20 datasets found
  1. Share of Americans investing money in the stock market 1999-2024

    • statista.com
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Share of Americans investing money in the stock market 1999-2024 [Dataset]. https://www.statista.com/statistics/270034/percentage-of-us-adults-to-have-money-invested-in-the-stock-market/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    1999 - 2024
    Area covered
    United States
    Description

    In 2024, ** percent of adults in the United States invested in the stock market. This figure has remained steady over the last few years, and is still below the levels before the Great Recession, when it peaked in 2007 at ** percent. What is the stock market? The stock market can be defined as a group of stock exchanges, where investors can buy shares in a publicly traded company. In more recent years, it is estimated an increasing number of Americans are using neobrokers, making stock trading more accessible to investors. Other investments A significant number of people think stocks and bonds are the safest investments, while others point to real estate, gold, bonds, or a savings account. Since witnessing the significant one-day losses in the stock market during the Financial Crisis, many investors were turning towards these alternatives in hopes for more stability, particularly for investments with longer maturities. This could explain the decrease in this statistic since 2007. Nevertheless, some speculators enjoy chasing the short-run fluctuations, and others see value in choosing particular stocks.

  2. US Equities Packages - Stock Prices & Fundamentals

    • datarade.ai
    Updated Dec 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Intrinio (2021). US Equities Packages - Stock Prices & Fundamentals [Dataset]. https://datarade.ai/data-products/us-equities-packages-stock-prices-fundamentals-intrinio
    Explore at:
    Dataset updated
    Dec 26, 2021
    Dataset authored and provided by
    Intrinio
    Area covered
    United States of America
    Description

    We offer three easy-to-understand equity data packages to fit your business needs. Visit intrinio.com/pricing to compare packages.

    Bronze

    The Bronze package is ideal for developing your idea and prototyping your platform with high-quality EOD equity pricing data, standardized financial statement data, and supplementary fundamental datasets.

    When you’re ready for launch, it’s a seamless transition to our Silver package for additional data sets, 15-minute delayed equity pricing data, expanded history, and more.

    • Historical EOD equity prices & technicals (10 years history)
    • Security reference data
    • Standardized & as-reported financial statements (5 years history)
    • 7 supplementary fundamental data sets

    Bronze Benefits:

    • Web API access
    • 300 API calls/minute limit
    • Unlimited internal users
    • Unlimited internal & external display
    • Built-in ticketing system
    • Live chat & email support

    Silver

    The Silver package is ideal for startups that are in development, testing, or in the beta launch phase. Hit the ground running with 15-minute delayed and historical intraday and EOD equity prices, plus our standardized and as-reported financial statement data with nine supplementary data sets, including insider transactions and institutional ownership.

    When you’re ready to scale, easily move up to the Gold package for our full range of data sets and full history, real-time equity pricing data, premium support options, and much more.

    • 15-minute delayed & historical intraday equity prices
    • Historical EOD equity prices & technicals (full history)
    • Security reference data
    • Standardized & as-reported financial statements (10 years history)
    • 9 supplementary fundamental data sets

    Silver Benefits:

    • Web API access
    • 2,000 API calls/minute limit
    • Access to third-party datasets via Intrinio API (additional fees required)
    • Unlimited internal users
    • Unlimited internal & external display
    • Built-in ticketing system
    • Live chat & email support

    Gold

    The Gold package is ideal for funded companies that are in the growth or scaling stage, as well as institutions that are innovating within the fintech space. This full-service solution offers our complete collection of equity pricing data feeds, from real-time to historical EOD, plus standardized financial statement data and nine supplementary feeds.

    You’ll also have access to our wide range of modern access methods, third-party data via Intrinio’s API with licensing assistance, support from our team of expert engineers, custom delivery architectures, and much more.

    • Real-time equity prices
    • Historical intraday equity prices
    • Historical EOD equity prices & technicals (full history)
    • Security reference data
    • Standardized & as-reported financial statements (full history)
    • 9 supplementary fundamental data sets

    Gold Benefits:

    • No exchange fees
    • No user reporting or variable per-user exchange fees
    • High liquidity (6%+)
    • Web API & WebSocket access
    • 2,000 API calls/minute limit
    • Customizable access methods (Snowflake, FTP, etc.)
    • Access to third-party datasets via Intrinio API (additional fees required)
    • Unlimited internal users
    • Unlimited internal & external display
    • Built-in ticketing system
    • Live chat & email support
    • Access to engineering team
    • Concierge customer success team
    • Comarketing & promotional initiatives

    Platinum

    Don’t see a package that fits your needs? Our team can design premium custom packages for institutions.

