100+ datasets found
  1. U

    Digital data sets describing metropolitan areas in the conterminous US

    • data.usgs.gov
    • search.dataone.org
    • +2more
    Updated Apr 17, 2004
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Geological Survey (2004). Digital data sets describing metropolitan areas in the conterminous US [Dataset]. http://doi.org/10.5066/P9VR5MJ6
    Explore at:
    Dataset updated
    Apr 17, 2004
    Dataset authored and provided by
    United States Geological Surveyhttp://www.usgs.gov/
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    1990
    Area covered
    Contiguous United States, United States
    Description

    This data set describes metropolitan areas in the conterminous United States, developed from U.S. Bureau of the Census boundaries of Consolidated Metropolitan Statistical Areas (CMSA) and Metropolitan Statistical Areas (MSA), that have been processed to extract the largest contiguous urban area within each MSA or CMSA.

  2. Washington DC Metropolitan Area Drug Study Household and Non-Household...

    • catalog.data.gov
    • healthdata.gov
    • +2more
    Updated Jul 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Substance Abuse & Mental Health Services Administration (2023). Washington DC Metropolitan Area Drug Study Household and Non-Household Populations (DC-MADSH-1991) [Dataset]. https://catalog.data.gov/dataset/washington-dc-metropolitan-area-drug-study-household-and-non-household-populations-dc-mads
    Explore at:
    Dataset updated
    Jul 26, 2023
    Dataset provided by
    Substance Abuse and Mental Health Services Administrationhttp://www.samhsa.gov/
    Area covered
    Washington Metropolitan Area, Washington
    Description

    The DC Metropolitan Area Drug Study (DCMADS) was conducted in 1991, and included special analyses of homeless and transient populations and of women delivering live births in the DC hospitals. DCMADS was undertaken to assess the full extent of the drug problem in one metropolitan area. The study was comprised of 16 separate studies that focused on different sub-groups, many of which are typically not included or are under-represented in household surveys.The DCMADS: Household and Non-household Populations examines the prevalence of tobacco, alcohol, and drug use among members of household and non-household populations aged 12 and older in the District of Columbia Metropolitan Statistical Area (DC MSA). The study also examines the characteristics of three drug-abusing sub-groups: crack-cocaine, heroin, and needle users. The household sample was drawn from the 1991 National Household Survey on Drug Abuse (NHSDA). The non-household sample was drawn from the DCMADS Institutionalized and Homeless and Transient Population Studies. Data include demographics, needle use, needle-sharing, and use of tobacco, alcohol, cocaine, crack, inhalants, marijuana, hallucinogens, heroin, sedatives, stimulants, psychotherapeutics (non-medical use), tranquilizers, and analgesics.This study has 1 Data Set.

  3. d

    Subsidized Housing - Six Metro Areas - 2017

    • catalog.data.gov
    • detroitdata.org
    • +4more
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Driven Detroit (2025). Subsidized Housing - Six Metro Areas - 2017 [Dataset]. https://catalog.data.gov/dataset/subsidized-housing-six-metro-areas-2017-18653
    Explore at:
    Dataset updated
    Feb 21, 2025
    Dataset provided by
    Data Driven Detroit
    Description

    Subsidized Housing Unit data was downloaded from the National Housing Preservation Database for Atlanta, Baltimore, Detroit, New Orleans, Pittsburgh, and Oakland, CA in June 2017. The data was spatialized by Data Driven Detroit. More information concerning the subsidized housing programs can be found here. The dataset includes active and inactive subsidized housing units.Click here for metadata (descriptions of the fields).

  4. Behavioral Risk Factors: Selected Metropolitan Area Risk Trends (SMART) MMSA...

    • catalog.data.gov
    • healthdata.gov
    • +4more
    Updated Feb 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Behavioral Risk Factors: Selected Metropolitan Area Risk Trends (SMART) MMSA Prevalence Data (2011 to Present) [Dataset]. https://catalog.data.gov/dataset/behavioral-risk-factors-selected-metropolitan-area-risk-trends-smart-mmsa-prevalence-data-
    Explore at:
    Dataset updated
    Feb 20, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    2011 to present. BRFSS SMART MMSA Prevalence combined land line and cell phone data. The Selected Metropolitan Area Risk Trends (SMART) project uses the Behavioral Risk Factor Surveillance System (BRFSS) to analyze the data of selected metropolitan statistical areas (MMSAs) with 500 or more respondents. BRFSS data can be used to identify emerging health problems, establish and track health objectives, and develop and evaluate public health policies and programs. BRFSS is a continuous, state-based surveillance system that collects information about modifiable risk factors for chronic diseases and other leading causes of death. Data will be updated annually as it becomes available. Detailed information on sampling methodology and quality assurance can be found on the BRFSS website (http://www.cdc.gov/brfss). Methodology: http://www.cdc.gov/brfss/factsheets/pdf/DBS_BRFSS_survey.pdf Glossary: https://data.cdc.gov/Behavioral-Risk-Factors/Behavioral-Risk-Factor-Surveillance-System-BRFSS-H/iuq5-y9ct

  5. N

    Kenneth City, FL Age Group Population Dataset: A complete breakdown of...

