21 datasets found
  1. c

    Poverty Status by County - Datasets - CTData.org

    • data.ctdata.org
    Updated Mar 16, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Poverty Status by County - Datasets - CTData.org [Dataset]. http://data.ctdata.org/dataset/poverty-status-by-county
    Explore at:
    Dataset updated
    Mar 16, 2016
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Poverty Status by County reports the number and percentage of people and children living in poverty, by race/ethnicity and age range.

  2. a

    Racially or Ethnically Concentrated Areas of Poverty (R/ECAPs) 2020

    • hub.arcgis.com
    • data.lojic.org
    • +1more
    Updated Sep 27, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2023). Racially or Ethnically Concentrated Areas of Poverty (R/ECAPs) 2020 [Dataset]. https://hub.arcgis.com/datasets/35798a7569524ae48bd02625af27ba49
    Explore at:
    Dataset updated
    Sep 27, 2023
    Dataset authored and provided by
    Department of Housing and Urban Development
    Area covered
    Description

    To assist communities in identifying racially/ethnically-concentrated areas of poverty (R/ECAPs), HUD has developed a census tract-based definition of R/ECAPs. The definition involves a racial/ethnic concentration threshold and a poverty test. The racial/ethnic concentration threshold is straightforward: R/ECAPs must have a non-white population of 50 percent or more. Regarding the poverty threshold, Wilson (1980) defines neighborhoods of extreme poverty as census tracts with 40 percent or more of individuals living at or below the poverty line. Because overall poverty levels are substantially lower in many parts of the country, HUD supplements this with an alternate criterion. Thus, a neighborhood can be a R/ECAP if it has a poverty rate that exceeds 40% or is three or more times the average tract poverty rate for the metropolitan/micropolitan area, whichever threshold is lower. Census tracts with this extreme poverty that satisfy the racial/ethnic concentration threshold are deemed R/ECAPs. This translates into the following equation: Where i represents census tracts, () is the metropolitan/micropolitan (CBSA) mean tract poverty rate, is the ith tract poverty rate, () is the non-Hispanic white population in tract i, and Pop is the population in tract i.While this definition of R/ECAP works well for tracts in CBSAs, place outside of these geographies are unlikely to have racial or ethnic concentrations as high as 50 percent. In these areas, the racial/ethnic concentration threshold is set at 20 percent. Data Source: Related AFFH-T Local Government, PHA Tables/Maps: Table 4, 7; Maps 1-17.Related AFFH-T State Tables/Maps: Table 4, 7; Maps 1-15, 18.References:Wilson, William J. (1980). The Declining Significance of Race: Blacks and Changing American Institutions. Chicago: University of Chicago Press.To learn more about R/ECAPs visit:https://www.hud.gov/program_offices/fair_housing_equal_opp/affh ; https://www.hud.gov/sites/dfiles/FHEO/documents/AFFH-T-Data-Documentation-AFFHT0006-July-2020.pdf, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Date of Coverage: 2017 - 2021 ACSDate Updated: 10/2023

  3. Extreme poverty as share of global population in Africa 2025, by country

    • statista.com
    Updated Nov 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Extreme poverty as share of global population in Africa 2025, by country [Dataset]. https://www.statista.com/statistics/1228553/extreme-poverty-as-share-of-global-population-in-africa-by-country/
    Explore at:
    Dataset updated
    Nov 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    Africa
    Description

    In 2025, nearly 11.7 percent of the world population in extreme poverty, with the poverty threshold at 2.15 U.S. dollars a day, lived in Nigeria. Moreover, the Democratic Republic of the Congo accounted for around 11.7 percent of the global population in extreme poverty. Other African nations with a large poor population were Tanzania, Mozambique, and Madagascar. Poverty levels remain high despite the forecast decline Poverty is a widespread issue across Africa. Around 429 million people on the continent were living below the extreme poverty line of 2.15 U.S. dollars a day in 2024. Since the continent had approximately 1.4 billion inhabitants, roughly a third of Africa’s population was in extreme poverty that year. Mozambique, Malawi, Central African Republic, and Niger had Africa’s highest extreme poverty rates based on the 2.15 U.S. dollars per day extreme poverty indicator (updated from 1.90 U.S. dollars in September 2022). Although the levels of poverty on the continent are forecast to decrease in the coming years, Africa will remain the poorest region compared to the rest of the world. Prevalence of poverty and malnutrition across Africa Multiple factors are linked to increased poverty. Regions with critical situations of employment, education, health, nutrition, war, and conflict usually have larger poor populations. Consequently, poverty tends to be more prevalent in least-developed and developing countries worldwide. For similar reasons, rural households also face higher poverty levels. In 2024, the extreme poverty rate in Africa stood at around 45 percent among the rural population, compared to seven percent in urban areas. Together with poverty, malnutrition is also widespread in Africa. Limited access to food leads to low health conditions, increasing the poverty risk. At the same time, poverty can determine inadequate nutrition. Almost 38.3 percent of the global undernourished population lived in Africa in 2022.

  4. c

    Poverty Status by Town - Datasets - CTData.org

    • data.ctdata.org
    Updated Mar 16, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Poverty Status by Town - Datasets - CTData.org [Dataset]. http://data.ctdata.org/dataset/poverty-status-by-town
    Explore at:
    Dataset updated
    Mar 16, 2016
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Poverty Status by Town reports the number and percentage of people and children living in poverty, by race/ethnicity and age range.

  5. Poverty Rate (<200% FPL) and Child (under 18) Poverty Rate by California...

    • data.ca.gov
    • data.chhs.ca.gov
    • +4more
    csv, pdf, xlsx, zip
    Updated Nov 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Poverty Rate (<200% FPL) and Child (under 18) Poverty Rate by California Regions [Dataset]. https://data.ca.gov/dataset/poverty-rate-200-fpl-and-child-under-18-poverty-rate-by-california-regions
    Explore at:
    pdf, xlsx, csv, zipAvailable download formats
    Dataset updated
    Nov 7, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    California
    Description

    This table contains data on the percentage of the total population living below 200% of the Federal Poverty Level (FPL), and the percentage of children living below 200% FPL for California, its regions, counties, cities, towns, public use microdata areas, and census tracts. Data for time periods 2011-2015 (overall poverty) and 2012-2016 (child poverty) and with race/ethnicity stratification is included in the table. The poverty rate table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. Poverty is an important social determinant of health (see http://www.healthypeople.gov/2020/topicsobjectives2020/overview.aspx?topicid=39) that can impact people’s access to basic necessities (housing, food, education, jobs, and transportation), and is associated with higher incidence and prevalence of illness, and with reduced access to quality health care. More information on the data table and a data dictionary can be found in the About/Attachments section.

