the song. The data was last updated on February 7, 2023.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This is not going to be an article or Op-Ed about Michael Jordan. Since 2009 we've been in the longest bull-market in history, that's 11 years and counting. However a few metrics like the stock market P/E, the call to put ratio and of course the Shiller P/E suggest a great crash is coming in-between the levels of 1929 and the dot.com bubble. Mean reversion historically is inevitable and the Fed's printing money experiment could end in disaster for the stock market in late 2021 or 2022. You can read Jeremy Grantham's Last Dance article here. You are likely well aware of Michael Burry's predicament as well. It's easier for you just to skim through two related videos on this topic of a stock market crash. Michael Burry's Warning see this YouTube. Jeremy Grantham's Warning See this YouTube. Typically when there is a major event in the world, there is a crash and then a bear market and a recovery that takes many many months. In March, 2020 that's not what we saw since the Fed did some astonishing things that means a liquidity sloth and the risk of a major inflation event. The pandemic represented the quickest decline of at least 30% in the history of the benchmark S&P 500, but the recovery was not correlated to anything but Fed intervention. Since the pandemic clearly isn't disappearing and many sectors such as travel, business travel, tourism and supply chain disruptions appear significantly disrupted - the so-called economic recovery isn't so great. And there's this little problem at the heart of global capitalism today, the stock market just keeps going up. Crashes and corrections typically occur frequently in a normal market. But the Fed liquidity and irresponsible printing of money is creating a scenario where normal behavior isn't occurring on the markets. According to data provided by market analytics firm Yardeni Research, the benchmark index has undergone 38 declines of at least 10% since the beginning of 1950. Since March, 2020 we've barely seen a down month. September, 2020 was flat-ish. The S&P 500 has more than doubled since those lows. Look at the angle of the curve: The S&P 500 was 735 at the low in 2009, so in this bull market alone it has gone up 6x in valuation. That's not a normal cycle and it could mean we are due for an epic correction. I have to agree with the analysts who claim that the long, long bull market since 2009 has finally matured into a fully-fledged epic bubble. There is a complacency, buy-the dip frenzy and general meme environment to what BigTech can do in such an environment. The weight of Apple, Amazon, Alphabet, Microsoft, Facebook, Nvidia and Tesla together in the S&P and Nasdaq is approach a ridiculous weighting. When these stocks are seen both as growth, value and companies with unbeatable moats the entire dynamics of the stock market begin to break down. Check out FANG during the pandemic. BigTech is Seen as Bullet-Proof me valuations and a hysterical speculative behavior leads to even higher highs, even as 2020 offered many younger people an on-ramp into investing for the first time. Some analysts at JP Morgan are even saying that until retail investors stop charging into stocks, markets probably don’t have too much to worry about. Hedge funds with payment for order flows can predict exactly how these retail investors are behaving and monetize them. PFOF might even have to be banned by the SEC. The risk-on market theoretically just keeps going up until the Fed raises interest rates, which could be in 2023! For some context, we're more than 1.4 years removed from the bear-market bottom of the coronavirus crash and haven't had even a 5% correction in nine months. This is the most over-priced the market has likely ever been. At the night of the dot-com bubble the S&P 500 was only 1,400. Today it is 4,500, not so many years after. Clearly something is not quite right if you look at history and the P/E ratios. A market pumped with liquidity produces higher earnings with historically low interest rates, it's an environment where dangerous things can occur. In late 1997, as the S&P 500 passed its previous 1929 peak of 21x earnings, that seemed like a lot, but nothing compared to today. For some context, the S&P 500 Shiller P/E closed last week at 38.58, which is nearly a two-decade high. It's also well over double the average Shiller P/E of 16.84, dating back 151 years. So the stock market is likely around 2x over-valued. Try to think rationally about what this means for valuations today and your favorite stock prices, what should they be in historical terms? The S&P 500 is up 31% in the past year. It will likely hit 5,000 before a correction given the amount of added liquidity to the system and the QE the Fed is using that's like a huge abuse of MMT, or Modern Monetary Theory. This has also lent to bubbles in the housing market, crypto and even commodities like Gold with long-term global GDP meeting many headwinds in the years ahead due to a...
