100+ datasets found
  1. Causes of death around all over the world .

    • kaggle.com
    zip
    Updated Nov 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tanzeela Shahzadi (2025). Causes of death around all over the world . [Dataset]. https://www.kaggle.com/datasets/tan5577/causes-of-death-around-all-over-the-world
    Explore at:
    zip(331562 bytes)Available download formats
    Dataset updated
    Nov 23, 2025
    Authors
    Tanzeela Shahzadi
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    About Dataset

    Context:

    A straightforward way to assess the health status of a population is to focus on mortality – or concepts like child mortality or life expectancy, which are based on mortality estimates. A focus on mortality, however, does not take into account that the burden of diseases is not only that they kill people, but that they cause suffering to people who live with them. Assessing health outcomes by both mortality and morbidity (the prevalent diseases) provides a more encompassing view on health outcomes. This is the topic of this entry. The sum of mortality and morbidity is referred to as the ‘burden of disease’ and can be measured by a metric called ‘Disability Adjusted Life Years‘ (DALYs).

    DALYs are measuring lost health and are a standardized metric that allow for direct comparisons of disease burdens of different diseases across countries, between different populations, and over time. Conceptually, one DALY is the equivalent of losing one year in good health because of either premature death or disease or disability. One DALY represents one lost year of healthy life. The first ‘Global Burden of Disease’ (GBD) was GBD 1990 and the DALY metric was prominently featured in the World Bank’s 1993 World Development Report. Today it is published by both the researchers at the Institute of Health Metrics and Evaluation (IHME) and the ‘Disease Burden Unit’ at the World Health Organization (WHO), which was created in 1998. The IHME continues the work that was started in the early 1990s and publishes the Global Burden of Disease study.

    Content:

    In this Dataset, we have Historical Data of different cause of deaths for all ages around the World. The key features of this Dataset are: Meningitis, Alzheimer's Disease and Other Dementias, Parkinson's Disease, Nutritional Deficiencies, Malaria, Drowning, Interpersonal Violence, Maternal Disorders, HIV/AIDS, Drug Use Disorders, Tuberculosis, Cardiovascular Diseases, Lower Respiratory Infections, Neonatal Disorders, Alcohol Use Disorders, Self-harm, Exposure to Forces of Nature, Diarrheal Diseases, Environmental Heat and Cold Exposure, Neoplasms, Conflict and Terrorism, Diabetes Mellitus, Chronic Kidney Disease, Poisonings, Protein-Energy Malnutrition, Road Injuries, Chronic Respiratory Diseases, Cirrhosis and Other Chronic Liver Diseases, Digestive Diseases, Fire, Heat, and Hot Substances, Acute Hepatitis.

    Dataset Glossary (Column-wise):

    1. Country/Territory - Name of the Country/Territory
    2. Code - Country/Territory Code
    3. Year - Year of the Incident
    4. Meningitis - No. of People died from Meningitis
    5. Alzheimer's Disease and Other Dementias - No. of People died from Alzheimer's Disease and Other Dementias
    6. Parkinson's Disease - No. of People died from Parkinson's Disease
    7. Nutritional Deficiencies - No. of People died from Nutritional Deficiencies
    8. Malaria - No. of People died from Malaria
    9. Drowning - No. of People died from Drowning
    10. Interpersonal Violence - No. of People died from Interpersonal Violence
    11. Maternal Disorders - No. of People died from Maternal Disorders
    12. Drug Use Disorders - No. of People died from Drug Use Disorders
    13. Tuberculosis - No. of People died from Tuberculosis
    14. Cardiovascular Diseases - No. of People died from Cardiovascular Diseases
    15. Lower Respiratory Infections - No. of People died from Lower Respiratory Infections
    16. Neonatal Disorders - No. of People died from Neonatal Disorders
    17. Alcohol Use Disorders - No. of People died from Alcohol Use Disorders
    18. Self-harm - No. of People died from Self-harm
    19. Exposure to Forces of Nature - No. of People died from Exposure to Forces of Nature
    20. Diarrheal Diseases - No. of People died from Diarrheal Diseases
    21. Environmental Heat and Cold Exposure - No. of People died from Environmental Heat and Cold Exposure
    22. Neoplasms - No. of People died from Neoplasms
    23. Conflict and Terrorism - No. of People died from Conflict and Terrorism
    24. Diabetes Mellitus - No. of People died from Diabetes Mellitus
    25. Chronic Kidney Disease - No. of People died from Chronic Kidney Disease
    26. Poisonings - No. of People died from Poisoning
    27. Protein-Energy Malnutrition - No. of People died from Protein-Energy Malnutrition
    28. Chronic Respiratory Diseases - No. of People died from Chronic Respiratory Diseases
    29. Cirrhosis and Other Chronic Liver Diseases - No. of People died from Cirrhosis and Other Chronic Liver Diseases
    30. Digestive Diseases - No. of People died from Digestive Diseases
    31. Fire, Heat, and Hot Substances - No. of People died from Fire or Heat or any Hot Substances
    32. Acute Hepatitis - No. of People died from Acute Hepatitis Structure of the Dataset

    Acknowledgement:

    This Dataset is created from Our World in Data. This Dataset falls under open access under the Creative Commons BY license. You can check the FAQ for more informa...

  2. Leading causes of death, total population, by age group

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +1more
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Leading causes of death, total population, by age group [Dataset]. http://doi.org/10.25318/1310039401-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.

