Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The housing affordability measure illustrates the relationship between income and housing costs. A household that spends 30% or more of its collective monthly income to cover housing costs is considered to be “housing cost-burden[ed].”[1] Those spending between 30% and 49.9% of their monthly income are categorized as “moderately housing cost-burden[ed],” while those spending more than 50% are categorized as “severely housing cost-burden[ed].”[2]
How much a household spends on housing costs affects the household’s overall financial situation. More money spent on housing leaves less in the household budget for other needs, such as food, clothing, transportation, and medical care, as well as for incidental purchases and saving for the future.
The estimated housing costs as a percentage of household income are categorized by tenure: all households, those that own their housing unit, and those that rent their housing unit.
Throughout the period of analysis, the percentage of housing cost-burdened renter households in Champaign County was higher than the percentage of housing cost-burdened homeowner households in Champaign County. All three categories saw year-to-year fluctuations between 2005 and 2023, and none of the three show a consistent trend. However, all three categories were estimated to have a lower percentage of housing cost-burdened households in 2023 than in 2005.
Data on estimated housing costs as a percentage of monthly income was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Housing Tenure.
[1] Schwarz, M. and E. Watson. (2008). Who can afford to live in a home?: A look at data from the 2006 American Community Survey. U.S. Census Bureau.
[2] Ibid.
Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (22 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (30 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).;U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; 16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Proportion of Population Spending More Than 25% of Household Consumption or Income on Out-of-Pocket Health Care Expenditure: % data was reported at 0.781 % in 2013. This records a decrease from the previous number of 0.856 % for 2012. United States US: Proportion of Population Spending More Than 25% of Household Consumption or Income on Out-of-Pocket Health Care Expenditure: % data is updated yearly, averaging 0.880 % from Dec 1995 (Median) to 2013, with 18 observations. The data reached an all-time high of 1.078 % in 2000 and a record low of 0.724 % in 2008. United States US: Proportion of Population Spending More Than 25% of Household Consumption or Income on Out-of-Pocket Health Care Expenditure: % data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Poverty. Proportion of population spending more than 25% of household consumption or income on out-of-pocket health care expenditure, expressed as a percentage of a total population of a country; ; Wagstaff et al. Progress on catastrophic health spending: results for 133 countries. A retrospective observational study, Lancet Global Health 2017.; Weighted Average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Government spending in the United States was last recorded at 39.7 percent of GDP in 2024 . This dataset provides - United States Government Spending To Gdp- actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Personal Spending in the United States increased 0.60 percent in August of 2025 over the previous month. This dataset provides the latest reported value for - United States Personal Spending - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
This table contains data on the percent of households paying more than 30% (or 50%) of monthly household income towards housing costs for California, its regions, counties, cities/towns, and census tracts. Data is from the U.S. Department of Housing and Urban Development (HUD), Consolidated Planning Comprehensive Housing Affordability Strategy (CHAS) and the U.S. Census Bureau, American Community Survey (ACS). The table is part of a series of indicators in the [Healthy Communities Data and Indicators Project of the Office of Health Equity] Affordable, quality housing is central to health, conferring protection from the environment and supporting family life. Housing costs—typically the largest, single expense in a family's budget—also impact decisions that affect health. As housing consumes larger proportions of household income, families have less income for nutrition, health care, transportation, education, etc. Severe cost burdens may induce poverty—which is associated with developmental and behavioral problems in children and accelerated cognitive and physical decline in adults. Low-income families and minority communities are disproportionately affected by the lack of affordable, quality housing. More information about the data table and a data dictionary can be found in the Attachments.
During a 2024 survey, 77 percent of respondents from Nigeria stated that they used social media as a source of news. In comparison, just 23 percent of Japanese respondents said the same. Large portions of social media users around the world admit that they do not trust social platforms either as media sources or as a way to get news, and yet they continue to access such networks on a daily basis.
Social media: trust and consumption
Despite the majority of adults surveyed in each country reporting that they used social networks to keep up to date with news and current affairs, a 2018 study showed that social media is the least trusted news source in the world. Less than 35 percent of adults in Europe considered social networks to be trustworthy in this respect, yet more than 50 percent of adults in Portugal, Poland, Romania, Hungary, Bulgaria, Slovakia and Croatia said that they got their news on social media.
What is clear is that we live in an era where social media is such an enormous part of daily life that consumers will still use it in spite of their doubts or reservations. Concerns about fake news and propaganda on social media have not stopped billions of users accessing their favorite networks on a daily basis.
Most Millennials in the United States use social media for news every day, and younger consumers in European countries are much more likely to use social networks for national political news than their older peers.