What is the most subscribed YouTube channel? MrBeast made the first place in the ranking of the most-subscribed YouTube channels in January 2025. With 343 million subscribers, the U.S. based videographer and internet personality managed to surpass Indian music network T-Series, which held the number one place for several years, and sat at 284 million subscriber as of the examined period. How many hours of video are uploaded to YouTube every minute? YouTube was launched in 2005 as a platform for sharing user-generated videos such as vlogs, tutorials, or original series. The site grew rapidly and reportedly had 100 million video views per day and more than 65 thousand daily uploads only a year later. As of February 2022, more than 500 hours of video were uploaded to YouTube every minute, up from a mere 24 hours of content uploads per minute in 2010. YouTube Partner Program In the first quarter of 2024, YouTube’s ad revenue amounted to over eight billion U.S. dollars. Through its Partner Program, YouTube also rewards uploaders of popular videos with a share of the advertising revenues the content generates. This, paired with the fact that many users of the video sharing platform tend to have favorite channels that they revisit regularly, has given rise to another phenomenon: YouTube celebrities. Although some of these well-known figures were discovered on the website but then carved a successful career outside of YouTube, for many others the site is their primary platform for delivering content and staying in contact with fans, all while signing lucrative deals or promotional partnerships. Highest earning YouTubers In November 2022, MrBeast surpassed long-standing most subscribed YouTuber PewDiePie, having reached approximately 112 million subscribers. Due to the high number of subscribers and even higher number of views, these out-of-the-box stars not only have millions of fans, but also considerable earnings from their YouTube activities. In 2023, MrBeast was estimated to have earned around 82 million U.S. dollars, topping the ranking of the highest-earning YouTube creators. The ranking also included social media personality Jake Paul and Mark Fischbach, as well as Ryan Kaji from Ryan's World (formerly known as ToysReview), who started his YouTube career reviewing toys at three years old.
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
The Indian Premier League (IPL) is a professional Twenty20 cricket league in India usually contested between March and May of every year by eight teams representing eight different cities or states in India. The league was founded by the Board of Control for Cricket in India (BCCI) in 2007. The IPL has an exclusive window in ICC Future Tours Programme.
The IPL is the most-attended cricket league in the world and in 2014 was ranked sixth by average attendance among all sports leagues. In 2010, the IPL became the first sporting event in the world to be broadcast live on YouTube. The brand value of the IPL in 2019 was ₹475 billion (US$6.7 billion), according to Duff & Phelps. According to BCCI, the 2015 IPL season contributed ₹11.5 billion (US$160 million) to the GDP of the Indian economy.
The dataset consist of data about IPL matches played from the year 2008 to 2019. IPL is a professional Twenty20 cricket league founded by the Board of Control for Cricket in India (BCCI) in 2008. The league has 8 teams representing 8 different Indian cities or states. It enjoys tremendous popularity and the brand value of the IPL in 2019 was estimated to be ₹475 billion (US$6.7 billion). So let’s analyze IPL through stats.