  6. d

    Demographics

    • catalog.data.gov
    • datasets.ai
    • +4more
    Updated Nov 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lake County Illinois GIS (2024). Demographics [Dataset]. https://catalog.data.gov/dataset/demographics-0be32
    Explore at:
    Dataset updated
    Nov 22, 2024
    Dataset provided by
    Lake County Illinois GIS
    Description

    Lake County, Illinois Demographic Data. Explanation of field attributes: Total Population – The entire population of Lake County. White – Individuals who are of Caucasian race. This is a percent.African American – Individuals who are of African American race. This is a percent.Asian – Individuals who are of Asian race. This is a percent. Hispanic – Individuals who are of Hispanic ethnicity. This is a percent. Does not Speak English- Individuals who speak a language other than English in their household. This is a percent. Under 5 years of age – Individuals who are under 5 years of age. This is a percent. Under 18 years of age – Individuals who are under 18 years of age. This is a percent. 18-64 years of age – Individuals who are between 18 and 64 years of age. This is a percent. 65 years of age and older – Individuals who are 65 years old or older. This is a percent. Male – Individuals who are male in gender. This is a percent. Female – Individuals who are female in gender. This is a percent. High School Degree – Individuals who have obtained a high school degree. This is a percent. Associate Degree – Individuals who have obtained an associate degree. This is a percent. Bachelor’s Degree or Higher – Individuals who have obtained a bachelor’s degree or higher. This is a percent. Utilizes Food Stamps – Households receiving food stamps/ part of SNAP (Supplemental Nutrition Assistance Program). This is a percent. Median Household Income - A median household income refers to the income level earned by a given household where half of the homes in the area earn more and half earn less. This is a dollar amount. No High School – Individuals who have not obtained a high school degree. This is a percent. Poverty – Poverty refers to families and people whose income in the past 12 months is below the poverty level. This is a percent.

  7. National Neighborhood Data Archive (NaNDA): Socioeconomic Status and...

    • icpsr.umich.edu
    • archive.icpsr.umich.edu
    ascii, delimited, r +3
    Updated Oct 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Clarke, Philippa; Melendez, Robert; Noppert, Grace; Chenoweth, Megan; Gypin, Lindsay (2025). National Neighborhood Data Archive (NaNDA): Socioeconomic Status and Demographic Characteristics of Census Tracts and ZIP Code Tabulation Areas, United States, 1990-2022 [Dataset]. http://doi.org/10.3886/ICPSR38528.v6
    Explore at:
    spss, r, sas, ascii, stata, delimitedAvailable download formats
    Dataset updated
    Oct 27, 2025
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Clarke, Philippa; Melendez, Robert; Noppert, Grace; Chenoweth, Megan; Gypin, Lindsay
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/38528/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38528/terms

    Time period covered
    1990 - 2022
    Area covered
    United States
    Description

    These datasets contain measures of socioeconomic and demographic characteristics by U.S. census tract for the years 1990-2022 and ZIP code tabulation area (ZCTA) for the years 2008-2022. Example measures include population density; population distribution by race, ethnicity, age, and income; income inequality by race and ethnicity; and proportion of population living below the poverty level, receiving public assistance, and female-headed or single parent families with kids. The datasets also contain a set of theoretically derived measures capturing neighborhood socioeconomic disadvantage and affluence, as well as a neighborhood index of Hispanic, foreign born, and limited English.

  8. l

    2021 Population and Poverty at Split Tract

    • geohub.lacity.org
    • data.lacounty.gov
    • +2more
    Updated May 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2024). 2021 Population and Poverty at Split Tract [Dataset]. https://geohub.lacity.org/datasets/lacounty::2021-population-and-poverty-at-split-tract
    Explore at:
    Dataset updated
    May 7, 2024
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Tabular data of population by age groups, race and gender, and the poverty by race is attached to the split tract geography to create this split tract with population and poverty data. Split tract data is the product of 2020 census tracts split by 2021 incorporated city boundaries and unincorporated community/countywide statistical areas (CSA) boundaries. The census tract boundaries have been altered and aligned where necessary with legal city boundaries and unincorporated areas, including shoreline/coastal areas. Census Tract:Every 10 years the Census Bureau counts the population of the United States as mandated by Constitution. The Census Bureau (https://www.census.gov/) released 2020 geographic boundaries data including census tracts for the analysis and mapping of demographic information across the United States. City Boundary:City Boundary data is the base map information for the County of Los Angeles. These City Boundaries are based on the Los Angeles County Seamless Cadastral Landbase. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works (DPW). This layer represents current city boundaries within Los Angeles County. The DPW provides the most current shapefiles representing city boundaries and city annexations. True, legal boundaries are only determined on the ground by surveyors licensed in the State of California.Countywide Statistical Areas (CSA): The countywide Statistical Area (CSA) was defined to provide a common geographic boundary for reporting departmental statistics for unincorporated areas and incorporated Los Angeles city to the Board of Supervisors. The CSA boundary and CSA names are established by the CIO and the LA County Enterprise GIS group worked with the Los Angeles County Board of Supervisors Unincorporated Area and Field Deputies that reflect as best as possible the general name preferences of residents and historical names of areas. This data is primarily focused on broad statistics and reporting, not mapping of communities. This data is not designed to perfectly represent communities, nor jurisdictional boundaries such as Angeles National Forest. CSA represent board approved geographies comprised of Census block groups split by cities.Data Field:CT20: 2020 Census tractFIP21: 2021 City FIP CodeCITY: City name for incorporated cities and “Unincorporated” for unincorporated areas (as of July 1, 2021) CSA: Countywide Statistical Area (CSA) - Unincorporated area community names and LA City neighborhood names.CT20FIP21CSA: 2020 census tract with 2021 city FIPs for incorporated cities, unincorporated areas and LA neighborhoods. SPA22: 2022 Service Planning Area (SPA) number.SPA_NAME: Service Planning Area name.HD22: 2022 Health District (HD) number: HD_NAME: Health District name.POP21_AGE_0_4: 2021 population 0 to 4 years oldPOP21_AGE_5_9: 2021 population 5 to 9 years old POP21_AGE_10_14: 2021 population 10 to 14 years old POP21_AGE_15_17: 2021 population 15 to 17 years old POP21_AGE_18_19: 2021 population 18 to 19 years old POP21_AGE_20_44: 2021 population 20 to 24 years old POP21_AGE_25_29: 2021 population 25 to 29 years old POP21_AGE_30_34: 2021 population 30 to 34 years old POP21_AGE_35_44: 2021 population 35 to 44 years old POP21_AGE_45_54: 2021 population 45 to 54 years old POP21_AGE_55_64: 2021 population 55 to 64 years old POP21_AGE_65_74: 2021 population 65 to 74 years old POP21_AGE_75_84: 2021 population 75 to 84 years old POP21_AGE_85_100: 2021 population 85 years and older POP21_WHITE: 2021 Non-Hispanic White POP21_BLACK: 2021 Non-Hispanic African AmericanPOP21_AIAN: 2021 Non-Hispanic American Indian or Alaska NativePOP21_ASIAN: 2021 Non-Hispanic Asian POP21_HNPI: 2021 Non-Hispanic Hawaiian Native or Pacific IslanderPOP21_HISPANIC: 2021 HispanicPOP21_MALE: 2021 Male POP21_FEMALE: 2021 Female POV21_WHITE: 2021 Non-Hispanic White below 100% Federal Poverty Level POV21_BLACK: 2021 Non-Hispanic African American below 100% Federal Poverty Level POV21_AIAN: 2021 Non-Hispanic American Indian or Alaska Native below 100% Federal Poverty Level POV21_ASIAN: 2021 Non-Hispanic Asian below 100% Federal Poverty Level POV21_HNPI: 2021 Non-Hispanic Hawaiian Native or Pacific Islander below 100% Federal Poverty Level POV21_HISPANIC: 2021 Hispanic below 100% Federal Poverty Level POV21_TOTAL: 2021 Total population below 100% Federal Poverty Level POP21_TOTAL: 2021 Total PopulationAREA_SQMIL: Area in square milePOP21_DENSITY: Population per square mile.POV21_PERCENT: Poverty percentage.How this data created?The tabular data of population by age groups, by ethnic groups and by gender, and the poverty by ethnic groups is attributed to the split tract geography to create this data. Split tract polygon data is created by intersecting 2020 census tract polygons, LA Country City Boundary polygons and Countywide Statistical Areas (CSA) polygon data. The resulting polygon boundary aligned and matched with the legal city boundary whenever possible. Note:1. Population and poverty data estimated as of July 1, 2021. 2. 2010 Census tract and 2020 census tracts are not the same. Similarly, city and community boundary are not the same because boundary is reviewed and updated annually.