    • neilsberg.com
    csv, json
    Updated Sep 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Kenneth City, FL Age Group Population Dataset: A complete breakdown of Kenneth City age demographics from 0 to 85 years, distributed across 18 age groups [Dataset]. https://www.neilsberg.com/research/datasets/708ca8b0-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Sep 16, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Florida, Kenneth City
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Kenneth City population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Kenneth City. The dataset can be utilized to understand the population distribution of Kenneth City by age. For example, using this dataset, we can identify the largest age group in Kenneth City.

    Key observations

    The largest age group in Kenneth City, FL was for the group of age 60-64 years with a population of 504 (9.99%), according to the 2021 American Community Survey. At the same time, the smallest age group in Kenneth City, FL was the 10-14 years with a population of 102 (2.02%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the Kenneth City is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of Kenneth City total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Kenneth City Population by Age. You can refer the same here

  6. T

    Vital Signs: Commute Time (by Place of Residence) – by tract (2022)

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Jul 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Vital Signs: Commute Time (by Place of Residence) – by tract (2022) [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Commute-Time-by-Place-of-Residence-by-/cxe7-96p6
    Explore at:
    application/rdfxml, tsv, json, csv, application/rssxml, xmlAvailable download formats
    Dataset updated
    Jul 1, 2022
    Description

    VITAL SIGNS INDICATOR
    Commute Time (T3)

    FULL MEASURE NAME
    Commute time by residential location

    LAST UPDATED
    January 2023

    DESCRIPTION
    Commute time refers to the average number of minutes a commuter spends traveling to work on a typical day. The dataset includes metropolitan area, county, city, and census tract tables by place of residence.

    DATA SOURCE
    U.S. Census Bureau: Decennial Census (1980-2000) - via MTC/ABAG Bay Area Census - http://www.bayareacensus.ca.gov/transportation.htm

    U.S. Census Bureau: American Community Survey - https://data.census.gov/
    2006-2021
    Form C08136
    Form C08536
    Form B08301
    Form B08301
    Form B08301

    CONTACT INFORMATION
    vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator)
    For the decennial Census datasets, breakdown of commute times was unavailable by mode; only overall data could be provided on a historical basis.

    For the American Community Survey (ACS) datasets, 1-year rolling average data was used for all metros, region and county geographic levels, while 5-year rolling average data was used for cities and tracts. This is due to the fact that more localized data is not included in the 1-year dataset across all Bay Area cities. Similarly, modal data is not available for every Bay Area city or census tract, even when the 5-year data is used for those localized geographies.

    Regional commute times were calculated by summing aggregate county travel times and dividing by the relevant population; similarly, modal commute times were calculated using aggregate times and dividing by the number of communities choosing that mode for the given geography.

    Census tract data is not available for tracts with insufficient numbers of residents. The metropolitan area comparison was performed for the nine-county San Francisco Bay Area in addition to the primary metropolitan statistical areas (MSAs) for the nine other major metropolitan areas.

  7. M

    Counties and Cities & Townships, Twin Cities Metropolitan Area

    • gisdata.mn.gov
    • data.wu.ac.at
    ags_mapserver, fgdb +4
    Updated May 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Metropolitan Council (2025). Counties and Cities & Townships, Twin Cities Metropolitan Area [Dataset]. https://gisdata.mn.gov/dataset/us-mn-state-metc-bdry-metro-counties-and-ctus
    Explore at:
    ags_mapserver, shp, jpeg, fgdb, html, gpkgAvailable download formats
    Dataset updated
    May 22, 2025
    Dataset provided by
    Metropolitan Council
    Area covered
    Twin Cities
    Description

    This is a polygon dataset for county boundaries as well as for city, township and unorganized territory (CTU) boundaries in the Twin Cities 7-county metropolitan area. The linework for this dataset comes from individual counties and is assembled by the Metropolitan Council for the MetroGIS community. This is a MetroGIS Regionally Endorsed dataset https://metrogis.org/.

    The County CTU Lookup Table here https://gisdata.mn.gov/dataset/us-mn-state-metc-bdry-counties-and-ctus-lookup
    is also included in this dataset and contains various data related to cities, townships, unorganized territories (CTUs) and any divisions created by county boundaries splitting them is also included in the dataset.

    This dataset is updated quarterly. This dataset is composed of three shape files and one dbf table.
    - Counties.shp = county boundaries
    - CTUs.shp = city, township and unorganized territory boundaries
    - CountiesAndCTUs.shp = combined county and CTU boundaries
    - CountyCTULookupTable.dbf = various data related to CTUs and any divisions created by county boundaries splitting them is also included in the dataset, described here: https://gisdata.mn.gov/dataset/us-mn-state-metc-bdry-counties-and-ctus-lookup

    NOTES:

    - On 3/17/2011 it was discovered that the CTU ID used for the City of Lake St. Croix Beach was incorrect. It was changed from 2394379 to 2395599 to match GNIS.

