70 datasets found
  1. Statewide Death Profiles

    • data.chhs.ca.gov
    • data.ca.gov
    • +3more
    csv, zip
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Statewide Death Profiles [Dataset]. https://data.chhs.ca.gov/dataset/statewide-death-profiles
    Explore at:
    csv(164006), csv(200270), csv(2026589), csv(5401561), csv(463460), csv(5034), csv(16301), csv(4689434), csv(419332), csv(364098), zipAvailable download formats
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    This dataset contains counts of deaths for California as a whole based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

    The final data tables include both deaths that occurred in California regardless of the place of residence (by occurrence) and deaths to California residents (by residence), whereas the provisional data table only includes deaths that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  2. Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Feb 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response, Epidemiology Task Force (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/3rge-nu2a
    Explore at:
    tsv, application/rssxml, csv, application/rdfxml, xml, jsonAvailable download formats
    Dataset updated
    Feb 22, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response, Epidemiology Task Force
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

    Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

    Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases among people who received additional or booster doses were reported from 31 jurisdictions; 30 jurisdictions also reported data on deaths among people who received one or more additional or booster dose; 28 jurisdictions reported cases among people who received two or more additional or booster doses; and 26 jurisdictions reported deaths among people who received two or more additional or booster doses. This list will be updated as more jurisdictions participate. Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6 months through 1 year, half of the single-year population counts for ages 0 through 1 year were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred. For the primary series analysis, age-standardized rates include ages 12 years and older from April 4, 2021 through December 4, 2021, ages 5 years and older from December 5, 2021 through July 30, 2022 and ages 6 months and older from July 31, 2022 onwards. For the booster dose analysis, age-standardized rates include ages 18 years and older from September 19, 2021 through December 25, 2021, ages 12 years and older from December 26, 2021, and ages 5 years and older from June 5, 2022 onwards. Small numbers could contribute to less precision when calculating death rates among some groups. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage. Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated with a primary series either overall or with a booster dose. Publications: Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138. Johnson AG, Linde L, Ali AR, et al. COVID-19 Incidence and Mortality Among Unvaccinated and Vaccinated Persons Aged ≥12 Years by Receipt of Bivalent Booster Doses and Time Since Vaccination — 24 U.S. Jurisdictions, October 3, 2021–December 24, 2022. MMWR Morb Mortal Wkly Rep 2023;72:145–152. Johnson AG, Linde L, Payne AB, et al. Notes from the Field: Comparison of COVID-19 Mortality Rates Among Adults Aged ≥65 Years Who Were Unvaccinated and Those Who Received a Bivalent Booster Dose Within the Preceding 6 Months — 20 U.S. Jurisdictions, September 18, 2022–April 1, 2023. MMWR Morb Mortal Wkly Rep 2023;72:667–669.

  3. D

    Provisional COVID-19 death counts and rates by month, jurisdiction of...

    • data.cdc.gov
    • data.virginia.gov
    • +3more
    application/rdfxml +5
    Updated Jul 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCHS/DVS (2025). Provisional COVID-19 death counts and rates by month, jurisdiction of residence, and demographic characteristics [Dataset]. https://data.cdc.gov/National-Center-for-Health-Statistics/Provisional-COVID-19-death-counts-and-rates-by-mon/yrur-wghw
    Explore at:
    csv, json, application/rssxml, application/rdfxml, tsv, xmlAvailable download formats
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    NCHS/DVS
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    This file contains COVID-19 death counts and rates by month and year of death, jurisdiction of residence (U.S., HHS Region) and demographic characteristics (sex, age, race and Hispanic origin, and age/race and Hispanic origin). United States death counts and rates include the 50 states, plus the District of Columbia.

    Deaths with confirmed or presumed COVID-19, coded to ICD–10 code U07.1. Number of deaths reported in this file are the total number of COVID-19 deaths received and coded as of the date of analysis and may not represent all deaths that occurred in that period. Counts of deaths occurring before or after the reporting period are not included in the file.

    Data during recent periods are incomplete because of the lag in time between when the death occurred and when the death certificate is completed, submitted to NCHS and processed for reporting purposes. This delay can range from 1 week to 8 weeks or more, depending on the jurisdiction and cause of death.

    Death counts should not be compared across jurisdictions. Data timeliness varies by state. Some states report deaths on a daily basis, while other states report deaths weekly or monthly.

    The ten (10) United States Department of Health and Human Services (HHS) regions include the following jurisdictions. Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont; Region 2: New Jersey, New York; Region 3: Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, West Virginia; Region 4: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee; Region 5: Illinois, Indiana, Michigan, Minnesota, Ohio, Wisconsin; Region 6: Arkansas, Louisiana, New Mexico, Oklahoma, Texas; Region 7: Iowa, Kansas, Missouri, Nebraska; Region 8: Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming; Region 9: Arizona, California, Hawaii, Nevada; Region 10: Alaska, Idaho, Oregon, Washington.

    Rates were calculated using the population estimates for 2021, which are estimated as of July 1, 2021 based on the Blended Base produced by the US Census Bureau in lieu of the April 1, 2020 decennial population count. The Blended Base consists of the blend of Vintage 2020 postcensal population estimates, 2020 Demographic Analysis Estimates, and 2020 Census PL 94-171 Redistricting File (see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/2020-2021/methods-statement-v2021.pdf).

    Rate are based on deaths occurring in the specified week and are age-adjusted to the 2000 standard population using the direct method (see https://www.cdc.gov/nchs/data/nvsr/nvsr70/nvsr70-08-508.pdf). These rates differ from annual age-adjusted rates, typically presented in NCHS publications based on a full year of data and annualized weekly age-adjusted rates which have been adjusted to allow comparison with annual rates. Annualization rates presents deaths per year per 100,000 population that would be expected in a year if the observed period specific (weekly) rate prevailed for a full year.