  3. F

    S&P 500

    • fred.stlouisfed.org
    json
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 11, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

  4. A

    ‘Google Stock Data’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Jan 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Google Stock Data’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-google-stock-data-1a5f/latest
    Explore at:
    Dataset updated
    Jan 28, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Google Stock Data’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/varpit94/google-stock-data on 28 January 2022.

    --- Dataset description provided by original source is as follows ---

    What is Google?

    Google LLC is an American multinational technology company that specializes in Internet-related services and products, which include online advertising technologies, a search engine, cloud computing, software, and hardware. It is considered one of the Big Five companies in the American information technology industry, along with Amazon, Facebook, Apple, and Microsoft. Google was founded on September 4, 1998, by Larry Page and Sergey Brin while they were Ph.D. students at Stanford University in California. Together they own about 14% of its publicly-listed shares and control 56% of the stockholder voting power through super-voting stock. The company went public via an initial public offering (IPO) in 2004. In 2015, Google was reorganized as a wholly-owned subsidiary of Alphabet Inc. Google is Alphabet's largest subsidiary and is a holding company for Alphabet's Internet properties and interests. Sundar Pichai was appointed CEO of Google on October 24, 2015, replacing Larry Page, who became the CEO of Alphabet. On December 3, 2019, Pichai also became the CEO of Alphabet.

    Information about this dataset

    This dataset provides historical data of Alphabet Inc. (GOOG). The data is available at a daily level. Currency is USD.

    --- Original source retains full ownership of the source dataset ---

  5. SHL Telemedicine Ltd American Depositary Shares is assigned short-term B1 &...

    • kappasignal.com
    Updated Nov 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). SHL Telemedicine Ltd American Depositary Shares is assigned short-term B1 & long-term Ba3 estimated rating. (Forecast) [Dataset]. https://www.kappasignal.com/2023/11/shl-telemedicine-ltd-american.html
    Explore at:
    Dataset updated
    Nov 29, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Area covered
    United States
    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    SHL Telemedicine Ltd American Depositary Shares is assigned short-term B1 & long-term Ba3 estimated rating.

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  6. T

    United States Corporate Profits

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Corporate Profits [Dataset]. https://tradingeconomics.com/united-states/corporate-profits
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 1947 - Mar 31, 2025
    Area covered
    United States
    Description

    Corporate Profits in the United States decreased to 3203.60 USD Billion in the first quarter of 2025 from 3312 USD Billion in the fourth quarter of 2024. This dataset provides the latest reported value for - United States Corporate Profits - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  7. S&P Compustat Database

    • lseg.com
    sql
    Updated Nov 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LSEG (2024). S&P Compustat Database [Dataset]. https://www.lseg.com/en/data-analytics/financial-data/company-data/fundamentals-data/standardized-fundamentals/sp-compustat-database
    Explore at:
    sqlAvailable download formats
    Dataset updated
    Nov 25, 2024
    Dataset provided by
    London Stock Exchange Grouphttp://www.londonstockexchangegroup.com/
    Authors
    LSEG
    License

    https://www.lseg.com/en/policies/website-disclaimerhttps://www.lseg.com/en/policies/website-disclaimer

    Description

    Access historical and point-in-time financial statements, ratios, multiples, and press releases, with LSEG's S&P Compustat Database.

  8. d

    Shares Outstanding Data - on company's balance sheet, global coverage

    • datarade.ai
    .xls, .txt
    Updated Aug 27, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Exchange Data International (2020). Shares Outstanding Data - on company's balance sheet, global coverage [Dataset]. https://datarade.ai/data-products/shares-outstanding
    Explore at:
    .xls, .txtAvailable download formats
    Dataset updated
    Aug 27, 2020
    Dataset authored and provided by
    Exchange Data International
    Area covered
    Côte d'Ivoire, Iceland, Swaziland, Nigeria, Slovakia, Taiwan, Spain, Czech Republic, Lao People's Democratic Republic, Morocco
    Description

    The number of shares outstanding, shown on a company’s balance sheet under the heading “capital stock” is used to calculate key metrics including market capitalization figures, earnings per share (EPS) and share stakes for regulatory reporting levels. The Share Outstanding service consists of two datasets, Official Shares Outstanding and Daily-Adjusted Shares Outstanding.