    - On 3/17/2011 it was discovered that the CTU ID used for the City of Lilydale was incorrect. It was changed from 2394457 to 2395708 to match GNIS.

    - On 11/9/2010 it was discovered that the CTU ID used for the City of Crystal was incorrect. It was changed from 2393541 to 2393683 to match GNIS.

    - Effective April 2008, a change was made in GNIS to match the FIPS place codes to the "civil" feature for each city instead of the "populated place" feature. Both cities and townships are now "civil" features within GNIS. This means that the official GNIS unique ID for every city in Minnesota has changed.

    - The five digit CTU codes in this dataset are identical to the Federal Information Processing Standard (FIPS) ''Place'' codes. They are also used by the Census Bureau and many other organizations and are proposed as a MN state data coding standard.

    - Cities and townships have also been referred to as ''MCDs'' (a census term), however this term technically refers to the part of each city or township within a single county. Thus, a few cities in the metro area that are split by county boundaries are actually comprised of two different MCDs. This was part of the impetus for a proposed MN state data standard that uses the ''CTU'' terminology for clarity.

    - The boundary line data for this dataset comes from each county.

    - A variety of civil divisions of the land exist within the United States. In Minnesota, only three types exist - cities, townships and unorganized territories. All three of these exist within the Twin Cities seven county area. The only unorganized territory is Fort Snelling (a large portion of which is occupied by the MSP International Airport).

    - Some cities are split between two counties. Only those parts of cities within the 7-county area are included.

    - Prior to the 2000 census, the FIPS Place code for the City of Greenwood in Hennepin County was changed from 25928 to 25918. This dataset reflects that change.

  8. American Housing Survey (AHS)

    • catalog.data.gov
    • s.cnmilf.com
    Updated Mar 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Housing and Urban Development (2024). American Housing Survey (AHS) [Dataset]. https://catalog.data.gov/dataset/american-housing-survey-ahs
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Area covered
    United States
    Description

    The AHS is the largest, regular national housing sample survey in the United States. The U.S. Census Bureau conducts the AHS to obtain up-to-date housing statistics for the Department of Housing and Urban Development (HUD). The AHS national survey was conducted annually from 1973-1981 and biennially (every two years) since 1983. Metropolitan area surveys have been conducted annually or biennially since 1974.

  9. g

    Census of Population and Housing, 1990 [United States]: Public Use Microdata...

    • search.gesis.org
    Updated Feb 1, 2001
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Department of Commerce. Bureau of the Census (2001). Census of Population and Housing, 1990 [United States]: Public Use Microdata Sample: 1-Percent Sample - Version 3 [Dataset]. http://doi.org/10.3886/ICPSR09951.v3
    Explore at:
    Dataset updated
    Feb 1, 2001
    Dataset provided by
    ICPSR - Interuniversity Consortium for Political and Social Research
    GESIS search
    Authors
    United States Department of Commerce. Bureau of the Census
    License

    https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de457357https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de457357

    Area covered
    United States
    Description

    Abstract (en): The Public Use Microdata Sample (PUMS) 1-Percent Sample contains household and person records for a sample of housing units that received the "long form" of the 1990 Census questionnaire. Data items include the full range of population and housing information collected in the 1990 Census, including 500 occupation categories, age by single years up to 90, and wages in dollars up to $140,000. Each person identified in the sample has an associated household record, containing information on household characteristics such as type of household and family income. All persons and housing units in the United States. A stratified sample, consisting of a subsample of the household units that received the 1990 Census "long-form" questionnaire (approximately 15.9 percent of all housing units). 2006-01-12 All files were removed from dataset 85 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 83 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 82 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 81 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 80 and flagged as study-level files, so that they will accompany all downloads.1998-08-28 The following data files were replaced by the Census Bureau: the state files (Parts 1-56), Puerto Rico (Part 72), Geographic Equivalency File (Part 84), and Public Use Microdata Areas (PUMAS) Crossing State Lines (Part 99). These files now incorporate revised group quarters data. Parts 201-256, which were separate revised group quarters files for each state, have been removed from the collection. The data fields affected by the group quarters data revisions were POWSTATE, POWPUMA, MIGSTATE and MIGPUMA. As a result of the revisions, the Maine file (Part 23) gained 763 records and Part 99 lost 763 records. In addition, the following files have been added to the collection: Ancestry Code List, Place of Birth Code List, Industry Code List, Language Code List, Occupation Code List, and Race Code List (Parts 86-91). Also, the codebook is now available as a PDF file. (1) Although all records are 231 characters in length, each file is hierarchical in structure, containing a housing unit record followed by a variable number of person records. Both record types contain approximately 120 variables. Two improvements over the 1980 PUMS files have been incorporated. First, the housing unit serial number is identified on both the housing unit record and on the person record, allowing the file to be processed as a rectangular file. In addition, each person record is assigned an individual weight, allowing users to more closely approximate published reports. Unlike previous years, the 1990 PUMS 1-Percent and 5-Percent Samples have not been released in separate geographic series (known as "A," "B," etc. records). Instead, each sample has its own set of geographies, known as "Public Use Microdata Areas" (PUMAs), established by the Census Bureau with assistance from each State Data Center. The PUMAs in the 1-Percent Sample are based on a distinction between metropolitan and nonmetropolitan areas. Metropolitan areas encompass whole central cities, Primary Metropolitan Statistical Areas (PMSAs), Metropolitan Statistical Areas (MSAs), or groups thereof, except where the city or metropolitan area contains more than 200,000 inhabitants. In that case, the city or metropolitan area is divided into several PUMAs. Nonmetropolitan PUMAs are based on areas or groups of areas outside the central city, PMSA, or MSA. PUMAs in this 1-Percent Sample may cross state lines. (2) The codebook is provided as a Portable Document Format (PDF) file. The PDF file format was developed by Adobe Systems Incorporated and can be accessed using PDF reader software, such as the Adobe Acrobat Reader. Information on how to obtain a copy of the Acrobat Reader is provided through the ICPSR Website on the Internet.

