62 datasets found
  1. H

    SEER Cancer Statistics Database

    • dataverse.harvard.edu
    • data.niaid.nih.gov
    Updated Jul 11, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harvard Dataverse (2011). SEER Cancer Statistics Database [Dataset]. http://doi.org/10.7910/DVN/C9KBBC
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 11, 2011
    Dataset provided by
    Harvard Dataverse
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Users can access data about cancer statistics in the United States including but not limited to searches by type of cancer and race, sex, ethnicity, age at diagnosis, and age at death. Background Surveillance Epidemiology and End Results (SEER) database’s mission is to provide information on cancer statistics to help reduce the burden of disease in the U.S. population. The SEER database is a project to the National Cancer Institute. The SEER database collects information on incidence, prevalence, and survival from specific geographic areas representing 28 percent of the United States population. User functionality Users can access a variety of reso urces. Cancer Stat Fact Sheets allow users to look at summaries of statistics by major cancer type. Cancer Statistic Reviews are available from 1975-2008 in table format. Users are also able to build their own tables and graphs using Fast Stats. The Cancer Query system provides more flexibility and a larger set of cancer statistics than F ast Stats but requires more input from the user. State Cancer Profiles include dynamic maps and graphs enabling the investigation of cancer trends at the county, state, and national levels. SEER research data files and SEER*Stat software are available to download through your Internet connection (SEER*Stat’s client-server mode) or via discs shipped directly to you. A signed data agreement form is required to access the SEER data Data Notes Data is available in different formats depending on which type of data is accessed. Some data is available in table, PDF, and html formats. Detailed information about the data is available under “Data Documentation and Variable Recodes”.

  2. I

    India IN: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30...

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, India IN: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female [Dataset]. https://www.ceicdata.com/en/india/health-statistics/in-mortality-from-cvd-cancer-diabetes-or-crd-between-exact-ages-30-and-70-female
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2000 - Dec 1, 2016
    Area covered
    India
    Description

    India IN: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data was reported at 19.800 NA in 2016. This records a decrease from the previous number of 20.000 NA for 2015. India IN: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data is updated yearly, averaging 21.200 NA from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 23.400 NA in 2000 and a record low of 19.800 NA in 2016. India IN: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s India – Table IN.World Bank.WDI: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted average;

  3. U

    United States US: Mortality from CVD, Cancer, Diabetes or CRD between Exact...

    • ceicdata.com
    Updated Mar 29, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). United States US: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male [Dataset]. https://www.ceicdata.com/en/united-states/health-statistics
    Explore at:
    Dataset updated
    Mar 29, 2018
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2000 - Dec 1, 2016
    Area covered
    United States
    Description

    US: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male data was reported at 17.500 NA in 2016. This records an increase from the previous number of 17.200 NA for 2015. US: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male data is updated yearly, averaging 17.500 NA from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 21.600 NA in 2000 and a record low of 17.200 NA in 2015. US: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted average;

  4. G

    Cancer mortality trends, by sex and cancer type

    • ouvert.canada.ca
    • www150.statcan.gc.ca
    • +1more
    csv, html, xml
    Updated Oct 4, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2023). Cancer mortality trends, by sex and cancer type [Dataset]. https://ouvert.canada.ca/data/dataset/f956a772-392a-499f-b261-4191111023b8
    Explore at:
    html, xml, csvAvailable download formats
    Dataset updated
    Oct 4, 2023
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Annual percent change and average annual percent change in age-standardized cancer mortality rates since 1984 to the most recent data year. The table includes a selection of commonly diagnosed invasive cancers and causes of death are defined based on the World Health Organization International Classification of Diseases, ninth revision (ICD-9) from 1984 to 1999 and on its tenth revision (ICD-10) from 2000 to the most recent year.