    Official Shares Outstanding Providing official figures sourced directly from local exchanges or company sources, as soon as they are published. The frequency of official updates varies from market to market. Updates can also range from daily to annually.

    Adjusted Share Outstanding When corporate actions occur prior to the release of official updates, the number of shares outstanding can be impacted drastically. Use the adjusted shares outstanding dataset to provide the figures for events including:
    Bonus Bonus rights Buyback Capital Reduction Consolidation Conversion Demerger Divestment Entitlement Redemption Rights Sub-division

    Once the official figures have been released by the exchange, then receive reverted figures. The Worldwide Shares Outstanding service provides up-to-date figures from over 100 countries worldwide enabling companies to efficiently calculate figures to comply with exchange regulations or portfolio holding levels.

  9. Global Product Data | Competitor Pricing Data | Stock Keeping Unit (SKU)...

    • datarade.ai
    Updated Jan 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MealMe (2025). Global Product Data | Competitor Pricing Data | Stock Keeping Unit (SKU) Data | 1M+ Grocery and Retail stores with SKU level Prices [Dataset]. https://datarade.ai/data-products/global-product-data-competitor-pricing-data-stock-keeping-mealme-be66
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Jan 29, 2025
    Dataset provided by
    MealMe, Inc.
    Authors
    MealMe
    Area covered
    Sint Eustatius and Saba, Guam, British Indian Ocean Territory, French Guiana, Fiji, Slovenia, Cook Islands, Kenya, Barbados, Myanmar
    Description

    MealMe provides comprehensive grocery and retail SKU-level product data, including real-time pricing, from the top 100 retailers in the USA and Canada. Our proprietary technology ensures accurate and up-to-date insights, empowering businesses to excel in competitive intelligence, pricing strategies, and market analysis.

    Retailers Covered: MealMe’s database includes detailed SKU-level data and pricing from leading grocery and retail chains such as Walmart, Target, Costco, Kroger, Safeway, Publix, Whole Foods, Aldi, ShopRite, BJ’s Wholesale Club, Sprouts Farmers Market, Albertsons, Ralphs, Pavilions, Gelson’s, Vons, Shaw’s, Metro, and many more. Our coverage spans the most influential retailers across North America, ensuring businesses have the insights needed to stay competitive in dynamic markets.

    Key Features: SKU-Level Granularity: Access detailed product-level data, including product descriptions, categories, brands, and variations. Real-Time Pricing: Monitor current pricing trends across major retailers for comprehensive market comparisons. Regional Insights: Analyze geographic price variations and inventory availability to identify trends and opportunities. Customizable Solutions: Tailored data delivery options to meet the specific needs of your business or industry. Use Cases: Competitive Intelligence: Gain visibility into pricing, product availability, and assortment strategies of top retailers like Walmart, Costco, and Target. Pricing Optimization: Use real-time data to create dynamic pricing models that respond to market conditions. Market Research: Identify trends, gaps, and consumer preferences by analyzing SKU-level data across leading retailers. Inventory Management: Streamline operations with accurate, real-time inventory availability. Retail Execution: Ensure on-shelf product availability and compliance with merchandising strategies. Industries Benefiting from Our Data CPG (Consumer Packaged Goods): Optimize product positioning, pricing, and distribution strategies. E-commerce Platforms: Enhance online catalogs with precise pricing and inventory information. Market Research Firms: Conduct detailed analyses to uncover industry trends and opportunities. Retailers: Benchmark against competitors like Kroger and Aldi to refine assortments and pricing. AI & Analytics Companies: Fuel predictive models and business intelligence with reliable SKU-level data. Data Delivery and Integration MealMe offers flexible integration options, including APIs and custom data exports, for seamless access to real-time data. Whether you need large-scale analysis or continuous updates, our solutions scale with your business needs.