  9. l

    2018 Population and Poverty at Split Tract

    • data.lacounty.gov
    • geohub.lacity.org
    • +1more
    Updated May 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2024). 2018 Population and Poverty at Split Tract [Dataset]. https://data.lacounty.gov/datasets/2018-population-and-poverty-at-split-tract
    Explore at:
    Dataset updated
    May 7, 2024
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Tabular data of population by age groups, race and gender, and the poverty by race is attached to the split tract geography to create this split tract with population and poverty data. Split tract data is the product of 2010 census tracts split by 2018 incorporated city boundaries and unincorporated community/countywide statistical areas (CSA) boundaries. The census tract boundaries have been altered and aligned where necessary with legal city boundaries and unincorporated areas, including shoreline/coastal areas. Census Tract:Every 10 years the Census Bureau counts the population of the United States as mandated by Constitution. The Census Bureau (https://www.census.gov/) released 2010 geographic boundaries data including census tracts for the analysis and mapping of demographic information across the United States. City Boundary:City Boundary data is the base map information for the County of Los Angeles. These City Boundaries are based on the Los Angeles County Seamless Cadastral Landbase. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works (DPW). This layer represents current city boundaries within Los Angeles County. The DPW provides the most current shapefiles representing city boundaries and city annexations. True, legal boundaries are only determined on the ground by surveyors licensed in the State of California.Countywide Statistical Areas (CSA): The countywide Statistical Area (CSA) was defined to provide a common geographic boundary for reporting departmental statistics for unincorporated areas and incorporated Los Angeles city to the Board of Supervisors. The CSA boundary and CSA names are established by the CIO and the LA County Enterprise GIS group worked with the Los Angeles County Board of Supervisors Unincorporated Area and Field Deputies that reflect as best as possible the general name preferences of residents and historical names of areas. This data is primarily focused on broad statistics and reporting, not mapping of communities. This data is not designed to perfectly represent communities, nor jurisdictional boundaries such as Angeles National Forest. CSA represent board approved geographies comprised of Census block groups split by cities.Data Field:CT10: 2010 Census tractFIP18: 2018 City FIP CodeCITY: City name for incorporated cities and “Unincorporated” for unincorporated areas (as of July 1, 2018) CSA: Countywide Statistical Area (CSA) - Unincorporated area community names and LA City neighborhood names.CT10FIP18CSA: 2010 census tract with 2018 city FIPs for incorporated cities, unincorporated areas and LA neighborhoods. SPA12: 2012 Service Planning Area (SPA) number.SPA_NAME: Service Planning Area name.HD12: 2012 Health District (HD) number: HD_NAME: Health District name.POP18_AGE_0_4: 2018 population 0 to 4 years oldPOP18_AGE_5_9: 2018 population 5 to 9 years old POP18_AGE_10_14: 2018 population 10 to 14 years old POP18_AGE_15_17: 2018 population 15 to 17 years old POP18_AGE_18_19: 2018 population 18 to 19 years old POP18_AGE_20_44: 2018 population 20 to 24 years old POP18_AGE_25_29: 2018 population 25 to 29 years old POP18_AGE_30_34: 2018 population 30 to 34 years old POP18_AGE_35_44: 2018 population 35 to 44 years old POP18_AGE_45_54: 2018 population 45 to 54 years old POP18_AGE_55_64: 2018 population 55 to 64 years old POP18_AGE_65_74: 2018 population 65 to 74 years old POP18_AGE_75_84: 2018 population 75 to 84 years old POP18_AGE_85_100: 2018 population 85 years and older POP18_WHITE: 2018 Non-Hispanic White POP18_BLACK: 2018 Non-Hispanic African AmericanPOP18_AIAN: 2018 Non-Hispanic American Indian or Alaska NativePOP18_ASIAN: 2018 Non-Hispanic Asian POP18_HNPI: 2018 Non-Hispanic Hawaiian Native or Pacific IslanderPOP18_HISPANIC: 2018 HispanicPOP18_MALE: 2018 Male POP18_FEMALE: 2018 Female POV18_WHITE: 2018 Non-Hispanic White below 100% Federal Poverty Level POV18_BLACK: 2018 Non-Hispanic African American below 100% Federal Poverty Level POV18_AIAN: 2018 Non-Hispanic American Indian or Alaska Native below 100% Federal Poverty Level POV18_ASIAN: 2018 Non-Hispanic Asian below 100% Federal Poverty Level POV18_HNPI: 2018 Non-Hispanic Hawaiian Native or Pacific Islander below 100% Federal Poverty Level POV18_HISPANIC: 2018 Hispanic below 100% Federal Poverty Level POV18_TOTAL: 2018 Total population below 100% Federal Poverty Level POP18_TOTAL: 2018 Total PopulationAREA_SQMIL: Area in square milePOP18_DENSITY: Population per square mile.POV18_PERCENT: Poverty percentage.How this data created?The tabular data of population by age groups, by ethnic groups and by gender, and the poverty by ethnic groups is attributed to the split tract geography to create this data. Split tract polygon data is created by intersecting 2010 census tract polygons, LA Country City Boundary polygons and Countywide Statistical Areas (CSA) polygon data. The resulting polygon boundary aligned and matched with the legal city boundary whenever possible. Note:1. Population and poverty data estimated as of July 1, 2019. 2. 2010 Census tract and 2020 census tracts are not the same. Similarly, city and community boundary are not the same because boundary is reviewed and updated annually.