  3. Global Suicide Indicators

    • kaggle.com
    zip
    Updated Sep 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Larxel (2020). Global Suicide Indicators [Dataset]. https://www.kaggle.com/datasets/andrewmvd/suicide-dataset
    Explore at:
    zip(24525 bytes)Available download formats
    Dataset updated
    Sep 8, 2020
    Authors
    Larxel
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    Abstract

    Explore global statistics on a subject that claims 800,000 lives each year.

    About this dataset

    Context

    Suicide is a major cause of death in the world, claiming around 800,000 lives each year. It is ranked as the 14th leading cause of death worldwide as of 2017 and on average men are twice as likely to fall victim to it. It also one of the leading causes of death on young people and older people are at a higher risk as well. Source

    Notes

    This dataset contains data from 200+ countries on the topic of suicide and mental health infrastructure. It was created by extracting the latest data from WHO and combining it into a single dataset. Variables available range from Country, Sex, Mental health infrastructure and personnel and finally Suicide Rate (amount of suicides per 100k people). Note that the suicide rate is age-standardized, as to not bias comparisons between countries with different age compositions.

    How to use

    • Explore Suicide rates and their associated trends, as well as the effects of infrastructure and personnel on the suicide rates.
    • Forecast suicide rates

    Acknowledgements

    If you use this dataset in your research, please credit the authors.

    Citation

    @misc{Global Health Observatory data repository, title={Mental Health}, url={https://apps.who.int/gho/data/node.main.MENTALHEALTH?lang=en}, journal={WHO} }

    License

    CC BY NC SA IGO 3.0

    Splash banner

    Photo by Fernando on Unsplash

    Splash icon

    Icon by photo3idea_studio available on Flaticon.

    More Datasets

  4. T

    World Coronavirus COVID-19 Deaths

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 9, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). World Coronavirus COVID-19 Deaths [Dataset]. https://tradingeconomics.com/world/coronavirus-deaths
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    Mar 9, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 4, 2020 - May 17, 2023
    Area covered
    World
    Description

    The World Health Organization reported 6932591 Coronavirus Deaths since the epidemic began. In addition, countries reported 766440796 Coronavirus Cases. This dataset provides - World Coronavirus Deaths- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  5. T

    CORONAVIRUS DEATHS by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). CORONAVIRUS DEATHS by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/coronavirus-deaths
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    Mar 4, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  6. Global Landslide Mortality Risks and Distribution - Dataset - NASA Open Data...

    • data.nasa.gov
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Global Landslide Mortality Risks and Distribution - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/global-landslide-mortality-risks-and-distribution
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    The Global Landslide Mortality Risks and Distribution is a 2.5 minute grid of global landslide mortality risks. Gridded Population of the World, Version 3 (GPWv3) data provide a baseline estimation of population per grid cell from which to estimate potential mortality risks due to landslide hazard. Mortality loss estimates per hazard event are caculated using regional, hazard-specific mortality records of the Emergency Events Database (EM-DAT) that span the 20 years between 1981 and 2000. Data regarding the frequency and distribution of landslide hazard are obtained from the Global Landslide Hazard Distribution data set. In order to more accurately reflect the confidence associated with the data and procedures, the potential mortality estimate range is classified into deciles, 10 classes of increasing risk with an approximately equal number of grid cells per class, producing a relative estimate of landslide-based mortality risks. This data set is the result of collaboration among the Columbia University Center for Hazards and Risk Research (CHRR), International Bank for Reconstruction and Development/The World Bank, and Columbia University Center for International Earth Science Information Network (CIESIN).

  7. d

    Mass Killings in America, 2006 - present

    • data.world
    csv, zip
    Updated Dec 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Mass Killings in America, 2006 - present [Dataset]. https://data.world/associatedpress/mass-killings-public
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Dec 1, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 1, 2006 - Nov 29, 2025
    Area covered
    Description

    THIS DATASET WAS LAST UPDATED AT 7:11 AM EASTERN ON DEC. 1

    OVERVIEW

    2019 had the most mass killings since at least the 1970s, according to the Associated Press/USA TODAY/Northeastern University Mass Killings Database.

    In all, there were 45 mass killings, defined as when four or more people are killed excluding the perpetrator. Of those, 33 were mass shootings . This summer was especially violent, with three high-profile public mass shootings occurring in the span of just four weeks, leaving 38 killed and 66 injured.

    A total of 229 people died in mass killings in 2019.

    The AP's analysis found that more than 50% of the incidents were family annihilations, which is similar to prior years. Although they are far less common, the 9 public mass shootings during the year were the most deadly type of mass murder, resulting in 73 people's deaths, not including the assailants.

    One-third of the offenders died at the scene of the killing or soon after, half from suicides.

    About this Dataset

    The Associated Press/USA TODAY/Northeastern University Mass Killings database tracks all U.S. homicides since 2006 involving four or more people killed (not including the offender) over a short period of time (24 hours) regardless of weapon, location, victim-offender relationship or motive. The database includes information on these and other characteristics concerning the incidents, offenders, and victims.

    The AP/USA TODAY/Northeastern database represents the most complete tracking of mass murders by the above definition currently available. Other efforts, such as the Gun Violence Archive or Everytown for Gun Safety may include events that do not meet our criteria, but a review of these sites and others indicates that this database contains every event that matches the definition, including some not tracked by other organizations.

    This data will be updated periodically and can be used as an ongoing resource to help cover these events.