    Why Choose MealMe? Comprehensive Coverage: Data from the top 100 grocery and retail chains in North America, including Walmart, Target, and Costco. Real-Time Accuracy: Up-to-date pricing and product information ensures competitive edge. Customizable Insights: Tailored datasets align with your specific business objectives. Proven Expertise: Trusted by diverse industries for delivering actionable insights. MealMe empowers businesses to unlock their full potential with real-time, high-quality grocery and retail data. For more information or to schedule a demo, contact us today!

  10. United States US: No of Listed Domestic Companies: Total

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, United States US: No of Listed Domestic Companies: Total [Dataset]. https://www.ceicdata.com/en/united-states/financial-sector/us-no-of-listed-domestic-companies-total
    Explore at:
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2006 - Dec 1, 2017
    Area covered
    United States
    Variables measured
    Turnover
    Description

    United States US: Number of Listed Domestic Companies: Total data was reported at 4,336.000 Unit in 2017. This records an increase from the previous number of 4,331.000 Unit for 2016. United States US: Number of Listed Domestic Companies: Total data is updated yearly, averaging 5,930.000 Unit from Dec 1980 (Median) to 2017, with 38 observations. The data reached an all-time high of 8,090.000 Unit in 1996 and a record low of 4,102.000 Unit in 2012. United States US: Number of Listed Domestic Companies: Total data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Financial Sector. Listed domestic companies, including foreign companies which are exclusively listed, are those which have shares listed on an exchange at the end of the year. Investment funds, unit trusts, and companies whose only business goal is to hold shares of other listed companies, such as holding companies and investment companies, regardless of their legal status, are excluded. A company with several classes of shares is counted once. Only companies admitted to listing on the exchange are included.; ; World Federation of Exchanges database.; Sum; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.

  11. Z

    Material stock map of CONUS - South

    • data.niaid.nih.gov
    Updated Jul 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    André Baumgart (2023). Material stock map of CONUS - South [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6873597
    Explore at:
    Dataset updated
    Jul 25, 2023
    Dataset provided by
    André Baumgart
    Franz Schug
    Camila Gomez-Medina
    Fabian Lehmann
    Thomas Udelhoven
    Helmut Haberl
    Dominik Wiedenhofer
    Patrick Hostert
    Sebastian van der Linden
    Doris Virág
    David Frantz
    Sam Cooper
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Humanity’s role in changing the face of the earth is a long-standing concern, as is the human domination of ecosystems. Geologists are debating the introduction of a new geological epoch, the ‘anthropocene’, as humans are ‘overwhelming the great forces of nature’. In this context, the accumulation of artefacts, i.e., human-made physical objects, is a pervasive phenomenon. Variously dubbed ‘manufactured capital’, ‘technomass’, ‘human-made mass’, ‘in-use stocks’ or ‘socioeconomic material stocks’, they have become a major focus of sustainability sciences in the last decade. Globally, the mass of socioeconomic material stocks now exceeds 10e14 kg, which is roughly equal to the dry-matter equivalent of all biomass on earth. It is doubling roughly every 20 years, almost perfectly in line with ‘real’ (i.e. inflation-adjusted) GDP. In terms of mass, buildings and infrastructures (here collectively called ‘built structures’) represent the overwhelming majority of all socioeconomic material stocks.

    This dataset features a detailed map of material stocks in the CONUS on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors.

    Spatial extent This subdataset covers the South CONUS, i.e.

    AL

    AR

    FL

    GA

    KY

    LA

    MS

    NC

    SC

    TN

    VA

    WV

    For the remaining CONUS, see the related identifiers.

    Temporal extent The map is representative for ca. 2018.

    Data format The data are organized by states. Within each state, data are split into 100km x 100km tiles (EQUI7 grid), and mosaics are provided.

    Within each tile, images for area, volume, and mass at 10m spatial resolution are provided. Units are m², m³, and t, respectively. Each metric is split into buildings, other, rail and street (note: In the paper, other, rail, and street stocks are subsumed to mobility infrastructure). Each category is further split into subcategories (e.g. building types).

    Additionally, a grand total of all stocks is provided at multiple spatial resolutions and units, i.e.

    t at 10m x 10m

    kt at 100m x 100m

    Mt at 1km x 1km

    Gt at 10km x 10km

    For each state, mosaics of all above-described data are provided in GDAL VRT format, which can readily be opened in most Geographic Information Systems. File paths are relative, i.e. DO NOT change the file structure or file naming.