  10. m

    Hedonic dataset of the four metropolitan housing market in South Korea

    • data.mendeley.com
    Updated Jan 17, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yena Song (2021). Hedonic dataset of the four metropolitan housing market in South Korea [Dataset]. http://doi.org/10.17632/d7grg846wv.3
    Explore at:
    Dataset updated
    Jan 17, 2021
    Authors
    Yena Song
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South Korea
    Description

    This dataset was generated for analyzing the economic impacts of subway networks on housing prices in metropolitan areas. The provision of transit networks and accompanying improvement in accessibility induce various impacts and we focused on the economic impacts realized through housing prices. As a proxy of housing price, we consider the price of condominiums, the dominant housing type in South Korea. Although our focus is transit accessibility and housing prices, the presented dataset is applicable to other studies. In particular, it provides a wide range of variables closely related to housing price, including housing properties, local amenities, local demographic characteristics, and control variables for the seasonality. Many of these variables were scientifically generated by our research team. Various distance variables were constructed in a geographic information system environment based on public data and they are useful not only for exploring environmental impacts on housing prices, but also for other statistical analyses in regard to real estate and social science research. The four metropolitan areas covered by the data—Busan, Daegu, Daejeon, and Gwangju—are independent of the transit systems of Greater Seoul, providing accurate information on the metropolitan structure separate from the capital city.

  11. Urban Influence Codes

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +3more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Economic Research Service, Department of Agriculture (2025). Urban Influence Codes [Dataset]. https://catalog.data.gov/dataset/urban-influence-codes
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Economic Research Servicehttp://www.ers.usda.gov/
    Description

    The 2013 Urban Influence Codes form a classification scheme that distinguishes metropolitan counties by population size of their metro area, and nonmetropolitan counties by size of the largest city or town and proximity to metro and micropolitan areas. The standard Office of Management and Budget (OMB) metro and nonmetro categories have been subdivided into two metro and 10 nonmetro categories, resulting in a 12-part county classification. This scheme was originally developed in 1993. This scheme allows researchers to break county data into finer residential groups, beyond metro and nonmetro, particularly for the analysis of trends in nonmetro areas that are related to population density and metro influence. An update of the Urban Influence Codes is planned for mid-2023.

  12. f

    Travel time to cities and ports in the year 2015

    • figshare.com
    tiff
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andy Nelson (2023). Travel time to cities and ports in the year 2015 [Dataset]. http://doi.org/10.6084/m9.figshare.7638134.v4
    Explore at:
    tiffAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    figshare
    Authors
    Andy Nelson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset and the validation are fully described in a Nature Scientific Data Descriptor https://www.nature.com/articles/s41597-019-0265-5

    If you want to use this dataset in an interactive environment, then use this link https://mybinder.org/v2/gh/GeographerAtLarge/TravelTime/HEAD

    The following text is a summary of the information in the above Data Descriptor.

    The dataset is a suite of global travel-time accessibility indicators for the year 2015, at approximately one-kilometre spatial resolution for the entire globe. The indicators show an estimated (and validated), land-based travel time to the nearest city and nearest port for a range of city and port sizes.

    The datasets are in GeoTIFF format and are suitable for use in Geographic Information Systems and statistical packages for mapping access to cities and ports and for spatial and statistical analysis of the inequalities in access by different segments of the population.

    These maps represent a unique global representation of physical access to essential services offered by cities and ports.

    The datasets travel_time_to_cities_x.tif (where x has values from 1 to 12) The value of each pixel is the estimated travel time in minutes to the nearest urban area in 2015. There are 12 data layers based on different sets of urban areas, defined by their population in year 2015 (see PDF report).

    travel_time_to_ports_x (x ranges from 1 to 5)

    The value of each pixel is the estimated travel time to the nearest port in 2015. There are 5 data layers based on different port sizes.