    Using this Dataset

    To get basic counts of incidents of mass killings and mass shootings by year nationwide, use these queries:

    Mass killings by year

    Mass shootings by year

    To get these counts just for your state:

    Filter killings by state

    Definition of "mass murder"

    Mass murder is defined as the intentional killing of four or more victims by any means within a 24-hour period, excluding the deaths of unborn children and the offender(s). The standard of four or more dead was initially set by the FBI.

    This definition does not exclude cases based on method (e.g., shootings only), type or motivation (e.g., public only), victim-offender relationship (e.g., strangers only), or number of locations (e.g., one). The time frame of 24 hours was chosen to eliminate conflation with spree killers, who kill multiple victims in quick succession in different locations or incidents, and to satisfy the traditional requirement of occurring in a “single incident.”

    Offenders who commit mass murder during a spree (before or after committing additional homicides) are included in the database, and all victims within seven days of the mass murder are included in the victim count. Negligent homicides related to driving under the influence or accidental fires are excluded due to the lack of offender intent. Only incidents occurring within the 50 states and Washington D.C. are considered.

    Methodology

    Project researchers first identified potential incidents using the Federal Bureau of Investigation’s Supplementary Homicide Reports (SHR). Homicide incidents in the SHR were flagged as potential mass murder cases if four or more victims were reported on the same record, and the type of death was murder or non-negligent manslaughter.

    Cases were subsequently verified utilizing media accounts, court documents, academic journal articles, books, and local law enforcement records obtained through Freedom of Information Act (FOIA) requests. Each data point was corroborated by multiple sources, which were compiled into a single document to assess the quality of information.

    In case(s) of contradiction among sources, official law enforcement or court records were used, when available, followed by the most recent media or academic source.

    Case information was subsequently compared with every other known mass murder database to ensure reliability and validity. Incidents listed in the SHR that could not be independently verified were excluded from the database.

    Project researchers also conducted extensive searches for incidents not reported in the SHR during the time period, utilizing internet search engines, Lexis-Nexis, and Newspapers.com. Search terms include: [number] dead, [number] killed, [number] slain, [number] murdered, [number] homicide, mass murder, mass shooting, massacre, rampage, family killing, familicide, and arson murder. Offender, victim, and location names were also directly searched when available.

    This project started at USA TODAY in 2012.

    Contacts

    Contact AP Data Editor Justin Myers with questions, suggestions or comments about this dataset at jmyers@ap.org. The Northeastern University researcher working with AP and USA TODAY is Professor James Alan Fox, who can be reached at j.fox@northeastern.edu or 617-416-4400.

  8. d

    Global Flood Mortality Risks and Distribution

    • catalog.data.gov
    • dataverse.harvard.edu
    • +5more
    Updated Aug 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SEDAC (2025). Global Flood Mortality Risks and Distribution [Dataset]. https://catalog.data.gov/dataset/global-flood-mortality-risks-and-distribution
    Explore at:
    Dataset updated
    Aug 23, 2025
    Dataset provided by
    SEDAC
    Description

    The Global Flood Mortality Risks and Distribution is a 2.5 minute grid of global flood mortality risks. Gridded Population of the World, Version 3 (GPWv3) data provided a baseline population per grid cell from which to estimate potential mortality risks due to flood hazard. Mortality loss estimates per flood event are calculated using regional, hazard-specific mortality records of the Emergency Events Database (EM-DAT) that span the 20 years between 1981 and 2000. Data regarding the frequency and distribution of flood hazard are obtained from the Global Flood Hazard Frequency and Distribution data set. In order to more accurately reflect the confidence associated with the data and the procedures, the potential mortality estimate range is classified into deciles, 10 classes of increasing hazard with an approximately equal number of grid cells per class, producing a relative estimate of flood-based mortality risks. This data set is the result of collaboration among the Columbia University Center for Hazards and Risk Research (CHRR), International Bank for Reconstruction and Development/The World Bank, and Columbia University Center for International Earth Science Information Network (CIESIN).

  9. Natural Disasters Deaths

    • kaggle.com
    Updated Nov 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). Natural Disasters Deaths [Dataset]. https://www.kaggle.com/datasets/thedevastator/the-fatal-cost-of-natural-disasters
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 19, 2022
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    Description

    Natural Disasters Deaths

    People killed in natural disasters by country by year

    About this dataset

    How much do natural disasters cost us? In lives, in dollars, in infrastructure? This dataset attempts to answer those questions, tracking the death toll and damage cost of major natural disasters since 1985. Disasters included are storms ( hurricanes, typhoons, and cyclones ), floods, earthquakes, droughts, wildfires, and extreme temperatures

    How to use the dataset

    This dataset contains information on natural disasters that have occurred around the world from 1900 to 2017. The data includes the date of the disaster, the location, the type of disaster, the number of people killed, and the estimated cost in US dollars

    Research Ideas

    • An all-in-one disaster map displaying all recorded natural disasters dating back to 1900.
    • Natural disaster hotspots - where do natural disasters most commonly occur and kill the most people?
    • A live map tracking current natural disasters around the world

    Acknowledgements

    License

    See the dataset description for more information.