    Sub-national death counts between 1-9 are suppressed in accordance with NCHS data confidentiality standards. Rates based on death counts less than 20 are suppressed in accordance with NCHS standards of reliability as specified in NCHS Data Presentation Standards for Proportions (available from: https://www.cdc.gov/nchs/data/series/sr_02/sr02_175.pdf.).

  4. Deaths registered monthly in England and Wales

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Jun 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2025). Deaths registered monthly in England and Wales [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/monthlyfiguresondeathsregisteredbyareaofusualresidence
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 16, 2025
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    England
    Description

    Number of deaths registered each month by area of usual residence for England and Wales, by region, county, health authorities, local and unitary authority, and London borough.

  5. d

    Mass Killings in America, 2006 - present

    • data.world
    csv, zip
    Updated Jul 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Mass Killings in America, 2006 - present [Dataset]. https://data.world/associatedpress/mass-killings-public
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Jul 12, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 1, 2006 - Jul 4, 2025
    Area covered
    Description

    THIS DATASET WAS LAST UPDATED AT 2:11 AM EASTERN ON JULY 12

    OVERVIEW

    2019 had the most mass killings since at least the 1970s, according to the Associated Press/USA TODAY/Northeastern University Mass Killings Database.

    In all, there were 45 mass killings, defined as when four or more people are killed excluding the perpetrator. Of those, 33 were mass shootings . This summer was especially violent, with three high-profile public mass shootings occurring in the span of just four weeks, leaving 38 killed and 66 injured.

    A total of 229 people died in mass killings in 2019.

    The AP's analysis found that more than 50% of the incidents were family annihilations, which is similar to prior years. Although they are far less common, the 9 public mass shootings during the year were the most deadly type of mass murder, resulting in 73 people's deaths, not including the assailants.

    One-third of the offenders died at the scene of the killing or soon after, half from suicides.

    About this Dataset

    The Associated Press/USA TODAY/Northeastern University Mass Killings database tracks all U.S. homicides since 2006 involving four or more people killed (not including the offender) over a short period of time (24 hours) regardless of weapon, location, victim-offender relationship or motive. The database includes information on these and other characteristics concerning the incidents, offenders, and victims.

    The AP/USA TODAY/Northeastern database represents the most complete tracking of mass murders by the above definition currently available. Other efforts, such as the Gun Violence Archive or Everytown for Gun Safety may include events that do not meet our criteria, but a review of these sites and others indicates that this database contains every event that matches the definition, including some not tracked by other organizations.

    This data will be updated periodically and can be used as an ongoing resource to help cover these events.

    Using this Dataset

    To get basic counts of incidents of mass killings and mass shootings by year nationwide, use these queries:

    Mass killings by year

    Mass shootings by year

    To get these counts just for your state:

    Filter killings by state

    Definition of "mass murder"

    Mass murder is defined as the intentional killing of four or more victims by any means within a 24-hour period, excluding the deaths of unborn children and the offender(s). The standard of four or more dead was initially set by the FBI.

    This definition does not exclude cases based on method (e.g., shootings only), type or motivation (e.g., public only), victim-offender relationship (e.g., strangers only), or number of locations (e.g., one). The time frame of 24 hours was chosen to eliminate conflation with spree killers, who kill multiple victims in quick succession in different locations or incidents, and to satisfy the traditional requirement of occurring in a “single incident.”

    Offenders who commit mass murder during a spree (before or after committing additional homicides) are included in the database, and all victims within seven days of the mass murder are included in the victim count. Negligent homicides related to driving under the influence or accidental fires are excluded due to the lack of offender intent. Only incidents occurring within the 50 states and Washington D.C. are considered.

    Methodology

    Project researchers first identified potential incidents using the Federal Bureau of Investigation’s Supplementary Homicide Reports (SHR). Homicide incidents in the SHR were flagged as potential mass murder cases if four or more victims were reported on the same record, and the type of death was murder or non-negligent manslaughter.

    Cases were subsequently verified utilizing media accounts, court documents, academic journal articles, books, and local law enforcement records obtained through Freedom of Information Act (FOIA) requests. Each data point was corroborated by multiple sources, which were compiled into a single document to assess the quality of information.

    In case(s) of contradiction among sources, official law enforcement or court records were used, when available, followed by the most recent media or academic source.

    Case information was subsequently compared with every other known mass murder database to ensure reliability and validity. Incidents listed in the SHR that could not be independently verified were excluded from the database.

    Project researchers also conducted extensive searches for incidents not reported in the SHR during the time period, utilizing internet search engines, Lexis-Nexis, and Newspapers.com. Search terms include: [number] dead, [number] killed, [number] slain, [number] murdered, [number] homicide, mass murder, mass shooting, massacre, rampage, family killing, familicide, and arson murder. Offender, victim, and location names were also directly searched when available.

    This project started at USA TODAY in 2012.

    Contacts

    Contact AP Data Editor Justin Myers with questions, suggestions or comments about this dataset at jmyers@ap.org. The Northeastern University researcher working with AP and USA TODAY is Professor James Alan Fox, who can be reached at j.fox@northeastern.edu or 617-416-4400.

  6. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    csv, zip
    Updated Jul 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Jul 14, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  7. Deaths registered weekly in England and Wales, provisional

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Jul 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2025). Deaths registered weekly in England and Wales, provisional [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/weeklyprovisionalfiguresondeathsregisteredinenglandandwales
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jul 9, 2025
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Provisional counts of the number of deaths registered in England and Wales, by age, sex, region and Index of Multiple Deprivation (IMD), in the latest weeks for which data are available.