    Format Raster Dataset, GeoTIFF, LZW compressed Unit Minutes

    Data type Byte (16 bit Unsigned Integer)

    No data value 65535

    Flags None

    Spatial resolution 30 arc seconds

    Spatial extent

    Upper left -180, 85

    Lower left -180, -60 Upper right 180, 85 Lower right 180, -60 Spatial Reference System (SRS) EPSG:4326 - WGS84 - Geographic Coordinate System (lat/long)

    Temporal resolution 2015

    Temporal extent Updates may follow for future years, but these are dependent on the availability of updated inputs on travel times and city locations and populations.

    Methodology Travel time to the nearest city or port was estimated using an accumulated cost function (accCost) in the gdistance R package (van Etten, 2018). This function requires two input datasets: (i) a set of locations to estimate travel time to and (ii) a transition matrix that represents the cost or time to travel across a surface.

    The set of locations were based on populated urban areas in the 2016 version of the Joint Research Centre’s Global Human Settlement Layers (GHSL) datasets (Pesaresi and Freire, 2016) that represent low density (LDC) urban clusters and high density (HDC) urban areas (https://ghsl.jrc.ec.europa.eu/datasets.php). These urban areas were represented by points, spaced at 1km distance around the perimeter of each urban area.

    Marine ports were extracted from the 26th edition of the World Port Index (NGA, 2017) which contains the location and physical characteristics of approximately 3,700 major ports and terminals. Ports are represented as single points

    The transition matrix was based on the friction surface (https://map.ox.ac.uk/research-project/accessibility_to_cities) from the 2015 global accessibility map (Weiss et al, 2018).

    Code The R code used to generate the 12 travel time maps is included in the zip file that can be downloaded with these data layers. The processing zones are also available.

    Validation The underlying friction surface was validated by comparing travel times between 47,893 pairs of locations against journey times from a Google API. Our estimated journey times were generally shorter than those from the Google API. Across the tiles, the median journey time from our estimates was 88 minutes within an interquartile range of 48 to 143 minutes while the median journey time estimated by the Google API was 106 minutes within an interquartile range of 61 to 167 minutes. Across all tiles, the differences were skewed to the left and our travel time estimates were shorter than those reported by the Google API in 72% of the tiles. The median difference was −13.7 minutes within an interquartile range of −35.5 to 2.0 minutes while the absolute difference was 30 minutes or less for 60% of the tiles and 60 minutes or less for 80% of the tiles. The median percentage difference was −16.9% within an interquartile range of −30.6% to 2.7% while the absolute percentage difference was 20% or less in 43% of the tiles and 40% or less in 80% of the tiles.

    This process and results are included in the validation zip file.

    Usage Notes The accessibility layers can be visualised and analysed in many Geographic Information Systems or remote sensing software such as QGIS, GRASS, ENVI, ERDAS or ArcMap, and also by statistical and modelling packages such as R or MATLAB. They can also be used in cloud-based tools for geospatial analysis such as Google Earth Engine.

    The nine layers represent travel times to human settlements of different population ranges. Two or more layers can be combined into one layer by recording the minimum pixel value across the layers. For example, a map of travel time to the nearest settlement of 5,000 to 50,000 people could be generated by taking the minimum of the three layers that represent the travel time to settlements with populations between 5,000 and 10,000, 10,000 and 20,000 and, 20,000 and 50,000 people.

    The accessibility layers also permit user-defined hierarchies that go beyond computing the minimum pixel value across layers. A user-defined complete hierarchy can be generated when the union of all categories adds up to the global population, and the intersection of any two categories is empty. Everything else is up to the user in terms of logical consistency with the problem at hand.

    The accessibility layers are relative measures of the ease of access from a given location to the nearest target. While the validation demonstrates that they do correspond to typical journey times, they cannot be taken to represent actual travel times. Errors in the friction surface will be accumulated as part of the accumulative cost function and it is likely that locations that are further away from targets will have greater a divergence from a plausible travel time than those that are closer to the targets. Care should be taken when referring to travel time to the larger cities when the locations of interest are extremely remote, although they will still be plausible representations of relative accessibility. Furthermore, a key assumption of the model is that all journeys will use the fastest mode of transport and take the shortest path.

  13. N

    Homer City, PA Age Group Population Dataset: A Complete Breakdown of Homer...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Homer City, PA Age Group Population Dataset: A Complete Breakdown of Homer City Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/homer-city-pa-population-by-age/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Pennsylvania, Homer City
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Homer City population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Homer City. The dataset can be utilized to understand the population distribution of Homer City by age. For example, using this dataset, we can identify the largest age group in Homer City.