  10. l

    2016 Population and Poverty at Split Tract

    • data.lacounty.gov
    • geohub.lacity.org
    • +1more
    Updated May 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2024). 2016 Population and Poverty at Split Tract [Dataset]. https://data.lacounty.gov/datasets/2016-population-and-poverty-at-split-tract/about
    Explore at:
    Dataset updated
    May 7, 2024
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Tabular data of population by age groups, race and gender, and the poverty by race is attached to the split tract geography to create this split tract with population and poverty data. Split tract data is the product of 2010 census tracts split by 2016 incorporated city boundaries and unincorporated community/countywide statistical areas (CSA) boundaries. The census tract boundaries have been altered and aligned where necessary with legal city boundaries and unincorporated areas, including shoreline/coastal areas. Census Tract:Every 10 years the Census Bureau counts the population of the United States as mandated by Constitution. The Census Bureau (https://www.census.gov/) released 2010 geographic boundaries data including census tracts for the analysis and mapping of demographic information across the United States. City Boundary:City Boundary data is the base map information for the County of Los Angeles. These City Boundaries are based on the Los Angeles County Seamless Cadastral Landbase. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works (DPW). This layer represents current city boundaries within Los Angeles County. The DPW provides the most current shapefiles representing city boundaries and city annexations. True, legal boundaries are only determined on the ground by surveyors licensed in the State of California.Countywide Statistical Areas (CSA): The countywide Statistical Area (CSA) was defined to provide a common geographic boundary for reporting departmental statistics for unincorporated areas and incorporated Los Angeles city to the Board of Supervisors. The CSA boundary and CSA names are established by the CIO and the LA County Enterprise GIS group worked with the Los Angeles County Board of Supervisors Unincorporated Area and Field Deputies that reflect as best as possible the general name preferences of residents and historical names of areas. This data is primarily focused on broad statistics and reporting, not mapping of communities. This data is not designed to perfectly represent communities, nor jurisdictional boundaries such as Angeles National Forest. CSA represent board approved geographies comprised of Census block groups split by cities.Data Field:CT10: 2010 Census tractFIP16: 2016 City FIP CodeCITY: City name for incorporated cities and “Unincorporated” for unincorporated areas (as of July 1, 2016) CSA: Countywide Statistical Area (CSA) - Unincorporated area community names and LA City neighborhood names.CT10FIP16CSA: 2010 census tract with 2016 city FIPs for incorporated cities, unincorporated areas and LA neighborhoods. SPA12: 2012 Service Planning Area (SPA) number.SPA_NAME: Service Planning Area name.HD12: 2012 Health District (HD) number: HD_NAME: Health District name.POP16_AGE_0_4: 2016 population 0 to 4 years oldPOP16_AGE_5_9: 2016 population 5 to 9 years old POP16_AGE_10_14: 2016 population 10 to 14 years old POP16_AGE_15_17: 2016 population 15 to 17 years old POP16_AGE_18_19: 2016 population 18 to 19 years old POP16_AGE_20_44: 2016 population 20 to 24 years old POP16_AGE_25_29: 2016 population 25 to 29 years old POP16_AGE_30_34: 2016 population 30 to 34 years old POP16_AGE_35_44: 2016 population 35 to 44 years old POP16_AGE_45_54: 2016 population 45 to 54 years old POP16_AGE_55_64: 2016 population 55 to 64 years old POP16_AGE_65_74: 2016 population 65 to 74 years old POP16_AGE_75_84: 2016 population 75 to 84 years old POP16_AGE_85_100: 2016 population 85 years and older POP16_WHITE: 2016 Non-Hispanic White POP16_BLACK: 2016 Non-Hispanic African AmericanPOP16_AIAN: 2016 Non-Hispanic American Indian or Alaska NativePOP16_ASIAN: 2016 Non-Hispanic Asian POP16_HNPI: 2016 Non-Hispanic Hawaiian Native or Pacific IslanderPOP16_HISPANIC: 2016 HispanicPOP16_MALE: 2016 Male POP16_FEMALE: 2016 Female POV16_WHITE: 2016 Non-Hispanic White below 100% Federal Poverty Level POV16_BLACK: 2016 Non-Hispanic African American below 100% Federal Poverty Level POV16_AIAN: 2016 Non-Hispanic American Indian or Alaska Native below 100% Federal Poverty Level POV16_ASIAN: 2016 Non-Hispanic Asian below 100% Federal Poverty Level POV16_HNPI: 2016 Non-Hispanic Hawaiian Native or Pacific Islander below 100% Federal Poverty Level POV16_HISPANIC: 2016 Hispanic below 100% Federal Poverty Level POV16_TOTAL: 2016 Total population below 100% Federal Poverty Level POP16_TOTAL: 2016 Total PopulationAREA_SQMIL: Area in square milePOP16_DENSITY: Population per square mile.POV16_PERCENT: Poverty rate/percentage.How this data created?The tabular data of population by age groups, by ethnic groups and by gender, and the poverty by ethnic groups is attributed to the split tract geography to create this data. Split tract polygon data is created by intersecting 2010 census tract polygons, LA Country City Boundary polygons and Countywide Statistical Areas (CSA) polygon data. The resulting polygon boundary aligned and matched with the legal city boundary whenever possible. Note:1. Population and poverty data estimated as of July 1, 2016. 2. 2010 Census tract and 2020 census tracts are not the same. Similarly, city and community boundary are not the same because boundary is reviewed and updated annually.

  11. l

    2014 Population and Poverty at Split Tract

    • geohub.lacity.org
    • data.lacounty.gov
    • +3more
    Updated May 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2024). 2014 Population and Poverty at Split Tract [Dataset]. https://geohub.lacity.org/datasets/lacounty::2014-population-and-poverty-at-split-tract
    Explore at:
    Dataset updated
    May 7, 2024
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Tabular data of population by age groups, race and gender, and the poverty by race is attached to the split tract geography to create this split tract with population and poverty data. Split tract data is the product of 2010 census tracts split by 2014 incorporated city boundaries and unincorporated community/countywide statistical areas (CSA) boundaries. The census tract boundaries have been altered and aligned where necessary with legal city boundaries and unincorporated areas, including shoreline/coastal areas. Census Tract:Every 10 years the Census Bureau counts the population of the United States as mandated by Constitution. The Census Bureau (https://www.census.gov/) released 2010 geographic boundaries data including census tracts for the analysis and mapping of demographic information across the United States. City Boundary:City Boundary data is the base map information for the County of Los Angeles. These City Boundaries are based on the Los Angeles County Seamless Cadastral Landbase. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works (DPW). This layer represents current city boundaries within Los Angeles County. The DPW provides the most current shapefiles representing city boundaries and city annexations. True, legal boundaries are only determined on the ground by surveyors licensed in the State of California.Countywide Statistical Areas (CSA): The countywide Statistical Area (CSA) was defined to provide a common geographic boundary for reporting departmental statistics for unincorporated areas and incorporated Los Angeles city to the Board of Supervisors. The CSA boundary and CSA names are established by the CIO and the LA County Enterprise GIS group worked with the Los Angeles County Board of Supervisors Unincorporated Area and Field Deputies that reflect as best as possible the general name preferences of residents and historical names of areas. This data is primarily focused on broad statistics and reporting, not mapping of communities. This data is not designed to perfectly represent communities, nor jurisdictional boundaries such as Angeles National Forest. CSA represent board approved geographies comprised of Census block groups split by cities.Data Field:CT10: 2010 Census tractFIP14: 2014 City FIP CodeCITY: City name for incorporated cities and “Unincorporated” for unincorporated areas (as of July 1, 2014) CT10FIP14: 2010 census tract with 2014 city FIPs for incorporated cities and unincorporated areas. SPA12: 2012 Service Planning Area (SPA) number.SPA_NAME: Service Planning Area name.HD12: 2012 Health District (HD) number: HD_NAME: Health District name.POP14_AGE_0_4: 2014 population 0 to 4 years oldPOP14_AGE_5_9: 2014 population 5 to 9 years old POP14_AGE_10_14: 2014 population 10 to 14 years old POP14_AGE_15_17: 2014 population 15 to 17 years old POP14_AGE_18_19: 2014 population 18 to 19 years old POP14_AGE_20_44: 2014 population 20 to 24 years old POP14_AGE_25_29: 2014 population 25 to 29 years old POP14_AGE_30_34: 2014 population 30 to 34 years old POP14_AGE_35_44: 2014 population 35 to 44 years old POP14_AGE_45_54: 2014 population 45 to 54 years old POP14_AGE_55_64: 2014 population 55 to 64 years old POP14_AGE_65_74: 2014 population 65 to 74 years old POP14_AGE_75_84: 2014 population 75 to 84 years old POP14_AGE_85_100: 2014 population 85 years and older POP14_WHITE: 2014 Non-Hispanic White POP14_BLACK: 2014 Non-Hispanic African AmericanPOP14_AIAN: 2014 Non-Hispanic American Indian or Alaska NativePOP14_ASIAN: 2014 Non-Hispanic Asian POP14_HNPI: 2014 Non-Hispanic Hawaiian Native or Pacific IslanderPOP14_HISPANIC: 2014 HispanicPOP14_MALE: 2014 Male POP14_FEMALE: 2014 Female POV14_WHITE: 2014 Non-Hispanic White below 100% Federal Poverty Level POV14_BLACK: 2014 Non-Hispanic African American below 100% Federal Poverty Level POV14_AIAN: 2014 Non-Hispanic American Indian or Alaska Native below 100% Federal Poverty Level POV14_ASIAN: 2014 Non-Hispanic Asian below 100% Federal Poverty Level POV14_HNPI: 2014 Non-Hispanic Hawaiian Native or Pacific Islander below 100% Federal Poverty Level POV14_HISPANIC: 2014 Hispanic below 100% Federal Poverty Level POV14_TOTAL: 2014 Total population below 100% Federal Poverty Level POP14_TOTAL: 2014 Total PopulationAREA_SQMIL: Area in square milePOP14_DENSITY: Population per square mile.POV14_PERCENT: Poverty rate/percentage.How this data created?The tabular data of population by age groups, by ethnic groups and by gender, and the poverty by ethnic groups is attributed to the split tract geography to create this data. Split tract polygon data is created by intersecting 2010 census tract polygons, LA Country City Boundary polygons and Countywide Statistical Areas (CSA) polygon data. The resulting polygon boundary aligned and matched with the legal city boundary whenever possible. Note:1. Population and poverty data estimated as of July 1, 2014. 2. 2010 Census tract and 2020 census tracts are not the same. Similarly, city and community boundary are not the same because boundary is reviewed and updated annually.