  5. G

    Cancer incidence trends, by sex and cancer type

    • ouvert.canada.ca
    • www150.statcan.gc.ca
    • +1more
    csv, html, xml
    Updated May 17, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2023). Cancer incidence trends, by sex and cancer type [Dataset]. https://ouvert.canada.ca/data/dataset/b89ab9d1-bddc-4baa-9133-34a446623c5b
    Explore at:
    csv, html, xmlAvailable download formats
    Dataset updated
    May 17, 2023
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Annual percent change and average annual percent change in age-standardized cancer incidence rates since 1984 to the most recent diagnosis year. The table includes a selection of commonly diagnosed invasive cancers, as well as in situ bladder cancer. Cases are defined using the Surveillance, Epidemiology and End Results (SEER) Groups for Primary Site based on the World Health Organization International Classification of Diseases for Oncology, Third Edition (ICD-O-3) from 1992 to the most recent data year and on the International Classification of Diseases, ninth revision (ICD-9) from 1984 to 1991.

  6. a

    Cancer (in persons of all ages): England

    • hub.arcgis.com
    • data.catchmentbasedapproach.org
    Updated Apr 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Cancer (in persons of all ages): England [Dataset]. https://hub.arcgis.com/datasets/c5c07229db684a65822fdc9a29388b0b
    Explore at:
    Dataset updated
    Apr 6, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of cancer (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to cancer (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with cancer was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with cancer was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with cancer, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have cancerB) the NUMBER of people within that MSOA who are estimated to have cancerAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have cancer, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from cancer, and where those people make up a large percentage of the population, indicating there is a real issue with cancer within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of cancer, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of cancer.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.MSOA boundaries: © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021.Population data: Mid-2019 (June 30) Population Estimates for Middle Layer Super Output Areas in England and Wales. © Office for National Statistics licensed under the Open Government Licence v3.0. © Crown Copyright 2020.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital; © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021. © Crown Copyright 2020.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  7. K

    Kenya KE: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30...

    • ceicdata.com
    Updated Aug 5, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2020). Kenya KE: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 [Dataset]. https://www.ceicdata.com/en/kenya/health-statistics/ke-mortality-from-cvd-cancer-diabetes-or-crd-between-exact-ages-30-and-70
    Explore at:
    Dataset updated
    Aug 5, 2020
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2000 - Dec 1, 2015
    Area covered
    Kenya
    Description

    Kenya KE: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data was reported at 13.400 % in 2016. This records an increase from the previous number of 13.300 % for 2015. Kenya KE: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data is updated yearly, averaging 13.400 % from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 17.300 % in 2000 and a record low of 13.300 % in 2015. Kenya KE: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Kenya – Table KE.World Bank: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted Average;

  8. I

    Ivory Coast CI: Mortality from CVD, Cancer, Diabetes or CRD between Exact...

    • ceicdata.com
    Updated May 12, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). Ivory Coast CI: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male [Dataset]. https://www.ceicdata.com/en/ivory-coast/health-statistics/ci-mortality-from-cvd-cancer-diabetes-or-crd-between-exact-ages-30-and-70-male
    Explore at:
    Dataset updated
    May 12, 2018
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2000 - Dec 1, 2016
    Area covered
    Côte d'Ivoire
    Description

    Ivory Coast CI: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male data was reported at 28.200 NA in 2016. This records a decrease from the previous number of 28.500 NA for 2015. Ivory Coast CI: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male data is updated yearly, averaging 27.700 NA from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 28.500 NA in 2015 and a record low of 25.200 NA in 2000. Ivory Coast CI: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Ivory Coast – Table CI.World Bank.WDI: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted average;

  9. Leading causes of death, total population, by age group

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +1more
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Leading causes of death, total population, by age group [Dataset]. http://doi.org/10.25318/1310039401-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.

  10. N

    Nigeria NG: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages...