  8. Death Profiles by Leading Causes of Death

    • data.ca.gov
    • data.chhs.ca.gov
    • +3more
    web link, zip
    Updated Apr 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Death Profiles by Leading Causes of Death [Dataset]. https://data.ca.gov/dataset/death-profiles-by-leading-causes-of-death
    Explore at:
    web link, zipAvailable download formats
    Dataset updated
    Apr 22, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data for deaths by leading cause of death categories are now available in the death profiles dataset for each geographic granularity.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

    Cause of death categories for years 1999 and later are based on tenth revision of International Classification of Diseases (ICD-10) codes. Comparable categories are provided for years 1979 through 1998 based on ninth revision (ICD-9) codes. For more information on the comparability of cause of death classification between ICD revisions see Comparability of Cause-of-death Between ICD Revisions.

  9. VSRR Provisional Drug Overdose Death Counts

    • catalog.data.gov
    • healthdata.gov
    • +6more
    Updated Jun 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). VSRR Provisional Drug Overdose Death Counts [Dataset]. https://catalog.data.gov/dataset/vsrr-provisional-drug-overdose-death-counts
    Explore at:
    Dataset updated
    Jun 12, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This data presents provisional counts for drug overdose deaths based on a current flow of mortality data in the National Vital Statistics System. Counts for the most recent final annual data are provided for comparison. National provisional counts include deaths occurring within the 50 states and the District of Columbia as of the date specified and may not include all deaths that occurred during a given time period. Provisional counts are often incomplete and causes of death may be pending investigation resulting in an underestimate relative to final counts. To address this, methods were developed to adjust provisional counts for reporting delays by generating a set of predicted provisional counts. Several data quality metrics, including the percent completeness in overall death reporting, percentage of deaths with cause of death pending further investigation, and the percentage of drug overdose deaths with specific drugs or drug classes reported are included to aid in interpretation of provisional data as these measures are related to the accuracy of provisional counts. Reporting of the specific drugs and drug classes involved in drug overdose deaths varies by jurisdiction, and comparisons of death rates involving specific drugs across selected jurisdictions should not be made. Provisional data presented will be updated on a monthly basis as additional records are received. For more information please visit: https://www.cdc.gov/nchs/nvss/vsrr/drug-overdose-data.htm

  10. d

    Death Profiles by County

    • catalog.data.gov
    • data.ca.gov
    • +3more
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2024). Death Profiles by County [Dataset]. https://catalog.data.gov/dataset/death-profiles-by-county-d5761
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    California Department of Public Health
    Description

    This dataset contains counts of deaths for California counties based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data. The final data tables include both deaths that occurred in each California county regardless of the place of residence (by occurrence) and deaths to residents of each California county (by residence), whereas the provisional data table only includes deaths that occurred in each county regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years. The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  11. D

    ARCHIVED: COVID-19 Deaths by Population Characteristics Over Time

    • data.sfgov.org
    application/rdfxml +5
    Updated Sep 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). ARCHIVED: COVID-19 Deaths by Population Characteristics Over Time [Dataset]. https://data.sfgov.org/COVID-19/ARCHIVED-COVID-19-Deaths-by-Population-Characteris/w6fd-iq9e
    Explore at:
    csv, tsv, application/rssxml, xml, json, application/rdfxmlAvailable download formats
    Dataset updated
    Sep 11, 2023
    Description

    A. SUMMARY This archived dataset includes data for population characteristics that are no longer being reported publicly. The date on which each population characteristic type was archived can be found in the field “data_loaded_at”.

    To access the dataset that continues to refresh daily, navigate to this page: COVID-19 Deaths by Population Characteristics Over Time.   The dataset contains data on the following population characteristics that are no longer being reported publicly:

    • Skilled Nursing Facility Occupancy
    • Sexual orientation
    • Comorbidities
    • Homelessness
    • Single room occupancy (SRO) tenancy
    • Transmission Type

    B. HOW THE DATASET IS CREATED COVID-19 deaths are suspected to be associated with COVID-19. This means COVID-19 is listed as a cause of death or significant condition on the death certificate.    Data on the population characteristics of COVID-19 deaths are from:  * Case interviews  * Laboratories  * Medical providers    These multiple streams of data are merged, deduplicated, and undergo data verification processes.      Skilled Nursing Facility (SNF) occupancy * A Skilled Nursing Facility (SNF) is a type of long-term care facility that provides care to individuals, generally in their 60s and older, who need functional assistance in their daily lives.  * This dataset includes data for COVID-19 deaths reported in Skilled Nursing Facilities (SNFs) through 12/31/2022, archived on 1/5/2023. These data were identified where “Characteristic_Type” = ‘Skilled Nursing Facility Occupancy’.

    Sexual orientation    * The City began asking adults 18 years old or older for their sexual orientation identification during case interviews as of April 28, 2020. Sexual orientation data prior to this date is unavailable. * The City doesn’t collect or report information about sexual orientation for persons under 12 years of age. * Case investigation interviews transitioned to Virtual Assistant information gathering starting December 2021. The California Department of Public Health, Virtual Assistant is only sent to adults who are 18+ years old. Learn more about our data collection guidelines pertaining to sexual orientation.

    Comorbidities * Underlying conditions are reported when a person has one or more underlying health conditions at the time of diagnosis or death.

    Homelessness Persons are identified as homeless based on several data sources: * self-reported living situation * the location at the time of testing * Department of Public Health homelessness and health databases * Residents in Single-Room Occupancy hotels are not included in these figures. These methods serve as an estimate of persons experiencing homelessness. They may not meet other homelessness definitions.