The dataset has 18 columns. Let’s get acquainted with the columns. - id: The IPL match id. - season: The IPL season - city: The city where the IPL match was held. - date: The date on which the match was held. - team1: One of the teams of the IPL match - team2: The other team of the IPL match - toss_winner: The team that won the toss - toss_decision: The decision taken by the team that won the toss to ‘bat’ or ‘field’ - result: The result(‘normal’, ‘tie’, ‘no result’) of the match. - dl_applied: (1 or 0)indicates whether the Duckworth-Lewis rule was applied or not. - winner: The winner of the match. - win_by_runs: Provides the runs by which the team batting first won - win_by_runs: Provides the number of wickets by which the team batting second won. - player_of_match: The outstanding player of the match. - venue: The venue where the match was hosted. - umpire1: One of the two on-field umpires who officiate the match. - umpire2: One of the two on-field umpires who officiate the match. - umpire3: The off-field umpire who officiates the match
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
If you use this dataset, please cite the IJRR data paper (bibtex is below). We present a dataset collected from a canoe along the Sangamon River in Illinois. The canoe was equipped with a stereo camera, an IMU, and a GPS device, which provide visual data suitable for stereo or monocular applications, inertial measurements, and position data for ground truth. We recorded a canoe trip up and down the river for 44 minutes covering 2.7 km round trip. The dataset adds to those previously recorded in unstructured environments and is unique in that it is recorded on a river, which provides its own set of challenges and constraints that are described in this paper. The data is divided into subsets, which can be downloaded individually. Video previews are available on Youtube: https://www.youtube.com/channel/UCOU9e7xxqmL_s4QX6jsGZSw The information below can also be found in the README files provided in the 527 dataset and each of its subsets. The purpose of this document is to assist researchers in using this dataset. Images ====== Raw --- The raw images are stored in the cam0 and cam1 directories in bmp format. They are bayered images that need to be debayered and undistorted before they are used. The camera parameters for these images can be found in camchain-imucam.yaml. Note that the camera intrinsics describe a 1600x1200 resolution image, so the focal length and center pixel coordinates must be scaled by 0.5 before they are used. The distortion coefficients remain the same even for the scaled images. The camera to imu tranformation matrix is also in this file. cam0/ refers to the left camera, and cam1/ refers to the right camera. Rectified --------- Stereo rectified, undistorted, row-aligned, debayered images are stored in the rectified/ directory in the same way as the raw images except that they are in png format. The params.yaml file contains the projection and rotation matrices necessary to use these images. The resolution of these parameters do not need to be scaled as is necessary for the raw images. params.yml ---------- The stereo rectification parameters. R0,R1,P0,P1, and Q correspond to the outputs of the OpenCV stereoRectify function except that 1s and 2s are replaced by 0s and 1s, respectively. R0: The rectifying rotation matrix of the left camera. R1: The rectifying rotation matrix of the right camera. P0: The projection matrix of the left camera. P1: The projection matrix of the right camera. Q: Disparity to depth mapping matrix T_cam_imu: Transformation matrix for a point in the IMU frame to the left camera frame. camchain-imucam.yaml -------------------- The camera intrinsic and extrinsic parameters and the camera to IMU transformation usable with the raw images. T_cam_imu: Transformation matrix for a point in the IMU frame to the camera frame. distortion_coeffs: lens distortion coefficients using the radial tangential model. intrinsics: focal length x, focal length y, principal point x, principal point y resolution: resolution of calibration. Scale the intrinsics for use with the raw 800x600 images. The distortion coefficients do not change when the image is scaled. T_cn_cnm1: Transformation matrix from the right camera to the left camera. Sensors ------- Here, each message in name.csv is described ###rawimus### time # GPS time in seconds message name # rawimus acceleration_z # m/s^2 IMU uses right-forward-up coordinates -acceleration_y # m/s^2 acceleration_x # m/s^2 angular_rate_z # rad/s IMU uses right-forward-up coordinates -angular_rate_y # rad/s angular_rate_x # rad/s ###IMG### time # GPS time in seconds message name # IMG left image filename right image filename ###inspvas### time # GPS time in seconds message name # inspvas latitude longitude altitude # ellipsoidal height WGS84 in meters north velocity # m/s east velocity # m/s up velocity # m/s roll # right hand rotation about y axis in degrees pitch # right hand rotation about x axis in degrees azimuth # left hand rotation about z axis in degrees clockwise from north ###inscovs### time # GPS time in seconds message name # inscovs position covariance # 9 values xx,xy,xz,yx,yy,yz,zx,zy,zz m^2 attitude covariance # 9 values xx,xy,xz,yx,yy,yz,zx,zy,zz deg^2 velocity covariance # 9 values xx,xy,xz,yx,yy,yz,zx,zy,zz (m/s)^2 ###bestutm### time # GPS time in seconds message name # bestutm utm zone # numerical zone utm character # alphabetical zone northing # m easting # m height # m above mean sea level Camera logs ----------- The files name.cam0 and name.cam1 are text files that correspond to cameras 0 and 1, respectively. The columns are defined by: unused: The first column is all 1s and can be ignored. software frame number: This number increments at the end of every iteration of the software loop. camera frame number: This number is generated by the camera and increments each time the shutter is triggered. The software and camera frame numbers do not have to start at the same value, but if the difference between the initial and final values is not the same, it suggests that frames may have been dropped. camera timestamp: This is the cameras internal timestamp of the frame capture in units of 100 milliseconds. PC timestamp: This is the PC time of arrival of the image. name.kml -------- The kml file is a mapping file that can be read by software such as Google Earth. It contains the recorded GPS trajectory. name.unicsv ----------- This is a csv file of the GPS trajectory in UTM coordinates that can be read by gpsbabel, software for manipulating GPS paths. @article{doi:10.1177/0278364917751842, author = {Martin Miller and Soon-Jo Chung and Seth Hutchinson}, title ={The Visual–Inertial Canoe Dataset}, journal = {The International Journal of Robotics Research}, volume = {37}, number = {1}, pages = {13-20}, year = {2018}, doi = {10.1177/0278364917751842}, URL = {https://doi.org/10.1177/0278364917751842}, eprint = {https://doi.org/10.1177/0278364917751842} }
The dataset contains a total of 253,070 records, with 18 features. The features are categorized into four different types: Metadata, Primary Data, Engagement Stats, and Label. Under the Metadata category contains basic information about the channel and video, such as their unique identifiers, date and time of publication, and thumbnail URLs. The Primary Data category contains information about the title and description of the video. The "Processed" columns refer to the cleaned data after denoising, deduplication and debiased for further analysis. The Engagement Stats category contains data on user engagement metrics for each video. The Label category contains predefined auto labels, human annotated labels, and AI generated pseudo labels. Auto labels are labels that are automatically derived based on a review of their titles, descriptions, and thumbnails over time. Channels with consistently misleading, exaggerated, or sensationalized content were labeled as clickbait. Those focusing on factual information delivery without emotional appeals were labeled non-clickbait. Human labels are labels that are manually derived by volunteer human annotators and AI labels are labels that are generated by a fine-tuned AI model. The following table presents a detailed overview and definitions of the features.
Feature Type | Feature Name | Data Type | Definition |
---|---|---|---|
Metadata | channel_id | string | ID of the YouTube channel |
Metadata | channel_name | string | Name of the YouTube channel |
Metadata | channel_url | string | URL of the YouTube channel |
Metadata | video_id | string | ID of the video |
Metadata | publishedAt | datetime | Date and time when the video was published |
Primary Data | title | string | Title of the video |
Primary Data (Processed) | title_debiased | string | Debiased title of the video |
Primary Data | description | string | Debiased description of the video |
Primary Data (Processed) | description_debiased | string | Description of the YouTube video without bias |
Metadata | url | string | URL of the video |
Engagement Stats | viewCount | int | Number of views the video has received |
Engagement Stats | commentCount | int | Number of comments on the video |
Engagement Stats | likeCount | int | Number of likes on the video |
Engagement Stats | dislikeCount | int | Number of dislikes on the video |
Metadata | thumbnails | string | URL of the thumbnail for the video |
Label | auto_labeled | string | Automatically labeled using manual review |
Label (Processed) | human_labeled | string | Labeled by human |
Label (Processed) | ai_labeled | string | Labeled by an AI model fine-tuned on human labeled data |
Paper
Data in Brief: https://doi.org/10.1016/j.dib.2024.110239 arXiv Link: https://arxiv.org/abs/2310.11465
Dataset
Mendeley: https://data.mendeley.com/datasets/3c6ztw5nft/
Citation MLA Al Imran, Abdullah, Md Sakib Hossain Shovon, and M. F. Mridha. "BaitBuster-Bangla: A Comprehensive Dataset for Clickbait Detection in Bangla with Multi-Feature and Multi-Modal Analysis." Data in Brief (2024): 110239.