Like it or not, reading news on social is fast becoming the norm for younger generations, and this form of news consumption will likely increase further regardless of whether consumers fully trust their chosen network or not.
Which county has the most Facebook users?
There are more than 378 million Facebook users in India alone, making it the leading country in terms of Facebook audience size. To put this into context, if India’s Facebook audience were a country then it would be ranked third in terms of largest population worldwide. Apart from India, there are several other markets with more than 100 million Facebook users each: The United States, Indonesia, and Brazil with 193.8 million, 119.05 million, and 112.55 million Facebook users respectively.
Facebook – the most used social media
Meta, the company that was previously called Facebook, owns four of the most popular social media platforms worldwide, WhatsApp, Facebook Messenger, Facebook, and Instagram. As of the third quarter of 2021, there were around 3,5 billion cumulative monthly users of the company’s products worldwide. With around 2.9 billion monthly active users, Facebook is the most popular social media worldwide. With an audience of this scale, it is no surprise that the vast majority of Facebook’s revenue is generated through advertising.
Facebook usage by device
As of July 2021, it was found that 98.5 percent of active users accessed their Facebook account from mobile devices. In fact, almost 81.8 percent of Facebook audiences worldwide access the platform only via mobile phone. Facebook is not only available through mobile browser as the company has published several mobile apps for users to access their products and services. As of the third quarter 2021, the four core Meta products were leading the ranking of most downloaded mobile apps worldwide, with WhatsApp amassing approximately six billion downloads.
During a 2024 survey among marketers worldwide, approximately 83 percent selected increased exposure as a benefit of social media marketing. Increased traffic followed, mentioned by 73 percent of the respondents, while 65 percent cited generated leads.
The multibillion-dollar social media ad industry
Between 2019 – the last year before the pandemic – and 2024, global social media advertising spending skyrocketed by 140 percent, surpassing an estimated 230 billion U.S. dollars in the latter year. That figure was forecast to increase by nearly 50 percent by the end of the decade, exceeding 345 billion dollars in 2029. As of 2024, the social media networks with the most monthly active users were Facebook, with over three billion, and YouTube, with more than 2.5 billion.
Pros and cons of GenAI for social media marketing
According to another 2024 survey, generative artificial intelligence's (GenAI) leading benefits for social media marketing according to professionals worldwide included increased efficiency and easier idea generation. The third place was a tie between increased content production and enhanced creativity. All those advantages were cited by between 33 and 38 percent of the interviewees. As for GenAI's top challenges for global social media marketing,
maintaining authenticity and the value of human creativity ranked first, mentioned by 43 and 40 percent of the respondents, respectively. Another 35 percent deemed ensuring the content resonates as an obstacle.
The Survey of Consumer Finances (SCF) is normally a triennial cross-sectional survey of U.S. families. The survey data include information on families' balance sheets, pensions, income, and demographic characteristics.
This dataset shows the comparison between the amount of spending that was spent on higher education and corrections by each state in the United States from 1987 to 2007. This data was brought to our attention by the Pew Charitable Trusts in their report titled, "One in 100: Behind Bars in America 2008." The main emphasis of the article emphasizes the point that in 2007 1 in every 100 Americans were in prison. To note: Many states have not completed their data verification process. Final published figures may differ slightly. The District of Columbia is not included. D.C. prisoners were transferred to federal custody in 2001
This dataset shows the amount of money that each state spent on their Corrections program both in percentage of the Overall amount of money spent in the State and as a total amount of money. This data was brought to our attention by the Pew Charitable Trusts in their report titled, One in 100: Behind Bars in America 2008. The main emphasis of the article emphasizes the point that in 2007 1 in every 100 Americans were in prison. To note: The District of Columbia is not included. D.C. prisoners were transferred to federal custody in 2001.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Construction Spending in the United States decreased 0.10 percent in July of 2025 over the previous month. This dataset provides the latest reported value for - United States Construction Spending - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Retail Sales in the United States increased 0.60 percent in August of 2025 over the previous month. This dataset provides - U.S. December Retail Sales Increased More Than Forecast - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Personal Income in the United States increased 0.40 percent in August of 2025 over the previous month. This dataset provides the latest reported value for - United States Personal Income - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
View data of PCE, an index that measures monthly changes in the price of consumer goods and services as a means of analyzing inflation.
As of April 2024, Bahrain was the country with the highest Instagram audience reach with 95.6 percent. Kazakhstan also had a high Instagram audience penetration rate, with 90.8 percent of the population using the social network. In the United Arab Emirates, Turkey, and Brunei, the photo-sharing platform was used by more than 85 percent of each country's population.