    Single Room Occupancy (SRO) tenancy * SRO buildings are defined by the San Francisco Housing Code as having six or more "residential guest rooms" which may be attached to shared bathrooms, kitchens, and living spaces. * The details of a person's living arrangements are verified during case interviews.

    Transmission type * Information on transmission of COVID-19 is based on case interviews with individuals who have a confirmed positive test. Individuals are asked if they have been in close contact with a known COVID-19 case. If they answer yes, transmission category is recorded as contact with a known case. If they report no contact with a known case, transmission category is recorded as community transmission. If the case is not interviewed or was not asked the question, they are counted as unknown.

    C. UPDATE PROCESS This dataset will only update when any population characteristics are archived. Data for existing characteristic types will not change but new characteristic types may be added.   D. HOW TO USE THIS DATASET This dataset may include different types of characteristics. Filter the “Characteristic Type” column to explore a topic area. Then, the “Characteristic Group” column shows each group or category within that topic area and the number of deaths on each date.

    New deaths are the count of deaths within that characteristic group on that specific date. Cumulative deaths are the running total of all San Francisco COVID-19 deaths in that characteristic group up to the date listed.

    E. CHANGE LOG

    • 6/6/2023 - data on deaths by transmission type are no longer being updated. This data is currently through 6/1/2023 (as of 6/6/2023) and will not include any new data after this date.
    • 5/16/2023 - data on deaths by sexual orientation, comorbidities, homelessness, and single room occupancy are no longer being updated. This data is currently through 5/11/2023 (as of 5/16/2023) and will not include any new data after this date.
    • 1/5/2023 - data on SNF deaths are no longer being updated. SNF data is currently through 12/31/2022 (as of 1/5/2023) and will not include any new data after this date.

  12. Early Model-based Provisional Estimates of Drug Overdose, Suicide, and...

    • healthdata.gov
    • data.virginia.gov
    • +4more
    application/rdfxml +5
    Updated Apr 29, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cdc.gov (2021). Early Model-based Provisional Estimates of Drug Overdose, Suicide, and Transportation-related Deaths [Dataset]. https://healthdata.gov/dataset/Early-Model-based-Provisional-Estimates-of-Drug-Ov/wf2a-zb95
    Explore at:
    tsv, json, csv, application/rdfxml, application/rssxml, xmlAvailable download formats
    Dataset updated
    Apr 29, 2021
    Dataset provided by
    data.cdc.gov
    Description

    This dataset provides model-based provisional estimates of the weekly numbers of drug overdose, suicide, and transportation-related deaths using “nowcasting” methods to account for the normal lag between the occurrence and reporting of these deaths. Estimates less than 10 are suppressed. These early model-based provisional estimates were generated using a multi-stage hierarchical Bayesian modeling process to generate smoothed estimates of the weekly numbers of death, accounting for reporting lags. These estimates are based on several assumptions about how the reporting lags have changed in recent months across different jurisdictions, and the resulting estimates differ from other sources of provisional mortality data. For now, these estimates should be considered highly uncertain until further evaluations can be done to determine the validity of these assumptions about timeliness. The true patterns in reporting lags will not be known until data are finalized, typically 11–12 months after the end of the calendar year. Importantly, these estimates are not a replacement for monthly provisional drug overdose death counts, or quarterly provisional mortality estimates. For more detail about the nowcasting methods and models, see:

    Rossen LM, Hedegaard H, Warner M, Ahmad FB, Sutton PD. Early provisional estimates of drug overdose, suicide, and transportation-related deaths: Nowcasting methods to account for reporting lags. Vital Statistics Rapid Release; no 11. Hyattsville, MD: National Center for Health Statistics. February 2021. DOI: https://doi.org/10.15620/ cdc:101132

  13. A

    ‘United States COVID-19 Cases and Deaths by State over Time’ analyzed by...

    • analyst-2.ai
    Updated Jul 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2020). ‘United States COVID-19 Cases and Deaths by State over Time’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-united-states-covid-19-cases-and-deaths-by-state-over-time-17ec/latest
    Explore at:
    Dataset updated
    Jul 15, 2020
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Analysis of ‘United States COVID-19 Cases and Deaths by State over Time’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/94385ab5-449a-41ff-8253-15a9f6283539 on 12 February 2022.

    --- Dataset description provided by original source is as follows ---

    CDC reports aggregate counts of COVID-19 cases and death numbers daily online. Data on the COVID-19 website and CDC’s COVID Data Tracker are based on these most recent numbers reported by states, territories, and other jurisdictions. This data set of “United States COVID-19 Cases and Deaths by State over Time” combines this information. However, data are dependent on jurisdictions’ timely and accurate reporting.

    Separately, CDC also regularly reports provisional death certificate data from the National Vital Statistics System (NVSS) on data.cdc.gov. Details are described on the NCHS website. Reporting the number of deaths by using death certificates ultimately provides more complete information but is a longer process; therefore, these numbers will be less than the death counts on the COVID-19 website.

    Accuracy of Data
    CDC tracks COVID-19 illnesses, hospitalizations, and deaths to track trends, detect outbreaks, and monitor whether public health measures are working. However, counting exact numbers of COVID-19 cases is not possible. COVID-19 can cause mild illness, symptoms might not appear immediately, there are delays in reporting and testing, not everyone who is infected gets tested or seeks medical care, and there are differences in how completely states and territories report their cases.