  10. Cause of Deaths around the World (Historical Data)

    • kaggle.com
    zip
    Updated Feb 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sourav Banerjee (2024). Cause of Deaths around the World (Historical Data) [Dataset]. https://www.kaggle.com/datasets/iamsouravbanerjee/cause-of-deaths-around-the-world/code
    Explore at:
    zip(331562 bytes)Available download formats
    Dataset updated
    Feb 12, 2024
    Authors
    Sourav Banerjee
    Area covered
    World
    Description

    Context

    A straightforward way to assess the health status of a population is to focus on mortality – or concepts like child mortality or life expectancy, which are based on mortality estimates. A focus on mortality, however, does not take into account that the burden of diseases is not only that they kill people, but that they cause suffering to people who live with them. Assessing health outcomes by both mortality and morbidity (the prevalent diseases) provides a more encompassing view on health outcomes. This is the topic of this entry. The sum of mortality and morbidity is referred to as the ‘burden of disease’ and can be measured by a metric called ‘Disability Adjusted Life Years‘ (DALYs). DALYs are measuring lost health and are a standardized metric that allow for direct comparisons of disease burdens of different diseases across countries, between different populations, and over time. Conceptually, one DALY is the equivalent of losing one year in good health because of either premature death or disease or disability. One DALY represents one lost year of healthy life. The first ‘Global Burden of Disease’ (GBD) was GBD 1990 and the DALY metric was prominently featured in the World Bank’s 1993 World Development Report. Today it is published by both the researchers at the Institute of Health Metrics and Evaluation (IHME) and the ‘Disease Burden Unit’ at the World Health Organization (WHO), which was created in 1998. The IHME continues the work that was started in the early 1990s and publishes the Global Burden of Disease study.

    Content

    In this Dataset, we have Historical Data of different cause of deaths for all ages around the World. The key features of this Dataset are: Meningitis, Alzheimer's Disease and Other Dementias, Parkinson's Disease, Nutritional Deficiencies, Malaria, Drowning, Interpersonal Violence, Maternal Disorders, HIV/AIDS, Drug Use Disorders, Tuberculosis, Cardiovascular Diseases, Lower Respiratory Infections, Neonatal Disorders, Alcohol Use Disorders, Self-harm, Exposure to Forces of Nature, Diarrheal Diseases, Environmental Heat and Cold Exposure, Neoplasms, Conflict and Terrorism, Diabetes Mellitus, Chronic Kidney Disease, Poisonings, Protein-Energy Malnutrition, Road Injuries, Chronic Respiratory Diseases, Cirrhosis and Other Chronic Liver Diseases, Digestive Diseases, Fire, Heat, and Hot Substances, Acute Hepatitis.

    Dataset Glossary (Column-wise)

    • 01. Country/Territory - Name of the Country/Territory
    • 02. Code - Country/Territory Code
    • 03. Year - Year of the Incident
    • 04. Meningitis - No. of People died from Meningitis
    • 05. Alzheimer's Disease and Other Dementias - No. of People died from Alzheimer's Disease and Other Dementias
    • 06. Parkinson's Disease - No. of People died from Parkinson's Disease
    • 07. Nutritional Deficiencies - No. of People died from Nutritional Deficiencies
    • 08. Malaria - No. of People died from Malaria
    • 09. Drowning - No. of People died from Drowning
    • 10. Interpersonal Violence - No. of People died from Interpersonal Violence
    • 11. Maternal Disorders - No. of People died from Maternal Disorders
    • 12. Drug Use Disorders - No. of People died from Drug Use Disorders
    • 13. Tuberculosis - No. of People died from Tuberculosis
    • 14. Cardiovascular Diseases - No. of People died from Cardiovascular Diseases
    • 15. Lower Respiratory Infections - No. of People died from Lower Respiratory Infections
    • 16. Neonatal Disorders - No. of People died from Neonatal Disorders
    • 17. Alcohol Use Disorders - No. of People died from Alcohol Use Disorders
    • 18. Self-harm - No. of People died from Self-harm
    • 19. Exposure to Forces of Nature - No. of People died from Exposure to Forces of Nature
    • 20. Diarrheal Diseases - No. of People died from Diarrheal Diseases
    • 21. Environmental Heat and Cold Exposure - No. of People died from Environmental Heat and Cold Exposure
    • 22. Neoplasms - No. of People died from Neoplasms
    • 23. Conflict and Terrorism - No. of People died from Conflict and Terrorism
    • 24. Diabetes Mellitus - No. of People died from Diabetes Mellitus
    • 25. Chronic Kidney Disease - No. of People died from Chronic Kidney Disease
    • 26. Poisonings - No. of People died from Poisoning
    • 27. Protein-Energy Malnutrition - No. of People died from Protein-Energy Malnutrition
    • 28. Chronic Respiratory Diseases - No. of People died from Chronic Respiratory Diseases
    • 29. Cirrhosis and Other Chronic Liver Diseases - No. of People died from Cirrhosis and Other Chronic Liver Diseases
    • 30. Digestive Diseases - No. of People died from Digestive Diseases
    • 31. Fire, Heat, and Hot Substances - No. of People died from Fire or Heat or any Hot Substances
    • ...
  11. Global Flood Mortality Risks and Distribution - Dataset - NASA Open Data...