    Additionally, the grand total mass per state is tabulated for each county in mass_grand_total_t_10m2.tif.csv. County FIPS code and the ID in this table can be related via FIPS-dictionary_ENLOCALE.csv.

    Material layers Note that material-specific layers are not included in this repository because of upload limits. Only the totals are provided (i.e. the sum over all materials). However, these can easily be derived by re-applying the material intensity factors from (see related identifiers):

    A. Baumgart, D. Virág, D. Frantz, F. Schug, D. Wiedenhofer, Material intensity factors for buildings, roads and rail-based infrastructure in the United States. Zenodo (2022), doi:10.5281/zenodo.5045337.

    Further information For further information, please see the publication. A web-visualization of this dataset is available here. Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society.

    Publication D. Frantz, F. Schug, D. Wiedenhofer, A. Baumgart, D. Virág, S. Cooper, C. Gomez-Medina, F. Lehmann, T. Udelhoven, S. van der Linden, P. Hostert, H. Haberl. Weighing the US Economy: Map of Built Structures Unveils Patterns in Human-Dominated Landscapes. In prep

    Funding This research was primarly funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). Workflow development was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 414984028-SFB 1404.

    Acknowledgments We thank the European Space Agency and the European Commission for freely and openly sharing Sentinel imagery; USGS for the National Land Cover Database; Microsoft for Building Footprints; Geofabrik and all contributors for OpenStreetMap.This dataset was partly produced on EODC - we thank Clement Atzberger for supporting the generation of this dataset by sharing disc space on EODC.

  12. Facebook Stock Data - Live and Latest

    • kaggle.com
    Updated Jan 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kalilur Rahman (2025). Facebook Stock Data - Live and Latest [Dataset]. https://www.kaggle.com/datasets/kalilurrahman/facebook-stock-data-live-and-latest/versions/172
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 10, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Kalilur Rahman
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    https://logos-world.net/wp-content/uploads/2020/04/Facebook-Logo.png" alt="Facebook">

    Facebook is an American online social media and social networking service owned by Facebook, Inc.

    Founded in 2004 by Mark Zuckerberg with fellow Harvard College students and roommates Eduardo Saverin, Andrew McCollum, Dustin Moskovitz, and Chris Hughes, its name comes from the face book directories often given to American university students. Membership was initially limited to Harvard students, gradually expanding to other North American universities and, since 2006, anyone over 13 years old. As of 2020, Facebook claimed 2.8 billion monthly active users, and ranked seventh in global internet usage. It was the most downloaded mobile app of the 2010s.

  13. Twitter | Stock Market Analysis | Founding Years

    • kaggle.com
    Updated Oct 30, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aman Chauhan (2022). Twitter | Stock Market Analysis | Founding Years [Dataset]. https://www.kaggle.com/datasets/whenamancodes/twitter-stock-market-analysis-founding-years
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 30, 2022
    Dataset provided by
    Kaggle
    Authors
    Aman Chauhan
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    Stock Market Analysis of Twitter Inc from it's Founding / Listing Years which is 2013 to 2022.

    Data Dictionary

    ColumnsDescription
    DateDate of Listing (YYYY-MM-DD)
    OpenPrice when the market opens
    HighHighest recorded price for the day
    LowLowest recorded price for the day
    ClosePrice when the market closes
    Adj CloseModified closing price based on corporate actions
    VolumeAmount of stocks sold in a day

    About Twitter Inc.( TWTR)

    Twitter is a microblogging and social networking service owned by American company Twitter, Inc., on which users post and interact with messages known as "tweets". Registered users can post, like, and retweet tweets, while unregistered users only have a limited ability to read public tweets. Users interact with Twitter through browser or mobile frontend software, or programmatically via its APIs. Prior to April 2020, services were accessible via SMS. Tweets were originally restricted to 140 characters, but the limit was doubled to 280 for non-CJK languages in November 2017. Audio and video tweets remain limited to 140 seconds for most accounts.