    Key observations

    The largest age group in Homer City, PA was for the group of age 65 to 69 years years with a population of 167 (9.73%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Homer City, PA was the 25 to 29 years years with a population of 22 (1.28%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the Homer City is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of Homer City total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Homer City Population by Age. You can refer the same here

  14. a

    SAFMR Zip Code Tab Areas

    • hub.arcgis.com
    • data.lojic.org
    • +1more
    Updated Apr 28, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2021). SAFMR Zip Code Tab Areas [Dataset]. https://hub.arcgis.com/datasets/HUD::small-area-fair-market-rents-2?layer=2
    Explore at:
    Dataset updated
    Apr 28, 2021
    Dataset authored and provided by
    Department of Housing and Urban Development
    Area covered
    Description

    Small Area Fair Market Rents (SAFMRs) are FMRs calculated for ZIP Codes within Metropolitan Areas. Small Area FMRs are required to be used to set Section 8 Housing Choice Voucher payment standards in areas designated by HUD (available here). Other Housing Agencies operating in non-designated metropolitan areas may opt-in to the use of Small Area FMRs. Furthermore, Small Area FMRs may be used as the basis for setting Exception Payment Standards – PHAs may set exception payment standards up to 110 percent of the Small Area FMR. PHAs administering Public Housing units may use Small Area FMRs as an alternative to metropolitan area-wide FMRs when calculating Flat Rents. Please See HUD’s Small Area FMR Final Rule for additional information regarding the uses of Small Area FMRs.Note that this service does not denote precise SAFMR geographies. Instead, the service utilizes a relationship class to associate the information for each SAFMR with the FMR areas that its ZCTA overlaps. For example, ZCTA 94558 overlaps the Santa Rosa, Napa, and Vallejo-Fairfield MSAs. Selecting that ZCTA will reveal the SAFMR information associated with each FMR area.To learn more about the Small Area Fair Market Rents visit: https://www.huduser.gov/portal/datasets/fmr/smallarea/index.html

  15. N

    Swea City, IA Age Group Population Dataset: A Complete Breakdown of Swea...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Swea City, IA Age Group Population Dataset: A Complete Breakdown of Swea City Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/swea-city-ia-population-by-age/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Iowa, Swea City
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Swea City population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Swea City. The dataset can be utilized to understand the population distribution of Swea City by age. For example, using this dataset, we can identify the largest age group in Swea City.

    Key observations

    The largest age group in Swea City, IA was for the group of age 10 to 14 years years with a population of 64 (10.46%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Swea City, IA was the 45 to 49 years years with a population of 3 (0.49%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the Swea City is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of Swea City total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Swea City Population by Age. You can refer the same here

  16. d

    Rural-Urban Commuting Area Codes

    • catalog.data.gov
    • datasets.ai
    • +4more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Economic Research Service, Department of Agriculture (2025). Rural-Urban Commuting Area Codes [Dataset]. https://catalog.data.gov/dataset/rural-urban-commuting-area-codes
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Economic Research Service, Department of Agriculture
    Description

    The rural-urban commuting area codes (RUCA) classify U.S. census tracts using measures of urbanization, population density, and daily commuting from the decennial census. The most recent RUCA codes are based on data from the 2000 decennial census. The classification contains two levels. Whole numbers (1-10) delineate metropolitan, micropolitan, small town, and rural commuting areas based on the size and direction of the primary (largest) commuting flows. These 10 codes are further subdivided to permit stricter or looser delimitation of commuting areas, based on secondary (second largest) commuting flows. The approach errs in the direction of more codes, providing flexibility in combining levels to meet varying definitional needs and preferences. The 1990 codes are similarly defined. However, the Census Bureau's methods of defining urban cores and clusters changed between the two censuses. And, census tracts changed in number and shapes. The 2000 rural-urban commuting codes are not directly comparable with the 1990 codes because of these differences. An update of the Rural-Urban Commuting Area Codes is planned for late 2013.

  17. A

    ‘Behavioral Risk Factors: Selected Metropolitan Area Risk Trends (SMART)...

    • analyst-2.ai
    Updated Feb 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Behavioral Risk Factors: Selected Metropolitan Area Risk Trends (SMART) MMSA Age-adjusted Prevalence Data (2011 to Present)’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-behavioral-risk-factors-selected-metropolitan-area-risk-trends-smart-mmsa-age-adjusted-prevalence-data-2011-to-present-d70f/latest
    Explore at:
    Dataset updated
    Feb 12, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Behavioral Risk Factors: Selected Metropolitan Area Risk Trends (SMART) MMSA Age-adjusted Prevalence Data (2011 to Present)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/d960c8f8-8585-454c-a092-c37ad36a0db0 on 12 February 2022.