  12. d

    NYSERDA Low- to Moderate-Income New York State Census Population Analysis...

    • catalog.data.gov
    • datasets.ai
    • +2more
    Updated Jun 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ny.gov (2025). NYSERDA Low- to Moderate-Income New York State Census Population Analysis Dataset: Average for 2013-2015 [Dataset]. https://catalog.data.gov/dataset/nyserda-low-to-moderate-income-new-york-state-census-population-analysis-dataset-aver-2013
    Explore at:
    Dataset updated
    Jun 28, 2025
    Dataset provided by
    data.ny.gov
    Area covered
    New York
    Description

    How does your organization use this dataset? What other NYSERDA or energy-related datasets would you like to see on Open NY? Let us know by emailing OpenNY@nyserda.ny.gov. The Low- to Moderate-Income (LMI) New York State (NYS) Census Population Analysis dataset is resultant from the LMI market database designed by APPRISE as part of the NYSERDA LMI Market Characterization Study (https://www.nyserda.ny.gov/lmi-tool). All data are derived from the U.S. Census Bureau’s American Community Survey (ACS) 1-year Public Use Microdata Sample (PUMS) files for 2013, 2014, and 2015. Each row in the LMI dataset is an individual record for a household that responded to the survey and each column is a variable of interest for analyzing the low- to moderate-income population. The LMI dataset includes: county/county group, households with elderly, households with children, economic development region, income groups, percent of poverty level, low- to moderate-income groups, household type, non-elderly disabled indicator, race/ethnicity, linguistic isolation, housing unit type, owner-renter status, main heating fuel type, home energy payment method, housing vintage, LMI study region, LMI population segment, mortgage indicator, time in home, head of household education level, head of household age, and household weight. The LMI NYS Census Population Analysis dataset is intended for users who want to explore the underlying data that supports the LMI Analysis Tool. The majority of those interested in LMI statistics and generating custom charts should use the interactive LMI Analysis Tool at https://www.nyserda.ny.gov/lmi-tool. This underlying LMI dataset is intended for users with experience working with survey data files and producing weighted survey estimates using statistical software packages (such as SAS, SPSS, or Stata).

  13. Adjusted Income and Poverty in the US

    • kaggle.com
    zip
    Updated Jan 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Adjusted Income and Poverty in the US [Dataset]. https://www.kaggle.com/datasets/thedevastator/equivalence-adjusted-income-and-poverty-in-the-u/code
    Explore at:
    zip(144680 bytes)Available download formats
    Dataset updated
    Jan 8, 2023
    Authors
    The Devastator
    Area covered
    United States
    Description

    Adjusted Income and Poverty in the US

    Changes in People and Health Insurance

    By U.S. Census Bureau [source]

    About this dataset

    The U.S. Bureau of the Census' Current Population Survey, Annual Social and Economic Supplements, presents an insightful look into American society at any given time period. Through it's annual data, one can understand the makeup of a nation across a multitude of parameters--including income level distribution measures, poverty status characteristics and health insurance coverage broken down by age, race/ethnicity and gender.

    This chart series is like a snapshot into America's past--allowing us to monitor both current progress made in regards to economic stability while also reflecting on the growth (or lack thereof) achieved over different decades in terms of racial discrepancies in poverty levels as well as an individual's ability present etc to maintain financial health. The series looks at data collected from 1959-2015; providing information on number/percentage all noninstitutionalized population (15+ years old) who are below or above poverty thresholds as well as median earnings for male/female earners adjusted for real inflation values (based on current dollars). Insights such as these enable us to gain key information about how economic disparities have fared during each year throughout this half century time span and how policy changes have impacted the overall wellbeing on a national level since then

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    Introduction

    This dataset contains information on the equivalence-adjusted income and poverty in the US from 1967 to 2015. It includes information on the population without health insurance coverage by state, total workers and full-time, year-round workers by sex and female-to-male earnings ratio, selected measures of equivalence-adjusted income dispersion, people in poverty by selected characteristics, and measures of income inequality. This guide will explain how to use this dataset effectively for analysis.

    Data Overview

    The datasets contain both summary statistics and detailed breakdowns for different categories throughout the years 1967 to 2015. In Table A1 you can find data on population without health insurance coverage by state during that time period. Table A4 contains total numbers of workers as well as real median earning details organized by sex and male/female earning ratios over time period in question. The tables A3 through 5 include more specific details related to measurements of Equivalence Adjusted Income Dispersion such as Gini Coefficient values.. Both table 2 & 3 provides detail breakdowns relating to Income distribution measurements between 2014 & 2015 along with other related statistical figures regarding individuals below poverty line during this time period based upon age , race , Hispanic Origin factors.

    Data Cleaning/Preparation Specifics

    This dataset follows a similar notation used throughout each table so it shouldn't be difficult understand what is being represented .However representing individual components like Gini Coefficient (TableA3) or Female ratio Vs Male earnings remains abstract in comparison especially when attempting visualization techniques (Charting). In order for users not familiar with certain terms like “Equivalence -Adjusted Income Dispersion” it would need explaining thoroughly or these terms should at least be highlighted & avoid confusing readers . Level out Missing Data that is within range statistically makes sense according “Census Technical Docs” . For example missing value data pertaining Individual Poverty estimates have based upon qualification requirements where numbers are rounded up after exchange calculations ( See official Raw Data column Notes available under Sources ).