This dataset explores the USDA Food and Nutrition Service - Summer Food Service total cash payments by state for fiscal years 2003-2007. * Cash payments are based on per meal reimbursement rates which are adjusted annually to offset changes in food prices. They do not include administrative expenses or commodity costs. Data are subject to revision.
This is the monthly data for U.S. employment and unemployment by state including some numbers for Puerto Rico. This dataset was accessed on April 7th 2008. The data for February 2008 are preliminary. The data presented are seasonally adjusted although the unadjusted numbers are also available. Unavailable data are represented as -1. The dataset is taken from Tables 3 and 5 from the United States Department of Labor, Bureau of Labor Statistics. It includes the civilian labor force, the unemployed in numbers and percentages, and employment by industry. Data from table 3 "refer to place of residence. Data for Puerto Rico are derived from a monthly household survey similar to the Current Population Survey. Area definitions are based on Office of Management and Budget Bulletin No. 08-01, dated November 20, 2007, and are available at http://www.bls.gov/lau/lausmsa.htm. Estimates for the latest month are subject to revision the following month". Data from table 5 "are counts of jobs by place of work. Estimates are currently projected from 2007 benchmark levels. Estimates subsequent to the current benchmarks are provisional and will be revised when new information becomes available. Data reflect the conversion to the 2007 version of the North American Industry Classification System (NAICS) as the basis for the assignment and tabulation of economic data by industry, replacing NAICS 2002. For more details, see http://www.bls.gov/sae/saenaics07.htm.
This dataset shows school district expenditures. It is derived from US Census bureau's Public Elementary-Secondary Education Finance data for year 2004. It breaks down spending per student by expenditure on staff salaries and benefits, monies spent on general administration and other support services. Source: http://www.census.gov/www/school04.html Note: Value of zero indicates no data
https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de442733https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de442733
Abstract (en): The Public Use Microdata Samples (PUMS) contain person- and household-level information from the "long-form" questionnaires distributed to a sample of the population enumerated in the 1980 Census. The B Sample containing 1-percent data, consists of a file for each state and an additional file for households and persons residing in metropolitan areas that are too small to be separately identified and/or that cross state boundaries. The B Sample defines Standard Metropolitan Statistical Areas (SMSAs) and county groups differently than in the A Sample [CENSUS OF POPULATION AND HOUSING, 1980 [UNITED STATES]: PUBLIC USE MICRODATA SAMPLE (A SAMPLE): 5-PERCENT SAMPLE (ICPSR 8101)]. Most states cannot be identified in their entirety. Household-level variables include housing tenure, year structure was built, number and types of rooms in dwelling, plumbing facilities, heating equipment, taxes and mortgage costs, number of children, and household and family income. The person record, in addition to containing demographic items such as sex, age, marital status, race, Spanish origin, income, occupation, transportation to work, and education. All persons and housing units in the United States. The B Sample is a stratified sample of households that received the "long-form" questionnaire in the 1980 Census. It comprises 1 percent of all households enumerated in the Census. 2006-01-12 All files were removed from dataset 81 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 80 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 81 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 80 and flagged as study-level files, so that they will accompany all downloads. The household and person records in each data file have a logical record length of 193 characters, but the number of records varies with each file.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The housing affordability measure illustrates the relationship between income and housing costs. A household that spends 30% or more of its collective monthly income to cover housing costs is considered to be “housing cost-burden[ed].”[1] Those spending between 30% and 49.9% of their monthly income are categorized as “moderately housing cost-burden[ed],” while those spending more than 50% are categorized as “severely housing cost-burden[ed].”[2]
How much a household spends on housing costs affects the household’s overall financial situation. More money spent on housing leaves less in the household budget for other needs, such as food, clothing, transportation, and medical care, as well as for incidental purchases and saving for the future.
The estimated housing costs as a percentage of household income are categorized by tenure: all households, those that own their housing unit, and those that rent their housing unit.
Throughout the period of analysis, the percentage of housing cost-burdened renter households in Champaign County was higher than the percentage of housing cost-burdened homeowner households in Champaign County. All three categories saw year-to-year fluctuations between 2005 and 2023, and none of the three show a consistent trend. However, all three categories were estimated to have a lower percentage of housing cost-burdened households in 2023 than in 2005.
Data on estimated housing costs as a percentage of monthly income was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Housing Tenure.
[1] Schwarz, M. and E. Watson. (2008). Who can afford to live in a home?: A look at data from the 2006 American Community Survey. U.S. Census Bureau.
[2] Ibid.
Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (22 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (30 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).;U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; 16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).