    COVID-19 is one of about 120 diseases or conditions health departments voluntarily report to CDC. State, local, and territorial public health departments verify and report cases to CDC. When there are differences between numbers of cases reported by CDC versus by health departments, data reported by health departments should be considered the most up to date. Health departments may update case data over time when they receive more complete and accurate information. The number of new cases reported each day fluctuates. There is generally less reporting on the weekends and holidays.

    CDC reports death data on three other sections of the website: U.S. Cases & Deaths, COVID Data Tracker, and NCHS Provisional Death Counts. The U.S. Cases and Deaths webpages and COVID Data Tracker get their information from the same source (total case counts); however, NCHS Death Counts are based on death certificates that use information reported by physicians, medical examiners, or coroners in the cause-of-death section of each certificate. Data from each of these pages are considered provisional (not complete and pending verification) and are therefore subject to change. Counts from previous weeks are continually revised as more records are received and processed. Because not all jurisdictions report counts daily, counts may increase at different intervals.

    Confirmed & Probable Counts
    As of April 14, 2020, CDC case counts and death counts include both confirmed and probable cases and deaths. This change was made to reflect an interim COVID-19 position statement issued by the Council for State and Territorial Epidemiologists on April 5, 2020. The position statement included a case definition and made COVID-19 a nationally notifiable disease. Nationally notifiable disease cases are voluntarily reported to CDC by jurisdictions. Confirmed and probable case definition criteria are described here: https://wwwn.cdc.gov/nndss/conditions/coronavirus-disease-2019-covid-19/case-definition/2020/. Not all jurisdictions report probable cases and deaths to CDC. When not available to CDC, it is noted as N/A. Please note that jurisdiction

    --- Original source retains full ownership of the source dataset ---

  14. Deaths by vaccination status, England

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Aug 25, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Deaths by vaccination status, England [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/deathsbyvaccinationstatusengland
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Aug 25, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Age-standardised mortality rates for deaths involving coronavirus (COVID-19), non-COVID-19 deaths and all deaths by vaccination status, broken down by age group.

  15. A

    ‘Early Model-based Provisional Estimates of Drug Overdose, Suicide, and...

    • analyst-2.ai
    Updated Mar 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2021). ‘Early Model-based Provisional Estimates of Drug Overdose, Suicide, and Transportation-related Deaths’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-early-model-based-provisional-estimates-of-drug-overdose-suicide-and-transportation-related-deaths-7003/latest
    Explore at:
    Dataset updated
    Mar 4, 2021
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Early Model-based Provisional Estimates of Drug Overdose, Suicide, and Transportation-related Deaths’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/ff36ccc4-29ba-491f-9303-c97ff4492d84 on 28 January 2022.

    --- Dataset description provided by original source is as follows ---

    This dataset provides model-based provisional estimates of the weekly numbers of drug overdose, suicide, and transportation-related deaths using “nowcasting” methods to account for the normal lag between the occurrence and reporting of these deaths. These early model-based provisional estimates were generated using a multi-stage hierarchical Bayesian modeling process to generate smoothed estimates of the weekly numbers of death, accounting for reporting lags. These estimates are based on several assumptions about how the reporting lags have changed in recent months across different jurisdictions, and the resulting estimates differ from other sources of provisional mortality data. For now, these estimates should be considered highly uncertain until further evaluations can be done to determine the validity of these assumptions about timeliness. The true patterns in reporting lags will not be known until data are finalized, typically 11–12 months after the end of the calendar year. Importantly, these estimates are not a replacement for monthly provisional drug overdose death counts, or quarterly provisional mortality estimates. For more detail about the nowcasting methods and models, see:

    Rossen LM, Hedegaard H, Warner M, Ahmad FB, Sutton PD. Early provisional estimates of drug overdose, suicide, and transportation-related deaths: Nowcasting methods to account for reporting lags. Vital Statistics Rapid Release; no 11. Hyattsville, MD: National Center for Health Statistics. February 2021. DOI: https://doi.org/10.15620/ cdc:101132

    --- Original source retains full ownership of the source dataset ---

  16. Mortality Moscow 2010-2020

    • kaggle.com
    Updated May 27, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vitaliy Malcev (2020). Mortality Moscow 2010-2020 [Dataset]. https://www.kaggle.com/vitaliymalcev/mortaliy-moscow-20102020/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 27, 2020
    Dataset provided by
    Kaggle
    Authors
    Vitaliy Malcev
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    Moscow
    Description

    Context - Covid data falsification discussion:

    An active discussion about the mortality data in Moscow has erupted in the days. The Moscow Times newspaper drew attention to a significant increase in official mortality rates in April 2020: "Moscow recorded 20% more fatalities in April 2020 compared to its average April mortality total over the past decade, according to newly published preliminary data from Moscow’s civil registry office. The data comes as Russia sees the fastest growth in coronavirus infections in Europe, while its mortality rate remains much lower than in many countries. Moscow, the epicenter of Russia’s coronavirus outbreak, has continued to see daily spikes in new cases despite being under lockdown since March 30. According to the official data, 11,846 people died in Russia’s capital in April of this year, roughly a 20% increase from the 10-year average for April deaths, which is 9,866. The numbers suggest that the city’s statistics of coronavirus deaths may be higher in reality than official numbers indicate. Russia boasts a relatively low coronavirus mortality rate of 0.9%, which experts believe is linked to the way coronavirus-related deaths are counted."