    Visualization Strategies

    For effective visualization there needs be understanding between what counts supplied are actually representing For example: Column such as Difference Between Female & Male Earnings shown TableA4 helps gauge pay gap but difference between % Measures significantly important when charting any changes overtime diagrams or identifying movements visually from various bar /line graphs dealing this type data set . Other numerical aspects such Gender Ratio

    Research Ideas

    • Tracking changes in poverty levels over time by state and ethnicity
    • Examining the impact of government programs like the EITC and CTC on pov...
  14. g

    Poverty Rate (<200% FPL) and Child (under 18) Poverty Rate by California...

    • gimi9.com
    Updated Aug 12, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2014). Poverty Rate (<200% FPL) and Child (under 18) Poverty Rate by California Regions [Dataset]. https://gimi9.com/dataset/california_poverty-rate-200-fpl-and-child-under-18-poverty-rate-by-california-regions
    Explore at:
    Dataset updated
    Aug 12, 2014
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    California
    Description

    This table contains data on the percentage of the total population living below 200% of the Federal Poverty Level (FPL), and the percentage of children living below 200% FPL for California, its regions, counties, cities, towns, public use microdata areas, and census tracts. Data for time periods 2011-2015 (overall poverty) and 2012-2016 (child poverty) and with race/ethnicity stratification is included in the table. The poverty rate table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. Poverty is an important social determinant of health (see http://www.healthypeople.gov/2020/topicsobjectives2020/overview.aspx?topicid=39) that can impact people’s access to basic necessities (housing, food, education, jobs, and transportation), and is associated with higher incidence and prevalence of illness, and with reduced access to quality health care. More information on the data table and a data dictionary can be found in the About/Attachments section.

  15. l

    2012 Population and Poverty at Split Tract

    • data.lacounty.gov
    • geohub.lacity.org
    Updated May 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2024). 2012 Population and Poverty at Split Tract [Dataset]. https://data.lacounty.gov/datasets/2012-population-and-poverty-at-split-tract-
    Explore at:
    Dataset updated
    May 7, 2024
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Tabular data of population by age groups, race and gender, and the poverty by race is attached to the split tract geography to create this split tract with population and poverty data. Split tract data is the product of 2010 census tracts split by 2012 incorporated city boundaries and unincorporated community/countywide statistical areas (CSA) boundaries. The census tract boundaries have been altered and aligned where necessary with legal city boundaries and unincorporated areas, including shoreline/coastal areas. Census Tract:Every 10 years the Census Bureau counts the population of the United States as mandated by Constitution. The Census Bureau (https://www.census.gov/) released 2010 geographic boundaries data including census tracts for the analysis and mapping of demographic information across the United States. City Boundary:City Boundary data is the base map information for the County of Los Angeles. These City Boundaries are based on the Los Angeles County Seamless Cadastral Landbase. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works (DPW). This layer represents current city boundaries within Los Angeles County. The DPW provides the most current shapefiles representing city boundaries and city annexations. True, legal boundaries are only determined on the ground by surveyors licensed in the State of California.Countywide Statistical Areas (CSA): The countywide Statistical Area (CSA) was defined to provide a common geographic boundary for reporting departmental statistics for unincorporated areas and incorporated Los Angeles city to the Board of Supervisors. The CSA boundary and CSA names are established by the CIO and the LA County Enterprise GIS group worked with the Los Angeles County Board of Supervisors Unincorporated Area and Field Deputies that reflect as best as possible the general name preferences of residents and historical names of areas. This data is primarily focused on broad statistics and reporting, not mapping of communities. This data is not designed to perfectly represent communities, nor jurisdictional boundaries such as Angeles National Forest. CSA represent board approved geographies comprised of Census block groups split by cities.Data Field:CT10: 2010 Census tractFIP12: 2012 City FIP CodeCITY: City name for incorporated cities and “Unincorporated” for unincorporated areas (as of July 1, 2012) CT10FIP12: 2010 census tract with 2012 city FIPs for incorporated cities and unincorporated areas. SPA12: 2012 Service Planning Area (SPA) number.SPA_NAME: Service Planning Area name.HD12: 2012 Health District (HD) number: HD_NAME: Health District name.POP12_AGE_0_4: 2012 population 0 to 4 years oldPOP12_AGE_5_9: 2012 population 5 to 9 years old POP12_AGE_10_14: 2012 population 10 to 14 years old POP12_AGE_15_17: 2012 population 15 to 17 years old POP12_AGE_18_19: 2012 population 18 to 19 years old POP12_AGE_20_44: 2012 population 20 to 24 years old POP12_AGE_25_29: 2012 population 25 to 29 years old POP12_AGE_30_34: 2012 population 30 to 34 years old POP12_AGE_35_44: 2012 population 35 to 44 years old POP12_AGE_45_54: 2012 population 45 to 54 years old POP12_AGE_55_64: 2012 population 55 to 64 years old POP12_AGE_65_74: 2012 population 65 to 74 years old POP12_AGE_75_84: 2012 population 75 to 84 years old POP12_AGE_85_100: 2012 population 85 years and older POP12_WHITE: 2012 Non-Hispanic White POP12_BLACK: 2012 Non-Hispanic African AmericanPOP12_AIAN: 2012 Non-Hispanic American Indian or Alaska NativePOP12_ASIAN: 2012 Non-Hispanic Asian POP12_HNPI: 2012 Non-Hispanic Hawaiian Native or Pacific IslanderPOP12_HISPANIC: 2012 HispanicPOP12_MALE: 2012 Male POP12_FEMALE: 2012 Female POV12_WHITE: 2012 Non-Hispanic White below 100% Federal Poverty Level POV12_BLACK: 2012 Non-Hispanic African American below 100% Federal Poverty Level POV12_AIAN: 2012 Non-Hispanic American Indian or Alaska Native below 100% Federal Poverty Level POV12_ASIAN: 2012 Non-Hispanic Asian below 100% Federal Poverty Level POV12_HNPI: 2012 Non-Hispanic Hawaiian Native or Pacific Islander below 100% Federal Poverty Level POV12_HISPANIC: 2012 Hispanic below 100% Federal Poverty Level POV12_TOTAL: 2012 Total population below 100% Federal Poverty Level POP12_TOTAL: 2012 Total PopulationAREA_SQMIL: Area in square milePOP12_DENSITY: Population per square mile.POV12_PERCENT: Poverty rate/percentage.How this data created?The tabular data of population by age groups, by ethnic groups and by gender, and the poverty by ethnic groups is attributed to the split tract geography to create this data. Split tract polygon data is created by intersecting 2010 census tract polygons, LA Country City Boundary polygons and Countywide Statistical Areas (CSA) polygon data. The resulting polygon boundary aligned and matched with the legal city boundary whenever possible. Note:1. Population and poverty data estimated as of July 1, 2012. 2. 2010 Census tract and 2020 census tracts are not the same. Similarly, city and community boundary are not the same because boundary is reviewed and updated annually.