    --- Dataset description provided by original source is as follows ---

    2011 to present. BRFSS SMART MMSA age-adjusted prevalence combined land line and cell phone data. The Selected Metropolitan Area Risk Trends (SMART) project uses the Behavioral Risk Factor Surveillance System (BRFSS) to analyze the data of selected metropolitan statistical areas (MMSAs) with 500 or more respondents. BRFSS data can be used to identify emerging health problems, establish and track health objectives, and develop and evaluate public health policies and programs. BRFSS is a continuous, state-based surveillance system that collects information about modifiable risk factors for chronic diseases and other leading causes of death. Data will be updated annually as it becomes available. Detailed information on sampling methodology and quality assurance can be found on the BRFSS website (http://www.cdc.gov/brfss). Methodology: http://www.cdc.gov/brfss/factsheets/pdf/DBS_BRFSS_survey.pdf Glossary: https://chronicdata.cdc.gov/Behavioral-Risk-Factors/Behavioral-Risk-Factor-Surveillance-System-BRFSS-H/iuq5-y9ct/data

    --- Original source retains full ownership of the source dataset ---

  18. California Overlapping Cities and Counties and Identifiers

    • data.ca.gov
    • gis.data.ca.gov
    • +1more
    Updated Feb 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Technology (2025). California Overlapping Cities and Counties and Identifiers [Dataset]. https://data.ca.gov/dataset/california-overlapping-cities-and-counties-and-identifiers
    Explore at:
    csv, geojson, zip, kml, html, gpkg, xlsx, gdb, txt, arcgis geoservices rest apiAvailable download formats
    Dataset updated
    Feb 20, 2025
    Dataset authored and provided by
    California Department of Technologyhttp://cdt.ca.gov/
    Area covered
    California
    Description

    WARNING: This is a pre-release dataset and its fields names and data structures are subject to change. It should be considered pre-release until the end of 2024. Expected changes:

    • Metadata is missing or incomplete for some layers at this time and will be continuously improved.
    • We expect to update this layer roughly in line with CDTFA at some point, but will increase the update cadence over time as we are able to automate the final pieces of the process.
    This dataset is continuously updated as the source data from CDTFA is updated, as often as many times a month. If you require unchanging point-in-time data, export a copy for your own use rather than using the service directly in your applications.

    Purpose

    County and incorporated place (city) boundaries along with third party identifiers used to join in external data. Boundaries are from the authoritative source the California Department of Tax and Fee Administration (CDTFA), altered to show the counties as one polygon. This layer displays the city polygons on top of the County polygons so the area isn"t interrupted. The GEOID attribute information is added from the US Census. GEOID is based on merged State and County FIPS codes for the Counties. Abbreviations for Counties and Cities were added from Caltrans Division of Local Assistance (DLA) data. Place Type was populated with information extracted from the Census. Names and IDs from the US Board on Geographic Names (BGN), the authoritative source of place names as published in the Geographic Name Information System (GNIS), are attached as well. Finally, coastal buffers are removed, leaving the land-based portions of jurisdictions. This feature layer is for public use.

    Related Layers

    This dataset is part of a grouping of many datasets:

    1. Cities: Only the city boundaries and attributes, without any unincorporated areas
    2. Counties: Full county boundaries and attributes, including all cities within as a single polygon
    3. Cities and Full Counties: A merge of the other two layers, so polygons overlap within city boundaries. Some customers require this behavior, so we provide it as a separate service.
    4. Place Abbreviations
    5. Unincorporated Areas (Coming Soon)
    6. Census Designated Places (Coming Soon)
    7. Cartographic Coastline
    Working with Coastal Buffers
    The dataset you are currently viewing includes the coastal buffers for cities and counties that have them in the authoritative source data from CDTFA. In the versions where they are included, they remain as a second polygon on cities or counties that have them, with all the same identifiers, and a value in the COASTAL field indicating if it"s an ocean or a bay buffer. If you wish to have a single polygon per jurisdiction that includes the coastal buffers, you can run a Dissolve on the version that has the coastal buffers on all the fields except COASTAL, Area_SqMi, Shape_Area, and Shape_Length to get a version with the correct identifiers.

    Point of Contact

    California Department of Technology, Office of Digital Services, odsdataservices@state.ca.gov

    Field and Abbreviation Definitions

    • COPRI: county number followed by the 3-digit city primary number used in the Board of Equalization"s 6-digit tax rate area numbering system
    • Place Name: CDTFA incorporated (city) or county name
    • County: CDTFA county name. For counties, this will be the name of the polygon itself. For cities, it is the name of the county the city polygon is within.
    • Legal Place Name: Board on Geographic Names authorized nomenclature for area names published in the Geographic Name Information System
    • GNIS_ID: The numeric identifier from the Board on Geographic Names that can be used to join these boundaries to other datasets utilizing this identifier.
    • GEOID: numeric geographic identifiers from the US Census Bureau Place Type: Board on Geographic Names authorized nomenclature for boundary type published in the Geographic Name Information System
    • Place Abbr: CalTrans Division of Local Assistance abbreviations of incorporated area names
    • CNTY Abbr: CalTrans Division of Local Assistance abbreviations of county names
    • Area_SqMi: The area of the administrative unit (city or county) in square miles, calculated in EPSG 3310 California Teale Albers.
    • COASTAL: Indicates if the polygon is a coastal buffer. Null for land polygons. Additional values include "ocean" and "bay".
    • GlobalID: While all of the layers we provide in this dataset include a GlobalID field with unique values, we do not recommend you make any use of it. The GlobalID field exists to support offline sync, but is not persistent, so data keyed to it will be orphaned at our next update. Use one of the other persistent identifiers, such as GNIS_ID or GEOID instead.