    After this publication have been realesed The Moscow Department of Health has denied the statement of the inaccuracy of counting.:

    First, Moscow is a region that openly publishes mortality data on its websites. Moscow on an initiative basis published data for April before the federal structures did it. Secondly, the comparison of mortality rates in the monthly dynamics is incorrect and is not a clear evidence of any trends. In April 2020, indeed, according to the Civil Registry Office in Moscow, 11,846 death certificates were issued. So, the increase compared to April 2019 amounted to 1841 people, and compared to the same month of 2018 - 985 people, i.e. 2 times less. Thirdly, the diagnosis of coronavirus-infected deaths in Moscow is established after a mandatory autopsy is performed in strict accordance with the Provisional Guidelines of the Russian Ministry of Health.Of the total number of deaths in April 2020, 639 are people whose cause of death is coronavirus infection and its complications, most often pneumonia.It should be emphasized that the pathological autopsy of the dead with suspected CoV-19 in Russia and Moscow is carried out in 100% of cases, unlike most other countries.It is impossible to name the cause of death of COVID-19 in other cases. For example, over 60% of deaths occurred from obvious alternative causes, such as vascular accidents (myocardial infarction and stroke), stage 4 malignant diseases (essentially palliative patients), leukemia, systemic diseases with the development of organ failure (e.g. amyloidosis and terminal renal insufficiency) and other non-curable deadly diseases. Fourth, any seasonal increase in the incidence of SARS, not to mention the pandemic caused by the spread of the new coronavirus, is always accompanied by an increase in mortality. This is due to the appearance of the dead directly from an infectious disease, but to an even greater extent from other diseases, the exacerbation of which and the decompensation of the condition of patients suffering from these diseases also leads to death. In these cases, the infectious onset is a catalyst for the rapid progression of chronic diseases and the manifestation of new diseases. Fifthly, a similar situation with statistics is observed in other countries - mortality from COVID-19 is lower than the overall increase in mortality. According to the official sites of cities:In New York, mortality from coronavirus in April amounted to 11,861 people. At the same time, the total increase in mortality compared to the same period in 2019 is 15709.In London, in April, 3,589 people died with a diagnosis of coronavirus, while the total increase was 5531 Sixth, even if all the additional mortality for April in Moscow is attributed to coronavirus, the mortality from COVID will be slightly more than 3%, which is lower than the official mortality in New York and London (10% and 23%, respectively). Moreover, if you make such a recount in these cities, the mortality rate in them will be 13% and 32%, respectively. Seventh, Moscow is open for discussion and is ready to share experience with both Russian and foreign experts.

    Content

    I think community members would be interested in studying the data on mortality in the Russian capital themselves and conducting a competent statistical check.

    This may be of particular interest in connection with that he [US announced a grant of $ 250 thousand to "expose the disinformation of health care" in Russia](https://www....

  17. s

    Civil Registration Completeness within 12 months of Birth or Death

    • pacific-data.sprep.org
    • pacificdata.org
    Updated Jul 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SPC (2025). Civil Registration Completeness within 12 months of Birth or Death [Dataset]. https://pacific-data.sprep.org/dataset/civil-registration-completeness-within-12-months-birth-or-death
    Explore at:
    application/vnd.sdmx.data+csv; labels=name; version=2; charset=utf-8Available download formats
    Dataset updated
    Jul 14, 2025
    Dataset provided by
    Pacific Data Hub
    Authors
    SPC
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    12.330422368497594], [210.4087629144771, [180.68604618348473, [160.79484880452924, [191.82666666663366, [173.43205267523365, -2.129450541085248], [148.78475549077353, -13.251170035468647], -27.075509410830477], Vanuatu, French Polynesia, Republic of the Marshall Islands, Kiribati, Solomon Islands, New Caledonia, Papua New Guinea, American Samoa, Tonga, Wallis and Futuna
    Description

    Estimations of civil registration completeness within 12 months of birth or 12 months of death. These estimates are drawn from SPC Country profiles or from presentations made at the 2023 Pacific Civil Registrars Meeting.

    Find more Pacific data on PDH.stat.

  18. a

    ACLED Conflict and Demonstrations Event Data

    • hub.arcgis.com
    • cacgeoportal.com
    Updated May 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Asia and the Caucasus GeoPortal (2024). ACLED Conflict and Demonstrations Event Data [Dataset]. https://hub.arcgis.com/maps/1bacc9e3d30f4383af61c12cbf0401d8
    Explore at:
    Dataset updated
    May 23, 2024
    Dataset authored and provided by
    Central Asia and the Caucasus GeoPortal
    Area covered
    Description