  16. u

    Community Focus Areas 2023 RTP

    • data.wfrc.utah.gov
    • data-wfrc.opendata.arcgis.com
    Updated Jun 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wasatch Front Regional Council (2023). Community Focus Areas 2023 RTP [Dataset]. https://data.wfrc.utah.gov/datasets/community-focus-areas-2023-rtp
    Explore at:
    Dataset updated
    Jun 15, 2023
    Dataset authored and provided by
    Wasatch Front Regional Council
    Area covered
    Description

    WFRC Community Focus Areas (2023)Geographic Representation Units WFRC’s Community Focus Areas (CFAs) are geographic areas for which additional consideration may be given within the planning and programming processes for future transportation, economic development, and other projects administered through WFRC. CFAs are used by WFRC in support of meeting the Council-established goal of promoting “inclusive engagement in transportation planning processes and equitable access to affordable and reliable transportation options.” CFAs are designated from Census block group geographic zones that meet the criteria described below. Census block groups are used as these are the smallest geographic areas for which more detailed household characteristics like employment, income, vehicle ownership, commute trip, and English language proficiency are available. WFRC recognizes the limitations of geography-based analysis, as proper planning work considers together the needs of individuals, groups and sectors, and geographic areas. However, geography-based analyses offer a useful starting point for the consideration and prioritization of projects that will serve specific community needs.2023 Community Focus Area Criteria UpdateFor the 2023 RTP planning cycle, WFRC will use two factors in designating geography-based CFAs: 1) concentration of low-income households and 2) concentration of persons identifying as members of racial and ethnic minority groups. The geography for these factors can be identified from consistent and regularly updated data sources maintained by the U.S. Census Bureau. WFRC will also make data available that conveys, while maintaining individual anonymity, the geographic distribution of additional measures including concentrations of persons with disabilities, households with limited English language proficiency, households that do not own a vehicle, older residents (65+ years of age), and younger residents (0-17 years of age). While the application of these factors within the planning process is less straightforward because of their higher statistical margins of error and comparatively even distribution within the region, these additional factors remain valuable as planning context. Low Income Focus Areas, Methodology for IdentificationThe block group-level data from the 2020 Census American Community Survey (ACS) 5-year dataset (Table C17002: Ratio of Income to Poverty Level), is used to determine the percentage of the population within each block group that are in households that have a ratio of income to federal poverty threshold of equal to or less than 1, i.e., their income is below the poverty level. The federal poverty threshold is set differently for households, considering their household size and age of household members.Census block groups in which more than 20% of the households whose income is less than or equal to the federal poverty threshold are included in the WFRC CFAs and designated as Low-Income focus areas. Racial and Ethnic Minority Focus AreasThe block group-level data from the 2020 ACS 5-year dataset (Table B03002: Hispanic or Latino Origin By Race) is used to determine the percentage of the population that did not self-identify their race and ethnicity as “White alone.” The average census block group area in the Wasatch Front urbanized areas has 24.2% of its population that identifies as Black or African American alone, American Indian, and Alaska Native alone, Asian alone, Native Hawaiian and other Pacific Islander alone, some other race alone, two or more races, or of Hispanic or Latino origin.Census blocks in which more than 40%2 of the population identifies as one or more of the racial or ethnic groups listed above are included in the WFRC CFAs and designated as Racial and Ethnic Minority focus areas.Excluding Predominantly Non-Residential Areas from CFAsSome census block groups that meet one or both of the CFA criteria described above contain large, non-residential areas or low density residential areas. Such census block areas may have small residential neighborhoods surrounded by predominantly commercial or industrial land uses, or large areas of public land or as-yet undeveloped lands. For this reason, WFRC staff may adjust the boundaries of an CFA whose census block group population density is less than 500 persons per square mile, to exclude areas of those block groups that have large, predominantly non-residential land uses.Community Focus Area Update FrequencyThe geography for WFRC CFAs will be updated not less than every four years, preceding the project phasing period of the Regional Transportation Planning update cycle. The update will use the most recent version of the 5 year ACS dataset. The next update is expected in the summer of 2026 (the beginning of the 4th year for the 2027 RTP development process) and is expected to use the 2024 5-year ACS results that average results across 2020-2024.Footnotes:1. The 2019 version of WFRC CFAs used ‘Zero Car Households’ as a third factor. This factor is no longer included because of its geographic and statistical fluctuation over time in data reported by the American Community Survey. Additionally, ‘Zero Car households’ was observed to have a strong relationship with the other two CFA designation factors.2. The percentage threshold specified here is approximately one standard deviation above the regional mean for this indicator. Assuming a statistically normal distribution, approximately 16% of the overall set (i.e. census blocks, in this case) would fall above a one standard deviation threshold.3. Table B03002 includes information from both 'Race' and 'Hispanic or Latino Origin' identification questions asked as part of the Census Bureau's American Community Survey.

  17. d

    Voter Registration by Census Tract

    • catalog.data.gov
    • data.kingcounty.gov
    • +1more
    Updated Jun 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.kingcounty.gov (2025). Voter Registration by Census Tract [Dataset]. https://catalog.data.gov/dataset/voter-registration-by-census-tract
    Explore at:
    Dataset updated
    Jun 29, 2025
    Dataset provided by
    data.kingcounty.gov
    Description

    This web map displays data from the voter registration database as the percent of registered voters by census tract in King County, Washington. The data for this web map is compiled from King County Elections voter registration data for the years 2013-2019. The total number of registered voters is based on the geo-location of the voter's registered address at the time of the general election for each year. The eligible voting population, age 18 and over, is based on the estimated population increase from the US Census Bureau and the Washington Office of Financial Management and was calculated as a projected 6 percent population increase for the years 2010-2013, 7 percent population increase for the years 2010-2014, 9 percent population increase for the years 2010-2015, 11 percent population increase for the years 2010-2016 & 2017, 14 percent population increase for the years 2010-2018 and 17 percent population increase for the years 2010-2019. The total population 18 and over in 2010 was 1,517,747 in King County, Washington. The percentage of registered voters represents the number of people who are registered to vote as compared to the eligible voting population, age 18 and over. The voter registration data by census tract was grouped into six percentage range estimates: 50% or below, 51-60%, 61-70%, 71-80%, 81-90% and 91% or above with an overall 84 percent registration rate. In the map the lighter colors represent a relatively low percentage range of voter registration and the darker colors represent a relatively high percentage range of voter registration. PDF maps of these data can be viewed at King County Elections downloadable voter registration maps. The 2019 General Election Voter Turnout layer is voter turnout data by historical precinct boundaries for the corresponding year. The data is grouped into six percentage ranges: 0-30%, 31-40%, 41-50% 51-60%, 61-70%, and 71-100%. The lighter colors represent lower turnout and the darker colors represent higher turnout. The King County Demographics Layer is census data for language, income, poverty, race and ethnicity at the census tract level and is based on the 2010-2014 American Community Survey 5 year Average provided by the United States Census Bureau. Since the data is based on a survey, they are considered to be estimates and should be used with that understanding. The demographic data sets were developed and are maintained by King County Staff to support the King County Equity and Social Justice program. Other data for this map is located in the King County GIS Spatial Data Catalog, where data is managed by the King County GIS Center, a multi-department enterprise GIS in King County, Washington. King County has nearly 1.3 million registered voters and is the largest jurisdiction in the United States to conduct all elections by mail. In the map you can view the percent of registered voters by census tract, compare registration within political districts, compare registration and demographic data, verify your voter registration or register to vote through a link to the VoteWA, Washington State Online Voter Registration web page.

  18. g

    Data from: Exploratory Spatial Data Approach to Identify the Context of...