    Accuracy

    CDTFA"s source data notes the following about accuracy:

    City boundary changes and county boundary line adjustments filed with the Board of Equalization per Government Code 54900. This GIS layer contains the boundaries of the unincorporated county and incorporated cities within the state of California. The initial dataset was created in March of 2015 and was based on the State Board of Equalization tax rate area boundaries. As of April 1, 2024, the maintenance of this dataset is provided by the California Department of Tax and Fee Administration for the purpose of determining sales and use tax rates. The boundaries are continuously being revised to align with aerial imagery when areas of conflict are discovered between the original boundary provided by the California State Board of Equalization and the boundary made publicly available by local, state, and federal government. Some differences may occur between actual recorded boundaries and the boundaries used for sales and use tax purposes. The boundaries in this map are representations of taxing jurisdictions for the purpose of determining sales and use tax rates and should not be used to determine precise city or county boundary line locations. COUNTY = county name; CITY = city name or unincorporated territory; COPRI =

  19. d

    500 Cities: City Boundaries

    • catalog.data.gov
    • healthdata.gov
    • +5more
    Updated Feb 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). 500 Cities: City Boundaries [Dataset]. https://catalog.data.gov/dataset/500-cities-city-boundaries
    Explore at:
    Dataset updated
    Feb 3, 2025
    Dataset provided by
    Centers for Disease Control and Prevention
    Description

    This city boundary shapefile was extracted from Esri Data and Maps for ArcGIS 2014 - U.S. Populated Place Areas. This shapefile can be joined to 500 Cities city-level Data (GIS Friendly Format) in a geographic information system (GIS) to make city-level maps.

  20. d

    City of Tempe 2023 Business Survey Data

    • catalog.data.gov
    • data.tempe.gov
    • +11more
    Updated Sep 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2024). City of Tempe 2023 Business Survey Data [Dataset]. https://catalog.data.gov/dataset/city-of-tempe-2023-business-survey-data
    Explore at:
    Dataset updated
    Sep 20, 2024
    Dataset provided by
    City of Tempe
    Area covered
    Tempe
    Description

    These data include the individual responses for the City of Tempe Annual Business Survey conducted by ETC Institute. These data help determine priorities for the community as part of the City's on-going strategic planning process. Averaged Business Survey results are used as indicators for city performance measures. The performance measures with indicators from the Business Survey include the following (as of 2023):1. Financial Stability and Vitality5.01 Quality of Business ServicesThe location data in this dataset is generalized to the block level to protect privacy. This means that only the first two digits of an address are used to map the location. When they data are shared with the city only the latitude/longitude of the block level address points are provided. This results in points that overlap. In order to better visualize the data, overlapping points were randomly dispersed to remove overlap. The result of these two adjustments ensure that they are not related to a specific address, but are still close enough to allow insights about service delivery in different areas of the city.Additional InformationSource: Business SurveyContact (author): Adam SamuelsContact E-Mail (author): Adam_Samuels@tempe.govContact (maintainer): Contact E-Mail (maintainer): Data Source Type: Excel tablePreparation Method: Data received from vendor after report is completedPublish Frequency: AnnualPublish Method: ManualData DictionaryMethods:The survey is mailed to a random sample of businesses in the City of Tempe. Follow up emails and texts are also sent to encourage participation. A link to the survey is provided with each communication. To prevent people who do not live in Tempe or who were not selected as part of the random sample from completing the survey, everyone who completed the survey was required to provide their address. These addresses were then matched to those used for the random representative sample. If the respondent’s address did not match, the response was not used.To better understand how services are being delivered across the city, individual results were mapped to determine overall distribution across the city.Processing and Limitations:The location data in this dataset is generalized to the block level to protect privacy. This means that only the first two digits of an address are used to map the location. When they data are shared with the city only the latitude/longitude of the block level address points are provided. This results in points that overlap. In order to better visualize the data, overlapping points were randomly dispersed to remove overlap. The result of these two adjustments ensure that they are not related to a specific address, but are still close enough to allow insights about service delivery in different areas of the city.The data are used by the ETC Institute in the final published PDF report.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
United States Geological Survey (2004). Digital data sets describing metropolitan areas in the conterminous US [Dataset]. http://doi.org/10.5066/P9VR5MJ6

Digital data sets describing metropolitan areas in the conterminous US

Explore at:
Dataset updated
Apr 17, 2004
Dataset authored and provided by
United States Geological Surveyhttp://www.usgs.gov/
License

U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically

Time period covered
1990
Area covered
Contiguous United States, United States
Description

This data set describes metropolitan areas in the conterminous United States, developed from U.S. Bureau of the Census boundaries of Consolidated Metropolitan Statistical Areas (CMSA) and Metropolitan Statistical Areas (MSA), that have been processed to extract the largest contiguous urban area within each MSA or CMSA.

Search
Clear search
Close search
Google apps
Main menu