    More - Find More Exciting🙀 Datasets Here - An Upvote👍 A Dayᕙ(`▿´)ᕗ , Keeps Aman Hurray Hurray..... ٩(˘◡˘)۶Hehe

  14. Z

    Material stock map of CONUS - South West

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 25, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sebastian van der Linden (2023). Material stock map of CONUS - South West [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6873599
    Explore at:
    Dataset updated
    Jul 25, 2023
    Dataset provided by
    André Baumgart
    Franz Schug
    Camila Gomez-Medina
    Fabian Lehmann
    Thomas Udelhoven
    Helmut Haberl
    Dominik Wiedenhofer
    Patrick Hostert
    Sebastian van der Linden
    Doris Virág
    David Frantz
    Sam Cooper
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Humanity’s role in changing the face of the earth is a long-standing concern, as is the human domination of ecosystems. Geologists are debating the introduction of a new geological epoch, the ‘anthropocene’, as humans are ‘overwhelming the great forces of nature’. In this context, the accumulation of artefacts, i.e., human-made physical objects, is a pervasive phenomenon. Variously dubbed ‘manufactured capital’, ‘technomass’, ‘human-made mass’, ‘in-use stocks’ or ‘socioeconomic material stocks’, they have become a major focus of sustainability sciences in the last decade. Globally, the mass of socioeconomic material stocks now exceeds 10e14 kg, which is roughly equal to the dry-matter equivalent of all biomass on earth. It is doubling roughly every 20 years, almost perfectly in line with ‘real’ (i.e. inflation-adjusted) GDP. In terms of mass, buildings and infrastructures (here collectively called ‘built structures’) represent the overwhelming majority of all socioeconomic material stocks.

    This dataset features a detailed map of material stocks in the CONUS on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors.

    Spatial extent This subdataset covers the South West CONUS, i.e.

    AZ

    NM

    NV

    TX

    For the remaining CONUS, see the related identifiers.

    Temporal extent The map is representative for ca. 2018.

    Data format The data are organized by states. Within each state, data are split into 100km x 100km tiles (EQUI7 grid), and mosaics are provided.

    Within each tile, images for area, volume, and mass at 10m spatial resolution are provided. Units are m², m³, and t, respectively. Each metric is split into buildings, other, rail and street (note: In the paper, other, rail, and street stocks are subsumed to mobility infrastructure). Each category is further split into subcategories (e.g. building types).

    Additionally, a grand total of all stocks is provided at multiple spatial resolutions and units, i.e.

    t at 10m x 10m

    kt at 100m x 100m

    Mt at 1km x 1km

    Gt at 10km x 10km

    For each state, mosaics of all above-described data are provided in GDAL VRT format, which can readily be opened in most Geographic Information Systems. File paths are relative, i.e. DO NOT change the file structure or file naming.

    Additionally, the grand total mass per state is tabulated for each county in mass_grand_total_t_10m2.tif.csv. County FIPS code and the ID in this table can be related via FIPS-dictionary_ENLOCALE.csv.

    Material layers Note that material-specific layers are not included in this repository because of upload limits. Only the totals are provided (i.e. the sum over all materials). However, these can easily be derived by re-applying the material intensity factors from (see related identifiers):

    A. Baumgart, D. Virág, D. Frantz, F. Schug, D. Wiedenhofer, Material intensity factors for buildings, roads and rail-based infrastructure in the United States. Zenodo (2022), doi:10.5281/zenodo.5045337.

    Further information For further information, please see the publication. A web-visualization of this dataset is available here. Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society.

    Publication D. Frantz, F. Schug, D. Wiedenhofer, A. Baumgart, D. Virág, S. Cooper, C. Gomez-Medina, F. Lehmann, T. Udelhoven, S. van der Linden, P. Hostert, H. Haberl. Weighing the US Economy: Map of Built Structures Unveils Patterns in Human-Dominated Landscapes. In prep

    Funding This research was primarly funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). Workflow development was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 414984028-SFB 1404.

    Acknowledgments We thank the European Space Agency and the European Commission for freely and openly sharing Sentinel imagery; USGS for the National Land Cover Database; Microsoft for Building Footprints; Geofabrik and all contributors for OpenStreetMap.This dataset was partly produced on EODC - we thank Clement Atzberger for supporting the generation of this dataset by sharing disc space on EODC.