    • data.nasa.gov
    Updated Apr 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Global Flood Mortality Risks and Distribution - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/global-flood-mortality-risks-and-distribution
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    The Global Flood Mortality Risks and Distribution is a 2.5 minute grid of global flood mortality risks. Gridded Population of the World, Version 3 (GPWv3) data provided a baseline population per grid cell from which to estimate potential mortality risks due to flood hazard. Mortality loss estimates per flood event are calculated using regional, hazard-specific mortality records of the Emergency Events Database (EM-DAT) that span the 20 years between 1981 and 2000. Data regarding the frequency and distribution of flood hazard are obtained from the Global Flood Hazard Frequency and Distribution data set. In order to more accurately reflect the confidence associated with the data and the procedures, the potential mortality estimate range is classified into deciles, 10 classes of increasing hazard with an approximately equal number of grid cells per class, producing a relative estimate of flood-based mortality risks. This data set is the result of collaboration among the Columbia University Center for Hazards and Risk Research (CHRR), International Bank for Reconstruction and Development/The World Bank, and Columbia University Center for International Earth Science Information Network (CIESIN).

  12. d

    The Extended Global Lake area, Climate, and Population Dataset (GLCP)

    • catalog.data.gov
    • data.usgs.gov
    • +3more
    Updated Nov 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). The Extended Global Lake area, Climate, and Population Dataset (GLCP) [Dataset]. https://catalog.data.gov/dataset/the-extended-global-lake-area-climate-and-population-dataset-glcp
    Explore at:
    Dataset updated
    Nov 26, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    A changing climate and increasing human population necessitate understanding global freshwater availability and temporal variability. To examine lake freshwater availability from local-to-global and monthly-to-decadal scales, we created the Global Lake area, Climate, and Population (GLCP) dataset, which contains annual lake surface area for 1.42 million lakes with paired annual basin-level climate and population data. Building off an existing data product infrastructure, the next generation of the GLCP includes monthly lake ice area, snow basin area, and more climate variables including specific humidity, longwave and shortwave radiation, as well as cloud cover. The new generation of the GLCP continues previous FAIR data efforts by expanding its scripting repository and maintaining unique relational keys for merging with external data products. Compared to the original version, the new GLCP contains an even richer suite of variables capable of addressing disparate analyses of lake water trends at wide spatial and temporal scales.

  13. O

    COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE

    • data.ct.gov
    • s.cnmilf.com
    • +2more
    csv, xlsx, xml
    Updated Jun 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health (2022). COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE [Dataset]. https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-and-Deaths-by-Race-Ethnicity-ARCHIV/7rne-efic
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Jun 24, 2022
    Dataset authored and provided by
    Department of Public Health
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.

    The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.

    The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .

    The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .

    The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.

    COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update.

    The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates.

    The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.

    Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf

    Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic.

    Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics

    Data are subject to future revision as reporting changes.

    Starting in July 2020, this dataset will be updated every weekday.

    Additional notes: A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020.

    A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differ from the timestamp in DPH's daily PDF reports.

    Starting 5/10/2021, the date field will represent the date this data was updated on data.ct.gov. Previously the date the data was pulled by DPH was listed, which typically coincided with the date before the data was published on data.ct.gov. This change was made to standardize the COVID-19 data sets on data.ct.gov.

  14. Deaths Involving COVID-19 by Vaccination Status

    • open.canada.ca
    • gimi9.com
    • +1more
    csv, docx, html, xlsx
    Updated Nov 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Ontario (2025). Deaths Involving COVID-19 by Vaccination Status [Dataset]. https://open.canada.ca/data/dataset/1375bb00-6454-4d3e-a723-4ae9e849d655
    Explore at:
    docx, csv, html, xlsxAvailable download formats
    Dataset updated
    Nov 12, 2025
    Dataset provided by
    Government of Ontariohttps://www.ontario.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Mar 1, 2021 - Nov 12, 2024
    Description

    This dataset reports the daily reported number of the 7-day moving average rates of Deaths involving COVID-19 by vaccination status and by age group. Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak. Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool Data includes: * Date on which the death occurred * Age group * 7-day moving average of the last seven days of the death rate per 100,000 for those not fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those vaccinated with at least one booster ##Additional notes As of June 16, all COVID-19 datasets will be updated weekly on Thursdays by 2pm. As of January 12, 2024, data from the date of January 1, 2024 onwards reflect updated population estimates. This update specifically impacts data for the 'not fully vaccinated' category. On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023. CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags. The data does not include vaccination data for people who did not provide consent for vaccination records to be entered into the provincial COVaxON system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information in COVaxON. “Not fully vaccinated” category includes people with no vaccine and one dose of double-dose vaccine. “People with one dose of double-dose vaccine” category has a small and constantly changing number. The combination will stabilize the results. Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts. Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different. Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the Deaths involving COVID-19 reported. Rates for the most recent days are subject to reporting lags All data reflects totals from 8 p.m. the previous day. This dataset is subject to change.

  15. _Global Health Outcomes Data_

    • kaggle.com
    zip
    Updated Jan 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). _Global Health Outcomes Data_ [Dataset]. https://www.kaggle.com/datasets/thedevastator/global-health-outcomes-data
    Explore at:
    zip(7031 bytes)Available download formats
    Dataset updated
    Jan 23, 2023
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Global Health Outcomes Data

    Impact on Mortality Rates and Malnutrition in Countries Around the World

    By Humanitarian Data Exchange [source]

    About this dataset

    This dataset provides comprehensive insights into critical health conditions around the world, such as mortality rate, malnutrition levels, and frequency of preventable diseases. It documents the prevalence of life-threatening diseases like malaria and tuberculosis, and are tracked alongside key health indicators like adult mortality rates, HIV prevalence, physicians per 10,000 people ratio and public health expenditures. Such metrics provide us with an accurate picture of how developed healthcare systems are in certain countries which ultimately leads to improvements in public policy formation and awareness amongst decision-makers. With this data it is possible to observe disparities between different regions of the world which can help inform global strategies for providing equitable care globally. This dataset is a valuable source for researchers interested in understanding global health trends over time or seeking to evaluate regional differences within countries

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset provides comprehensive global health outcome data for countries around the world. It includes vital information such as infant mortality rates, child malnutrition rates, adult mortality rates, deaths due to malaria and tuberculosis, HIV prevalence rates, life expectancy at age 60 and public health expenditure. This dataset can be used to gain valuable insight into the challenges faced by different countries in providing a good quality of life for their citizens.