    • gimi9.com
    • datasets.ai
    • +2more
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Exploratory Spatial Data Approach to Identify the Context of Unemployment-Crime Linkages in Virginia, 1995-2000 [Dataset]. https://gimi9.com/dataset/data-gov_07c2737f89ff3b69947cfe7756773b0245361fef
    Explore at:
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    This research is an exploration of a spatial approach to identify the contexts of unemployment-crime relationships at the county level. Using Exploratory Spatial Data Analysis (ESDA) techniques, the study explored the relationship between unemployment and property crimes (burglary, larceny, motor vehicle theft, and robbery) in Virginia from 1995 to 2000. Unemployment rates were obtained from the Department of Labor, while crime rates were obtained from the Federal Bureau of Investigation's Uniform Crime Reports. Demographic variables are included, and a resource deprivation scale was created by combining measures of logged median family income, percentage of families living below the poverty line, and percentage of African American residents.

  19. People without internet

    • kaggle.com
    zip
    Updated Jan 11, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GL_Li (2018). People without internet [Dataset]. https://www.kaggle.com/madaha/people-without-internet
    Explore at:
    zip(61176 bytes)Available download formats
    Dataset updated
    Jan 11, 2018
    Authors
    GL_Li
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    Every Kaggler uses internet. Internet is a necessity in our daily life and many people consider it as a utility like water, electricity and gas. But do you know how many households in the US do not have internet, who are these people, and why they do not have internet?

    The U.S. Census Bureau began asking internet use in American Community Survey (ACS) in 2013, as part of the 2008 Broadband Data Improvement Act, and has published 1-year estimate each year since 2013. The recent 2016 data shows that in many counties, over a quarter of household still do not have internet access.

    Content

    This dataset contains data for counties with population over 65000, compiled from the 2016 ACS 1-year estimate. ACS 1-year estimates only summarize data for large geographic areas over 65000 population. The 2013-2017 ACS 5-year estimate is expected to be published at the end of 2018, which has data of all geographic areas down to block group level. Before that we will use the latest 2016 1-year estimate. It provides sufficient data for us to gain insight into internet use.

    This dataset is created with totalcensus package for R programming. Here are the list of columns:

    • county: name of the county
    • state: abbreviation of the state where the county is in
    • CEOID: geographic identifier for the county
    • lon: longitude of a point inside the county
    • lat: latitude of the point
    • P_total: total population
    • P_white: population of white, single race
    • P_black: population of black, single race
    • P_asian: population of asian, single race
    • P_native: population of native Indians and Alaska natives, single race
    • P_Hawaiian: population of Hawaiian and Pacific Islanders, single race
    • P_other: population of other people, single race
    • P_below_middle_school: population with education at or below 8th grade
    • P_some_high_school: population having some years in high school but without a diploma
    • P_high_school_equivalent: population with high school diploma or equivalent
    • P_some_college: Population having associate degree or some years in college without bachelor degree
    • P_bachelor_and_above: population with bachelor, master, professional, or doctor degrees
    • P_below_poverty: population living below poverty line
    • median_age: median age of population
    • gini_index: gini index
    • median_household_income: median household income
    • median_rent_per_income: median percent of income spent on rent
    • percent_no_internet: percent of household without internet connection

    Acknowledgements

    All data come from 2016 ACS 1-year estimate.

    Inspiration

    The U.S. Census Bureau has published tons of data that are available to public. We can create datasets from these public data to address questions we are interested in.

  20. a

    State of Black LA Community Indicators Year 2

    • equity-lacounty.hub.arcgis.com
    • hub.arcgis.com
    • +1more
    Updated Feb 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2024). State of Black LA Community Indicators Year 2 [Dataset]. https://equity-lacounty.hub.arcgis.com/datasets/state-of-black-la-community-indicators-year-2
    Explore at:
    Dataset updated
    Feb 13, 2024
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Created for the 2023-2025 State of Black Los Angeles County (SBLA) interactive report. Countywide Statistical Areas (CSA) are current as of October 2023.

    Fields ending in _yr1 were calculated for the original 2021-2022 SBLA report, while fields ending in _yr2 or without a year suffix were calculated for the 2023-2025 version. Eviction Filings per 100 (eviction_filings_per100) and Life Expectancy (life_expectancy) did not have updated data and are the same data shown in the Year 1 report.

    Population and demographic data are from US Census American Community Survey (ACS) 5-year estimates, aggregated up from census tract or block group to CSA. Year 1 data are from 2020, year 2 data are from 2022.

    Poverty Data (200% FPL) are from LA County ISD-eGIS Demographics. Year 1 data are from 2021, Year 2 are from 2022.

    The 2023-2025 report includes several new indicators that are calculated as the percent of countywide population by race that resides in a geographic area of interest. Population for these indicators is estimated based on intersection with census block group centroids. These indicators are:

    Indicator

    Fields

    Source

    Health Professional Shortage Areas (HPSA) for Primary Care

    hpsa_primary_pct hpsa_primary_black_pct

    LA County DPH https://data.lacounty.gov/datasets/lacounty::health-professional-shortage-area-primary-care/about

    Health Professional Shortage Areas (HPSA) for Mental Health

    hpsa_mental_pct hpsa_mental_black_pct

    LA County DPH https://data.lacounty.gov/datasets/lacounty::health-professional-shortage-area-mental-health/about

    Concentrated Disadvantage

    cd_pct cd_black_pct

    LA County ISD-Enterprise GIS https://egis-lacounty.hub.arcgis.com/datasets/lacounty::concentrated-disadvantage-index-2022/explore

    Firearm Dealers

    firearm_dl_count (count of dealers in CSA) firearm_dl_per10000 (rate of dealers per 10,000)

    LA County DPH Office of Violence Prevention (OVP)

    High and Very High Park Need Areas

    parks_need_pct parks_need_black_pct

    LA County Parks Needs Assessment Plus (PNA+) https://lacounty.maps.arcgis.com/apps/instant/media/index.html?appid=3d0ef36720b447dcade1ab87a2cc80b9

    High Quality Transit Areas

    hqta_pct hqta_black_pct

    SCAG https://lacounty.maps.arcgis.com/home/item.html?id=43e6fef395d041c09deaeb369a513ca1

    High Walkability Areas

    walk_total_pct walk_black_pct

    EPA Walkability Index https://www.epa.gov/smartgrowth/smart-location-mapping#walkability

    High Poverty and High Segregation Areas

    highpovseg_total_pct highpovseg_black_pct

    CTCAC/HCD Opportunity Area Maps https://www.treasurer.ca.gov/ctcac/opportunity.asp

    LA County Arts Investments

    arts_dollars (total $$ for CSA) arts_dollars_percap (investment dollars per capita)

    LA County Department of Arts and Culture https://lacountyartsdata.org/#maps

    Strong Start (areas with at least 9 Strong Start indicators)

    strongstart_total_pct strongstart_black_pct

    CA Strong Start Index https://strongstartindex.org/map

    For more information about the purpose of this data, please contact CEO-ARDI.

    For more information about the configuration of this data, please contact ISD-Enterprise GIS.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2016). Poverty Status by County - Datasets - CTData.org [Dataset]. http://data.ctdata.org/dataset/poverty-status-by-county

Poverty Status by County - Datasets - CTData.org

Explore at:
Dataset updated
Mar 16, 2016
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Poverty Status by County reports the number and percentage of people and children living in poverty, by race/ethnicity and age range.

Search
Clear search
Close search
Google apps
Main menu