BibText @article{IMRAN2024110239, title = {BaitBuster-Bangla: A Comprehensive Dataset for Clickbait Detection in Bangla with Multi-Feature and Multi-Modal Analysis}, journal = {Data in Brief}, pages = {110239}, year = {2024}, issn = {2352-3409}, doi = {https://doi.org/10.1016/j.dib.2024.110239}, url = {https://www.sciencedirect.com/science/article/pii/S2352340924002105}, author = {Abdullah Al Imran and Md Sakib Hossain Shovon and M.F. Mridha}, keywords = {Bangla clickbait dataset, YouTube clickbait, Multi-modal clickbait dataset, Multi-feature clickbait dataset, Bangla natural language processing, User behavior modeling, Social Media Analysis}, abstract = {This study presents a large multi-modal Bangla YouTube clickbait dataset consisting of 253,070 data points collected through an automated process using the YouTube API and Python web automation frameworks. The dataset contains 18 diverse features categorized into metadata, primary content, engagement statistics, and labels for individual videos from 58 Bangla YouTube channels. A rigorous preprocessing step has been applied to denoise, deduplicate, and remove bias from the features, ensuring unbiased and reliable analysis. As the largest and most robust clickbait corpus in Bangla to date, this dataset provides significant value for natural language processing and data science researchers seeking to advance modeling of clickbait phenomena in low-resource languages. Its multi-modal nature allows for comprehensive analyses of clickbait across content, user interactions, and linguistic dimensions to develop more sophisticated detection methods with cross-linguistic applications.} }
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data on research publications authored by Spanish institutions between 2016 and 2020 with their associated social media and altmetric mentions, and on researchers affiliated to Spanish institutions whose work is highly mentioned in social media and non-academic outlets.
Variables of the publications dataset:
id - Unique publication identifier
title - Full title of the publication
year - Year of publication
type - Document type
journal - Name of the journal
esi - ESI category of the publication
influratio - AAS value on March 3, 2021
news - Number of mentions in news media
blogs - Number of mentions in blogs
policy - Number of mentions in policy reports
patent - Number of mentions in patent
twitter - Number of mentions in Twitter
post_peer - Number of mentions in PubPeer and Publons
weibo - Number of mentions in Weibo
facebook - Number of mentions in Facebook
wikipedia - Number of mentions in Wikipedia
google - Number of mentions in Google+
linkedin - Number of mentions in LinkedIn
reddit - Number of mentions in Reddit
pinterest - Number of mentions in Pinterest
f1000 - Number of mentions in F1000
stack_overflow - Number of mentions in Stack Overflow
youtube - Number of mentions in YouTube
syllabus - Number of mentions in Open Syllabus Project
Variables of the top authors dataset:
name - Full name of the researcher
orcid - ORCID record
organization - Name of the institution of affiliation
publications - List of publication identifiers (id) connecting with the publications dataset
In 2021, there were 1.21 billion monthly active users of Meta's Instagram, making up over 28 percent of the world's internet users. By 2025, it has been forecast that there will be 1.44 billion monthly active users of the social media platform, which would account for 31.2 percent of global internet users.
How popular is Instagram?
Instagram, as of January 2022, was the fourth most popular social media platform in the world in terms of user numbers. YouTube and WhatsApp ranked in second and third place, respectively, whilst Facebook remained the most popular, with almost three billion monthly active users worldwide.
India had the largest number of Instagram users as of January 2022, with a total of over 230 million users in the country. The second-largest Instagram audience could be found in the United States, with almost 160 million people subscribing to the photo and video sharing app.
Gen Z and Instagram
As of September 2021, Gen Z users in the United States spent an average of five hours per week on Instagram. Although Instagram ranked third in terms of hours per week spent on the platform, Gen Z users spent considerably more time on TikTok, amounting to a weekly average of over 10 hours being spent on the mobile-first video app.