    To use this dataset, first identify what questions you need answered and what outcomes you are looking to measure. You may want to look at specific disease-based indicators (e.g. malaria or tuberculosis), health-related indicators (e.g., nutrition), or overall population markers (e.g., life expectancy).

    Then decide which data points from the provided fields will help answer your questions and provide the results needed - e.g,. infant mortality rate or HIV prevalence rate - extracting these values from relevant columns like “Infants lacking immunization (% of one-year-olds) Measles 2013” or “HIV prevalence, adult (% ages 15Ð49) 2013” respectively

    Next extract other columnwise relevant information - e.g., country name — that could also aid your analysis using tools like Excel or Python's Pandas library; sorting through them based on any metric desired — e..g,, physicians per 10k people — while being mindful that some data points are missing in some cases (denoted by NA).

    Finally perform basic analyses with either your own scripting language, like R/Python libraries' numerical functions with accompanying visuals/graphs etc if elucidating trends is desired; drawing meaningful conclusions about overall state of global health outcomes accordingly before making informed decisions thereafter if needed too!

    Research Ideas

    • Create a world health map to visualize the differences in health outcomes across different countries and regions.
    • Develop an AI-based decision support tool that identifies optimal public health policies or interventions based on these metrics for different countries.
    • Design a dashboard or web app that displays and updates this data in real-time, to allow users to compare the current state of global health indicators and benchmark them against historical figures

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.

    Columns

    File: health-outcomes-csv-1.csv | Column name | Description | |:-------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------| | Country | The name of the country. (String) ...

  16. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    • kaggle.com
    csv, zip
    Updated Dec 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Dec 3, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  17. Global Suicide, Mental Health, Substance Use

    • kaggle.com
    zip
    Updated Jan 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Global Suicide, Mental Health, Substance Use [Dataset]. https://www.kaggle.com/datasets/thedevastator/global-suicide-mental-health-substance-use-disor
    Explore at:
    zip(69880 bytes)Available download formats
    Dataset updated
    Jan 24, 2023
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Global Suicide, Mental Health, Substance Use Disorders Trends

    Analyzing the Impact Across Countries

    By [source]

    About this dataset

    This dataset contains comprehensive data on global suicide, mental health, substance use disorders, and economic trends from 1990 to 2017. Using this data, researchers can delve deep into the effects of these trends across countries and ultimately uncover important insights about the state of global health. The dataset contains information about suicide rates (per 100,000 people), mental disorder prevalence (as a percentage of population size in 2017), population share with substance use disorders (as a percentage from 1990-2016), GDP per capita by purchasing power parity (in terms of current US$ for 1990-2017) and net national income per capita adjusted for inflation effects(in current US$, as in 2016). Additionally it tracks unemployment rate among populations over time(populaton%, 1991-2017). All this will help us to better understand how issues such as suicide, mental health and substance use disorders are affecting the lives of people globally

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset offers insights into how mental health, substance use disorders, and economic status can impact global suicide trends. To get the most out of this data set, it is important to note the various columns available and their purpose as outlined above.

    To analyze global suicide rates, look at the column “Probability (%) of dying between age 30 and exact age 70 from any of cardiovascular disease, cancer, diabetes or chronic respiratory disease” for a summary of estimated suicide rates for different countries over time. Additionally the columns “Entity” and “Code” provide useful information on which country is being discussed in each row.

    The column “Prevalence- Alcohol and Substance Use Disorders” provides an overview of substance use disorders across different countries while the year column indicates when these trends are taking place.

    For economic indicators related to mental health there is data available on national income per capita (current US$, 2016) as well as unemployment rate (population % 1991-2017). Together these metrics give a detailed picture into how economics can be interlinked with mental health and potentially suicide rates.

    Finally this dataset also allows you to investigate varying trends overtime between different countries by looking at any common metrics but only in one specific year using appropriate filters when exploring the data set in more detail

    Research Ideas

    • Analyzing the correlation between mental health and economic indicators.
    • Identifying countries with the highest prevalence of substance use disorders and developing targeted interventions for those populations.
    • Examining the impact of global suicide rates over time to increase awareness and reduce stigma surrounding mental health issues in different countries

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.

    Columns

    File: share-with-alcohol-and-substance-use-disorders 1990-2016.csv | Column name | Description | |:-----------------------------------------------------|:-----------------------------------------------------------------------------------| | Entity | The name of the country. (String) | | Code | The ISO code of the country. (String) | | Year | The year of the data. (Integer) | | Prevalence - Alcohol and substance use disorders | The percentage of the population with alcohol and substance use disorders. (Float) | | **Prevalence ** | Both (age-standardized percent) (%) |

    **File: crude suicide rate...

  18. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +4more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  19. w

    The Global Findex Database 2025: Connectivity and Financial Inclusion in the...