    The Armed Conflict Location & Event Data Project (ACLED) is a US-registered non-profit whose mission is to provide the highest quality real-time data on political violence and demonstrations globally. The information collected includes the type of event, its date, the location, the actors involved, a brief narrative summary, and any reported fatalities. ACLED users rely on our robust global dataset to support decision-making around policy and programming, accurately analyze political and country risk, support operational security planning, and improve supply chain management.ACLED’s transparent methodology, expert team composed of 250 individuals speaking more than 70 languages, real-time coding system, and weekly update schedule are unrivaled in the field of data collection on conflict and disorder. Global Coverage: We track political violence, demonstrations, and strategic developments around the world, covering more than 240 countries and territories.Published Weekly: Our data are collected in real time and published weekly. It is the only dataset of its kind to provide such a high update frequency, with peer datasets most often updating monthly or yearly.Historical Data: Our dataset contains at least two full years of data for all countries and territories, with more extensive coverage available for multiple regions.Experienced Researchers: Our data are coded by experienced researchers with local, country, and regional expertise and language skills.Thorough Data Collection and Sourcing: Pulling from traditional media, reports, local partner data, and verified new media, ACLED uses a tailor-made sourcing methodology for individual regions/countries.Extensive Review Process: Our data go through an exhaustive multi-stage quality assurance process to ensure their accuracy and reliability. This process includes both manual and automated error checking and contextual review.Clean, Standardized, and Validated: Our data can be easily connected with internal dashboards through our API or downloaded through the Data Export Tool on our website.Resources Available on ESRI’s Living AtlasACLED data are available through the Living Atlas for the most recent 12 month period. The data are mapped to the centroid of first administrative divisions (“admin1”) within countries (e.g., states, districts, provinces) and aggregated by month. Variables in the data include:The number of events per admin1-month, disaggregated by event type (protests, riots, battles, violence against civilians, explosions/remote violence, and strategic developments)A conservative estimate of reported fatalities per admin1-monthThe total number of distinct violent actors active in the corresponding admin1 for each monthThis Living Atlas item is a Web Map, which provides a pre-configured view of ACLED event data in a few layers:ACLED Event Counts layer: events per admin1-month, styled by predominant event type for each location.ACLED Violent Actors layer: the number of distinct violent actors per admin1-month.ACLED Fatality Estimates layer: the estimated number of fatalities from political violence per admin1-month.These layers are based on the ACLED Conflict and Demonstrations Event Data Feature Layer, which has the same data but only a basic default styling that is similar to the Event Counts layer. The Web Map layers are configured with a time-slider component to account for the multiple months of data per admin1 unit. These indicators are also available in the ACLED Conflict and Demonstrations Data Key Indicators Group Layer, which includes the same preconfigured layers but without the time-slider component or background layers.Resources Available on the ACLED WebsiteThe fully disaggregated dataset is available for download on ACLED's website including:Date (day, month, year)Actors, associated actors, and actor typesLocation information (ADMIN1, ADMIN2, ADMIN3, location and geo coordinates)A conservative fatality estimateDisorder type, event types, and sub-event typesTags further categorizing the data A notes column providing a narrative of the event For more information, please see the ACLED Codebook.To explore ACLED’s full dataset, please register on the ACLED Access Portal, following the instructions available in this Access Guide. Upon registration, you’ll receive access to ACLED data on a limited basis. Commercial users have access to 3 free data downloads company-wide with access to up to one year of historical data. Public sector users have access to 6 downloads of up to three years of historical data organization-wide. To explore options for extended access, please reach out to our Access Team (access@acleddata.com).With an ACLED license, users can also leverage ACLED’s interactive Global Dashboard and check in for weekly data updates and analysis tracking key political violence and protest trends around the world. ACLED also has several analytical tools available such as our Early Warning Dashboard, Conflict Alert System (CAST), and Conflict Index Dashboard.

  19. United States COVID-19 Community Levels by County

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Nov 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2023). United States COVID-19 Community Levels by County [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/United-States-COVID-19-Community-Levels-by-County/3nnm-4jni
    Explore at:
    application/rdfxml, application/rssxml, csv, tsv, xml, jsonAvailable download formats
    Dataset updated
    Nov 2, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    United States
    Description

    Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    This archived public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties.

    The COVID-19 community levels were developed using a combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days. The COVID-19 community level was determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.

    Using these data, the COVID-19 community level was classified as low, medium, or high.

    COVID-19 Community Levels were used to help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.

    For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.

    Archived Data Notes:

    This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022.

    March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released.

    March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate.

    March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset.

    March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases.

    March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average).

    March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior.

    April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.

    April 21, 2022: COVID-19 Community Level (CCL) data released for counties in Nebraska for the week of April 21, 2022 have 3 counties identified in the high category and 37 in the medium category. CDC has been working with state officials to verify the data submitted, as other data systems are not providing alerts for substantial increases in disease transmission or severity in the state.

    May 26, 2022: COVID-19 Community Level (CCL) data released for McCracken County, KY for the week of May 5, 2022 have been updated to correct a data processing error. McCracken County, KY should have appeared in the low community level category during the week of May 5, 2022. This correction is reflected in this update.

    May 26, 2022: COVID-19 Community Level (CCL) data released for several Florida counties for the week of May 19th, 2022, have been corrected for a data processing error. Of note, Broward, Miami-Dade, Palm Beach Counties should have appeared in the high CCL category, and Osceola County should have appeared in the medium CCL category. These corrections are reflected in this update.

    May 26, 2022: COVID-19 Community Level (CCL) data released for Orange County, New York for the week of May 26, 2022 displayed an erroneous case rate of zero and a CCL category of low due to a data source error. This county should have appeared in the medium CCL category.

    June 2, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a data processing error. Tolland County, CT should have appeared in the medium community level category during the week of May 26, 2022. This correction is reflected in this update.

    June 9, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a misspelling. The medium community level category for Tolland County, CT on the week of May 26, 2022 was misspelled as “meduim” in the data set. This correction is reflected in this update.

    June 9, 2022: COVID-19 Community Level (CCL) data released for Mississippi counties for the week of June 9, 2022 should be interpreted with caution due to a reporting cadence change over the Memorial Day holiday that resulted in artificially inflated case rates in the state.

    July 7, 2022: COVID-19 Community Level (CCL) data released for Rock County, Minnesota for the week of July 7, 2022 displayed an artificially low case rate and CCL category due to a data source error. This county should have appeared in the high CCL category.

    July 14, 2022: COVID-19 Community Level (CCL) data released for Massachusetts counties for the week of July 14, 2022 should be interpreted with caution due to a reporting cadence change that resulted in lower than expected case rates and CCL categories in the state.

    July 28, 2022: COVID-19 Community Level (CCL) data released for all Montana counties for the week of July 21, 2022 had case rates of 0 due to a reporting issue. The case rates have been corrected in this update.

    July 28, 2022: COVID-19 Community Level (CCL) data released for Alaska for all weeks prior to July 21, 2022 included non-resident cases. The case rates for the time series have been corrected in this update.