Most followed accounts on Instagram
As of May 2022, Instagram’s own account had 504.37 million followers. In terms of celebrities, Portuguese footballer Cristiano Ronaldo (@chistiano) had over 440.41 million followers on the social network. Moreover, the average media value of an Instagram post by Ronaldo was over 985,000 U.S. dollars.
The most liked post on Instagram as of May 2022 was Photo of an Egg, which was posted in 2019 by the account @world_record_egg. Photo of an Egg has not only exceeded 55 million likes on the platform, but it also has nearly 3.5 million comments, and the account itself has over 4.5 million Instagram followers. After mysterious posts published by the account, World Record Egg revealed itself as part of a mental health campaign aimed at the difficulties and demands of using social media.
This statistic shows a ranking of the estimated number of Youtube users in 2020 in Africa, differentiated by country. The user numbers have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in more than 150 countries and regions worldwide. All input data are sourced from international institutions, national statistical offices, and trade associations. All data has been are processed to generate comparable datasets (see supplementary notes under details for more information).
A global survey conducted in the fourth quarter of 2023 found that the main reason for using social media was to keep in touch with friends and family, with over 49 percent of social media users saying this was their main reason for using online networks. Overall, 38 percent of social media users said that filling spare time was their main reason for using social media platforms, whilst 34.3 percent of respondents said they used it to read news stories. One in five users were on social platforms for the reason of following celebrities and influencers. The most popular social network Facebook dominates the social media landscape. The world's most popular social media platform turned 20 in February 2024, and it continues to lead the way in terms of user numbers. As of January 2024, the social network had over three billion global users. YouTube, WhatsApp, and Instagram follow, but none of these well-known brands can surpass Facebook’s audience size. Moreover, as of the final quarter of 2023, there were almost four billion Meta product users. Ever-evolving social media usage The utilization of social media remains largely gratuitous; however, companies have been encouraging users to become paid subscribers to reduce dependence on advertising profits. Meta Verified entices users by offering a blue verification badge and proactive account protection, among other things. X (formerly Twitter), Snapchat, and Reddit also offer users the chance to upgrade their social media accounts for a monthly free.
As of February 2025, the United States was the region with the largest TikTok audience by far, with almost 135.79 million users engaging with the popular social video platform. Indonesia followed, with around 107.7 million TikTok users. Brazil came in third, with almost 91.75 million users on TikTok watching short-videos. From Reels to Shorts: social short video takes the internet Between 2021 and 2022 some of the most popular social media platforms have been adding short-video features on the heels of TikTok’s popularity. YouTube Shorts, which rolled out to the global market in June 2021, reached two billion monthly active logged-in users in 2023. In comparison, Instagram’s short-video format Reels, which launched in August 2020, presented a higher view rate than regular videos on the platform between June 2021 and June 2022, as well as a higher likes rate than other content types on Instagram. TikTok business model TikTok is owned by the Beijing-based ByteDance, along with the short-video app Douyin (TikTok’s version for the Chinese market), video platform Xigua, and popular news app Toutiao. While the products intended for domestic market consumption operate in the Chinese digital ecosystem and have a plurality of established monetization methods such as a live-shopping events hosted by famous influencers, TikTok’s main revenue stream comes from online advertising. In 2022, TikTok was estimated to have generated around four billion U.S. dollars worldwide via online advertising.
During a 2024 survey among marketers worldwide, approximately 83 percent selected increased exposure as a benefit of social media marketing. Increased traffic followed, mentioned by 73 percent of the respondents, while 65 percent cited generated leads. The multibillion-dollar social media ad industry Between 2019 – the last year before the pandemic – and 2024, global social media advertising spending skyrocketed by 140 percent, surpassing an estimated 230 billion U.S. dollars in the latter year. That figure was forecast to increase by nearly 50 percent by the end of the decade, exceeding 345 billion dollars in 2029. As of 2024, the social media networks with the most monthly active users were Facebook, with over three billion, and YouTube, with more than 2.5 billion. Pros and cons of GenAI for social media marketing According to another 2024 survey, generative artificial intelligence's (GenAI) leading benefits for social media marketing according to professionals worldwide included increased efficiency and easier idea generation. The third place was a tie between increased content production and enhanced creativity. All those advantages were cited by between 33 and 38 percent of the interviewees. As for GenAI's top challenges for global social media marketing, maintaining authenticity and the value of human creativity ranked first, mentioned by 43 and 40 percent of the respondents, respectively. Another 35 percent deemed ensuring the content resonates as an obstacle.