  15. F

    CBOE Volatility Index: VIX

    • fred.stlouisfed.org
    json
    Updated Jul 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). CBOE Volatility Index: VIX [Dataset]. https://fred.stlouisfed.org/series/VIXCLS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 11, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Description

    Graph and download economic data for CBOE Volatility Index: VIX (VIXCLS) from 1990-01-02 to 2025-07-10 about VIX, volatility, stock market, and USA.

  16. T

    United States Money Supply M2

    • tradingeconomics.com
    • pl.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Money Supply M2 [Dataset]. https://tradingeconomics.com/united-states/money-supply-m2
    Explore at:
    json, xml, csv, excelAvailable download formats
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1959 - May 31, 2025
    Area covered
    United States
    Description

    Money Supply M2 in the United States increased to 21942 USD Billion in May from 21862.40 USD Billion in April of 2025. This dataset provides - United States Money Supply M2 - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  17. T

    Crude Oil - Price Data

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Crude Oil - Price Data [Dataset]. https://tradingeconomics.com/commodity/crude-oil
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 30, 1983 - Jul 11, 2025
    Area covered
    World
    Description

    Crude Oil rose to 68.75 USD/Bbl on July 11, 2025, up 3.27% from the previous day. Over the past month, Crude Oil's price has risen 1.04%, but it is still 16.37% lower than a year ago, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Crude Oil - values, historical data, forecasts and news - updated on July of 2025.

  18. T

    Gasoline - Price Data

    • tradingeconomics.com
    • tr.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Gasoline - Price Data [Dataset]. https://tradingeconomics.com/commodity/gasoline
    Explore at:
    json, csv, xml, excelAvailable download formats
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Oct 3, 2005 - Jul 11, 2025
    Area covered
    World
    Description

    Gasoline rose to 2.19 USD/Gal on July 11, 2025, up 1.65% from the previous day. Over the past month, Gasoline's price has risen 1.03%, but it is still 12.72% lower than a year ago, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Gasoline - values, historical data, forecasts and news - updated on July of 2025.

  19. T

    Wheat - Price Data

    • tradingeconomics.com
    • pl.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Oct 22, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2016). Wheat - Price Data [Dataset]. https://tradingeconomics.com/commodity/wheat
    Explore at:
    csv, json, excel, xmlAvailable download formats
    Dataset updated
    Oct 22, 2016
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 21, 1977 - Jul 11, 2025
    Area covered
    World
    Description

    Wheat fell to 545.50 USd/Bu on July 11, 2025, down 1.62% from the previous day. Over the past month, Wheat's price has risen 3.61%, but it is still 0.95% lower than a year ago, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Wheat - values, historical data, forecasts and news - updated on July of 2025.

  20. T

    Soybeans - Price Data

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Soybeans - Price Data [Dataset]. https://tradingeconomics.com/commodity/soybeans
    Explore at:
    excel, json, csv, xmlAvailable download formats
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 22, 1977 - Jul 11, 2025
    Area covered
    World
    Description

    Soybeans rose to 1,015.50 USd/Bu on July 11, 2025, up 0.30% from the previous day. Over the past month, Soybeans's price has fallen 2.57%, and is down 7.94% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Soybeans - values, historical data, forecasts and news - updated on July of 2025.

  21. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Share of Americans investing money in the stock market 1999-2024 [Dataset]. https://www.statista.com/statistics/270034/percentage-of-us-adults-to-have-money-invested-in-the-stock-market/
Organization logo

Share of Americans investing money in the stock market 1999-2024

Explore at:
16 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 25, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
1999 - 2024
Area covered
United States
Description

In 2024, ** percent of adults in the United States invested in the stock market. This figure has remained steady over the last few years, and is still below the levels before the Great Recession, when it peaked in 2007 at ** percent. What is the stock market? The stock market can be defined as a group of stock exchanges, where investors can buy shares in a publicly traded company. In more recent years, it is estimated an increasing number of Americans are using neobrokers, making stock trading more accessible to investors. Other investments A significant number of people think stocks and bonds are the safest investments, while others point to real estate, gold, bonds, or a savings account. Since witnessing the significant one-day losses in the stock market during the Financial Crisis, many investors were turning towards these alternatives in hopes for more stability, particularly for investments with longer maturities. This could explain the decrease in this statistic since 2007. Nevertheless, some speculators enjoy chasing the short-run fluctuations, and others see value in choosing particular stocks.

Search
Clear search
Close search
Google apps
Main menu