    • microdata.worldbank.org
    Updated Oct 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2025). The Global Findex Database 2025: Connectivity and Financial Inclusion in the Digital Economy - Uganda [Dataset]. https://microdata.worldbank.org/index.php/catalog/7991
    Explore at:
    Dataset updated
    Oct 1, 2025
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2024
    Area covered
    Uganda
    Description

    Abstract

    The Global Findex 2025 reveals how mobile technology is equipping more adults around the world to own and use financial accounts to save formally, access credit, make and receive digital payments, and pursue opportunities. Including the inaugural Global Findex Digital Connectivity Tracker, this fifth edition of Global Findex presents new insights on the interactions among mobile phone ownership, internet use, and financial inclusion.

    The Global Findex is the world’s most comprehensive database on digital and financial inclusion. It is also the only global source of comparable demand-side data, allowing cross-country analysis of how adults access and use mobile phones, the internet, and financial accounts to reach digital information and resources, save, borrow, make payments, and manage their financial health. Data for the Global Findex 2025 were collected from nationally representative surveys of about 145,000 adults in 141 economies. The latest edition follows the 2011, 2014, 2017, and 2021 editions and includes new series measuring mobile phone ownership and internet use, digital safety, and frequency of transactions using financial services.

    The Global Findex 2025 is an indispensable resource for policy makers in the fields of digital connectivity and financial inclusion, as well as for practitioners, researchers, and development professionals.

    Geographic coverage

    National Coverage

    Analysis unit

    Individual

    Kind of data

    Observation data/ratings [obs]

    Sampling procedure

    In most low- and middle-income economies, Global Findex data were collected through face-to-face interviews. In these economies, an area frame design was used for interviewing. In most high-income economies, telephone surveys were used. In 2024, face-to-face interviews were again conducted in 22 economies after phone-based surveys had been employed in 2021 as a result of mobility restrictions related to COVID-19. In addition, an abridged form of the questionnaire was administered by phone to survey participants in Algeria, China, the Islamic Republic of Iran, Libya, Mauritius, and Ukraine because of economy-specific restrictions. In just one economy, Singapore, did the interviewing mode change from face to face in 2021 to phone based in 2024.

    In economies in which face-to-face surveys were conducted, the first stage of sampling was the identification of primary sampling units. These units were then stratified by population size, geography, or both and clustered through one or more stages of sampling. Where population information was available, sample selection was based on probabilities proportional to population size; otherwise, simple random sampling was used. Random route procedures were used to select sampled households. Unless an outright refusal occurred, interviewers made up to three attempts to survey each sampled household. To increase the probability of contact and completion, attempts were made at different times of the day and, where possible, on different days. If an interview could not be completed at a household that was initially part of the sample, a simple substitution method was used to select a replacement household for inclusion.

    Respondents were randomly selected within sampled households. Each eligible household member (that is, all those ages 15 or older) was listed, and a handheld survey device randomly selected the household member to be interviewed. For paper surveys, the Kish grid method was used to select the respondent. In economies in which cultural restrictions dictated gender matching, respondents were randomly selected from among all eligible adults of the interviewer’s gender.

    In economies in which Global Findex surveys have traditionally been phone based, respondent selection followed the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies in which mobile phone and landline penetration is high, a dual sampling frame was used.

    The same procedure for respondent selection was applied to economies in which phone-based interviews were being conducted for the first time. Dual-frame (landline and mobile phone) random digit dialing was used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digit dialing was used in economies with limited or no landline presence (less than 20 percent). For landline respondents in economies in which mobile phone or landline penetration is 80 percent or higher, respondents were selected randomly by using either the next-birthday method or the household enumeration method, which involves listing all eligible household members and randomly selecting one to participate. For mobile phone respondents in these economies or in economies in which mobile phone or landline penetration is less than 80 percent, no further selection was performed. At least three attempts were made to reach the randomly selected person in each household, spread over different days and times of day.

    Research instrument

    The English version of the questionnaire is provided for download.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in: Klapper, Leora, Dorothe Singer, Laura Starita, and Alexandra Norris. 2025. The Global Findex Database 2025: Connectivity and Financial Inclusion in the Digital Economy. Washington, DC: World Bank. https://doi.org/10.1596/978-1-4648-2204-9.

  20. Number of global social network users 2017-2028

    • statista.com
    • de.statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Number of global social network users 2017-2028 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    How many people use social media?

                  Social media usage is one of the most popular online activities. In 2024, over five billion people were using social media worldwide, a number projected to increase to over six billion in 2028.
    
                  Who uses social media?
                  Social networking is one of the most popular digital activities worldwide and it is no surprise that social networking penetration across all regions is constantly increasing. As of January 2023, the global social media usage rate stood at 59 percent. This figure is anticipated to grow as lesser developed digital markets catch up with other regions
                  when it comes to infrastructure development and the availability of cheap mobile devices. In fact, most of social media’s global growth is driven by the increasing usage of mobile devices. Mobile-first market Eastern Asia topped the global ranking of mobile social networking penetration, followed by established digital powerhouses such as the Americas and Northern Europe.
    
                  How much time do people spend on social media?
                  Social media is an integral part of daily internet usage. On average, internet users spend 151 minutes per day on social media and messaging apps, an increase of 40 minutes since 2015. On average, internet users in Latin America had the highest average time spent per day on social media.
    
                  What are the most popular social media platforms?
                  Market leader Facebook was the first social network to surpass one billion registered accounts and currently boasts approximately 2.9 billion monthly active users, making it the most popular social network worldwide. In June 2023, the top social media apps in the Apple App Store included mobile messaging apps WhatsApp and Telegram Messenger, as well as the ever-popular app version of Facebook.
    
Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Tanzeela Shahzadi (2025). Causes of death around all over the world . [Dataset]. https://www.kaggle.com/datasets/tan5577/causes-of-death-around-all-over-the-world
Organization logo

Causes of death around all over the world .

Global Mortality Insights: Historical Dataset on Causes of Death.

Explore at:
zip(331562 bytes)Available download formats
Dataset updated
Nov 23, 2025
Authors
Tanzeela Shahzadi
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Area covered
World
Description

About Dataset

Context:

A straightforward way to assess the health status of a population is to focus on mortality – or concepts like child mortality or life expectancy, which are based on mortality estimates. A focus on mortality, however, does not take into account that the burden of diseases is not only that they kill people, but that they cause suffering to people who live with them. Assessing health outcomes by both mortality and morbidity (the prevalent diseases) provides a more encompassing view on health outcomes. This is the topic of this entry. The sum of mortality and morbidity is referred to as the ‘burden of disease’ and can be measured by a metric called ‘Disability Adjusted Life Years‘ (DALYs).

DALYs are measuring lost health and are a standardized metric that allow for direct comparisons of disease burdens of different diseases across countries, between different populations, and over time. Conceptually, one DALY is the equivalent of losing one year in good health because of either premature death or disease or disability. One DALY represents one lost year of healthy life. The first ‘Global Burden of Disease’ (GBD) was GBD 1990 and the DALY metric was prominently featured in the World Bank’s 1993 World Development Report. Today it is published by both the researchers at the Institute of Health Metrics and Evaluation (IHME) and the ‘Disease Burden Unit’ at the World Health Organization (WHO), which was created in 1998. The IHME continues the work that was started in the early 1990s and publishes the Global Burden of Disease study.

Content:

In this Dataset, we have Historical Data of different cause of deaths for all ages around the World. The key features of this Dataset are: Meningitis, Alzheimer's Disease and Other Dementias, Parkinson's Disease, Nutritional Deficiencies, Malaria, Drowning, Interpersonal Violence, Maternal Disorders, HIV/AIDS, Drug Use Disorders, Tuberculosis, Cardiovascular Diseases, Lower Respiratory Infections, Neonatal Disorders, Alcohol Use Disorders, Self-harm, Exposure to Forces of Nature, Diarrheal Diseases, Environmental Heat and Cold Exposure, Neoplasms, Conflict and Terrorism, Diabetes Mellitus, Chronic Kidney Disease, Poisonings, Protein-Energy Malnutrition, Road Injuries, Chronic Respiratory Diseases, Cirrhosis and Other Chronic Liver Diseases, Digestive Diseases, Fire, Heat, and Hot Substances, Acute Hepatitis.

Dataset Glossary (Column-wise):

  1. Country/Territory - Name of the Country/Territory
  2. Code - Country/Territory Code
  3. Year - Year of the Incident
  4. Meningitis - No. of People died from Meningitis
  5. Alzheimer's Disease and Other Dementias - No. of People died from Alzheimer's Disease and Other Dementias
  6. Parkinson's Disease - No. of People died from Parkinson's Disease
  7. Nutritional Deficiencies - No. of People died from Nutritional Deficiencies
  8. Malaria - No. of People died from Malaria
  9. Drowning - No. of People died from Drowning
  10. Interpersonal Violence - No. of People died from Interpersonal Violence
  11. Maternal Disorders - No. of People died from Maternal Disorders
  12. Drug Use Disorders - No. of People died from Drug Use Disorders
  13. Tuberculosis - No. of People died from Tuberculosis
  14. Cardiovascular Diseases - No. of People died from Cardiovascular Diseases
  15. Lower Respiratory Infections - No. of People died from Lower Respiratory Infections
  16. Neonatal Disorders - No. of People died from Neonatal Disorders
  17. Alcohol Use Disorders - No. of People died from Alcohol Use Disorders
  18. Self-harm - No. of People died from Self-harm
  19. Exposure to Forces of Nature - No. of People died from Exposure to Forces of Nature
  20. Diarrheal Diseases - No. of People died from Diarrheal Diseases
  21. Environmental Heat and Cold Exposure - No. of People died from Environmental Heat and Cold Exposure
  22. Neoplasms - No. of People died from Neoplasms
  23. Conflict and Terrorism - No. of People died from Conflict and Terrorism
  24. Diabetes Mellitus - No. of People died from Diabetes Mellitus
  25. Chronic Kidney Disease - No. of People died from Chronic Kidney Disease
  26. Poisonings - No. of People died from Poisoning
  27. Protein-Energy Malnutrition - No. of People died from Protein-Energy Malnutrition
  28. Chronic Respiratory Diseases - No. of People died from Chronic Respiratory Diseases
  29. Cirrhosis and Other Chronic Liver Diseases - No. of People died from Cirrhosis and Other Chronic Liver Diseases
  30. Digestive Diseases - No. of People died from Digestive Diseases
  31. Fire, Heat, and Hot Substances - No. of People died from Fire or Heat or any Hot Substances
  32. Acute Hepatitis - No. of People died from Acute Hepatitis Structure of the Dataset

Acknowledgement:

This Dataset is created from Our World in Data. This Dataset falls under open access under the Creative Commons BY license. You can check the FAQ for more informa...

Search
Clear search
Close search
Google apps
Main menu