How many paid subscribers does Spotify have? As of the fourth quarter of 2024, Spotify had 263 million premium subscribers worldwide, up from 236 million in the corresponding quarter of 2023. Spotify’s subscriber base has increased dramatically in the last few years and has more than doubled since early 2019. Spotify and competitors Spotify is a music streaming service originally founded in 2006 in Sweden. The platform can be used from various devices and allows users to browse through a catalogue of music licensed through multiple record labels, as well as creating and sharing playlists with other users. Additionally, listeners are able to enjoy music for free with advertisements or are also given the option to purchase a subscription to allow for unlimited ad-free music streaming. Spotify’s largest competitors are Pandora, a company that offers a similar service and remains popular in the United States, and Apple Music, which was launched in 2015. While Pandora was once among the highest-grossing music apps in the Apple App Store, recent rankings show that global services like QQ Music, NetEase Cloud Music, and YouTube Music now generate higher monthly revenues.Users are also able to register Spotify accounts using Facebook directly through the website using an app. This enables them to connect with other Facebook friends and explore their music tastes and playlists. Spotify is a popular source for keeping up-to-date with music, and the ability to enjoy Spotify anywhere at any time allows consumers to shape their music consumption around their lifestyles and preferences.
The number of Reddit users in the United States was forecast to continuously increase between 2024 and 2028 by in total 10.3 million users (+5.21 percent). After the ninth consecutive increasing year, the Reddit user base is estimated to reach 208.12 million users and therefore a new peak in 2028. Notably, the number of Reddit users of was continuously increasing over the past years.User figures, shown here with regards to the platform reddit, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once. Reddit users encompass both users that are logged in and those that are not.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Reddit users in countries like Mexico and Canada.
The number of Twitter users in the United States was forecast to continuously increase between 2024 and 2028 by in total 4.3 million users (+5.32 percent). After the ninth consecutive increasing year, the Twitter user base is estimated to reach 85.08 million users and therefore a new peak in 2028. Notably, the number of Twitter users of was continuously increasing over the past years.User figures, shown here regarding the platform twitter, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Twitter users in countries like Canada and Mexico.
The number of Pinterest users in the United Kingdom was forecast to continuously increase between 2024 and 2028 by in total 0.3 million users (+3.14 percent). After the ninth consecutive increasing year, the Pinterest user base is estimated to reach 9.88 million users and therefore a new peak in 2028. Notably, the number of Pinterest users of was continuously increasing over the past years.User figures, shown here regarding the platform pinterest, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
As of June 2022, more than 500 hours of video were uploaded to YouTube every minute. This equates to approximately 30,000 hours of newly uploaded content per hour. The amount of content on YouTube has increased dramatically as consumer’s appetites for online video has grown. In fact, the number of video content hours uploaded every 60 seconds grew by around 40 percent between 2014 and 2020.
YouTube global users
Online video is one of the most popular digital activities worldwide, with 27 percent of internet users worldwide watching more than 17 hours of online videos on a weekly basis in 2023. It was estimated that in 2023 YouTube would reach approximately 900 million users worldwide. In 2022, the video platform was one of the leading media and entertainment brands worldwide, with a value of more than 86 billion U.S. dollars.
YouTube video content consumption
The most viewed YouTube channels of all time have racked up billions of viewers, millions of subscribers and cover a wide variety of topics ranging from music to cosmetics. The YouTube channel owner with the most video views is Indian music label T-Series, which counted 217.25 billion lifetime views. Other popular YouTubers are gaming personalities such as PewDiePie, DanTDM and Markiplier.