    July 28, 2022: A laboratory in Nevada reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate will be inflated in Clark County, NV for the week of July 28, 2022.

    August 4, 2022: COVID-19 Community Level (CCL) data was updated on August 2, 2022 in error during performance testing. Data for the week of July 28, 2022 was changed during this update due to additional case and hospital data as a result of late reporting between July 28, 2022 and August 2, 2022. Since the purpose of this data set is to provide point-in-time views of COVID-19 Community Levels on Thursdays, any changes made to the data set during the August 2, 2022 update have been reverted in this update.

    August 4, 2022: COVID-19 Community Level (CCL) data for the week of July 28, 2022 for 8 counties in Utah (Beaver County, Daggett County, Duchesne County, Garfield County, Iron County, Kane County, Uintah County, and Washington County) case data was missing due to data collection issues. CDC and its partners have resolved the issue and the correction is reflected in this update.

    August 4, 2022: Due to a reporting cadence change, case rates for all Alabama counties will be lower than expected. As a result, the CCL levels published on August 4, 2022 should be interpreted with caution.

    August 11, 2022: COVID-19 Community Level (CCL) data for the week of August 4, 2022 for South Carolina have been updated to correct a data collection error that resulted in incorrect case data. CDC and its partners have resolved the issue and the correction is reflected in this update.

    August 18, 2022: COVID-19 Community Level (CCL) data for the week of August 11, 2022 for Connecticut have been updated to correct a data ingestion error that inflated the CT case rates. CDC, in collaboration with CT, has resolved the issue and the correction is reflected in this update.

    August 25, 2022: A laboratory in Tennessee reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate may be inflated in many counties and the CCLs published on August 25, 2022 should be interpreted with caution.

    August 25, 2022: Due to a data source error, the 7-day case rate for St. Louis County, Missouri, is reported as zero in the COVID-19 Community Level data released on August 25, 2022. Therefore, the COVID-19 Community Level for this county should be interpreted with caution.

    September 1, 2022: Due to a reporting issue, case rates for all Nebraska counties will include 6 days of data instead of 7 days in the COVID-19 Community Level (CCL) data released on September 1, 2022. Therefore, the CCLs for all Nebraska counties should be interpreted with caution.

    September 8, 2022: Due to a data processing error, the case rate for Philadelphia County, Pennsylvania,

  20. ERA5 monthly averaged data on single levels from 1940 to present

    • cds.climate.copernicus.eu
    • cds-test-cci2.copernicus-climate.eu
    grib
    Updated Jul 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). ERA5 monthly averaged data on single levels from 1940 to present [Dataset]. http://doi.org/10.24381/cds.f17050d7
    Explore at:
    gribAvailable download formats
    Dataset updated
    Jul 6, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf

    Time period covered
    Jan 1, 1940 - Jun 1, 2025
    Description

    ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 8 decades. Data is available from 1940 onwards. ERA5 replaces the ERA-Interim reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. This principle, called data assimilation, is based on the method used by numerical weather prediction centres, where every so many hours (12 hours at ECMWF) a previous forecast is combined with newly available observations in an optimal way to produce a new best estimate of the state of the atmosphere, called analysis, from which an updated, improved forecast is issued. Reanalysis works in the same way, but at reduced resolution to allow for the provision of a dataset spanning back several decades. Reanalysis does not have the constraint of issuing timely forecasts, so there is more time to collect observations, and when going further back in time, to allow for the ingestion of improved versions of the original observations, which all benefit the quality of the reanalysis product. ERA5 provides hourly estimates for a large number of atmospheric, ocean-wave and land-surface quantities. An uncertainty estimate is sampled by an underlying 10-member ensemble at three-hourly intervals. Ensemble mean and spread have been pre-computed for convenience. Such uncertainty estimates are closely related to the information content of the available observing system which has evolved considerably over time. They also indicate flow-dependent sensitive areas. To facilitate many climate applications, monthly-mean averages have been pre-calculated too, though monthly means are not available for the ensemble mean and spread. ERA5 is updated daily with a latency of about 5 days (monthly means are available around the 6th of each month). In case that serious flaws are detected in this early release (called ERA5T), this data could be different from the final release 2 to 3 months later. In case that this occurs users are notified. The data set presented here is a regridded subset of the full ERA5 data set on native resolution. It is online on spinning disk, which should ensure fast and easy access. It should satisfy the requirements for most common applications. An overview of all ERA5 datasets can be found in this article. Information on access to ERA5 data on native resolution is provided in these guidelines. Data has been regridded to a regular lat-lon grid of 0.25 degrees for the reanalysis and 0.5 degrees for the uncertainty estimate (0.5 and 1 degree respectively for ocean waves). There are four main sub sets: hourly and monthly products, both on pressure levels (upper air fields) and single levels (atmospheric, ocean-wave and land surface quantities). The present entry is "ERA5 monthly mean data on single levels from 1940 to present".

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
California Department of Public Health (2025). Statewide Death Profiles [Dataset]. https://data.chhs.ca.gov/dataset/statewide-death-profiles
Organization logo

Statewide Death Profiles

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
csv(164006), csv(200270), csv(2026589), csv(5401561), csv(463460), csv(5034), csv(16301), csv(4689434), csv(419332), csv(364098), zipAvailable download formats
Dataset updated
Jun 26, 2025
Dataset authored and provided by
California Department of Public Healthhttps://www.cdph.ca.gov/
Description

This dataset contains counts of deaths for California as a whole based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

The final data tables include both deaths that occurred in California regardless of the place of residence (by occurrence) and deaths to California residents (by residence), whereas the provisional data table only includes deaths that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

Search
Clear search
Close search
Google apps
Main menu