    • ceicdata.com
    Updated Dec 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2024). Nigeria NG: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male [Dataset]. https://www.ceicdata.com/en/nigeria/health-statistics/ng-mortality-from-cvd-cancer-diabetes-or-crd-between-exact-ages-30-and-70-male
    Explore at:
    Dataset updated
    Dec 15, 2024
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2000 - Dec 1, 2016
    Area covered
    Nigeria
    Description

    Nigeria NG: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male data was reported at 20.900 NA in 2016. This records an increase from the previous number of 20.800 NA for 2015. Nigeria NG: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male data is updated yearly, averaging 21.000 NA from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 22.600 NA in 2000 and a record low of 20.800 NA in 2015. Nigeria NG: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Nigeria – Table NG.World Bank.WDI: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted average;

  11. NCI State Prostate Cancer Incidence Rates

    • hub.arcgis.com
    Updated Jan 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Cancer Institute (2020). NCI State Prostate Cancer Incidence Rates [Dataset]. https://hub.arcgis.com/maps/NCI::nci-state-prostate-cancer-incidence-rates
    Explore at:
    Dataset updated
    Jan 2, 2020
    Dataset authored and provided by
    National Cancer Institutehttp://www.cancer.gov/
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    This dataset contains Cancer Incidence data for Prostate Cancer(All Stages^) including: Age-Adjusted Rate, Confidence Interval, Average Annual Count, and Trend field information for US States for the average 5 year span from 2016 to 2020.Data are for males segmented age (All Ages, Ages Under 50, Ages 50 & Over, Ages Under 65, and Ages 65 & Over), with field names and aliases describing the sex and age group tabulated.For more information, visit statecancerprofiles.cancer.govData NotationsState Cancer Registries may provide more current or more local data.TrendRising when 95% confidence interval of average annual percent change is above 0.Stable when 95% confidence interval of average annual percent change includes 0.Falling when 95% confidence interval of average annual percent change is below 0.† Incidence rates (cases per 100,000 population per year) are age-adjusted to the 2000 US standard population (19 age groups: <1, 1-4, 5-9, ... , 80-84, 85+). Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Rates calculated using SEER*Stat. Population counts for denominators are based on Census populations as modified by NCI. The US Population Data File is used for SEER and NPCR incidence rates.‡ Incidence Trend data come from different sources. Due to different years of data availability, most of the trends are AAPCs based on APCs but some are APCs calculated in SEER*Stat. Please refer to the source for each area for additional information.Rates and trends are computed using different standards for malignancy. For more information see malignant.^ All Stages refers to any stage in the Surveillance, Epidemiology, and End Results (SEER) summary stage.Data Source Field Key(1) Source: National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Based on the 2022 submission.(5) Source: National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Based on the 2022 submission.(6) Source: National Program of Cancer Registries SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention (based on the 2022 submission).(7) Source: SEER November 2022 submission.(8) Source: Incidence data provided by the SEER Program. AAPCs are calculated by the Joinpoint Regression Program and are based on APCs. Data are age-adjusted to the 2000 US standard population (19 age groups: <1, 1-4, 5-9, ... , 80-84,85+). Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Population counts for denominators are based on Census populations as modified by NCI. The US Population Data File is used with SEER November 2022 data.Some data are not available, see Data Not Available for combinations of geography, cancer site, age, and race/ethnicity.Data for the United States does not include data from Nevada.Data for the United States does not include Puerto Rico.

  12. f

    Table_1_Comparison between two cancer registry quality check systems:...

    • frontiersin.figshare.com
    • datasetcatalog.nlm.nih.gov
    bin
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Giovanna Tagliabue; Viviana Perotti; Sabrina Fabiano; Andrea Tittarelli; Giulio Barigelletti; Paolo Contiero; Walter Mazzucco; Mario Fusco; Ettore Bidoli; Massimo Vicentini; Maria Teresa Pesce; Fabrizio Stracci; The Collaborative Working Group (2023). Table_1_Comparison between two cancer registry quality check systems: functional features and differences in an Italian network of cancer registries dataset.docx [Dataset]. http://doi.org/10.3389/fonc.2023.1197942.s001
    Explore at:
    binAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Frontiers
    Authors
    Giovanna Tagliabue; Viviana Perotti; Sabrina Fabiano; Andrea Tittarelli; Giulio Barigelletti; Paolo Contiero; Walter Mazzucco; Mario Fusco; Ettore Bidoli; Massimo Vicentini; Maria Teresa Pesce; Fabrizio Stracci; The Collaborative Working Group
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    PurposeThe aim of this study was to compare the functional characteristics of two computer-based systems for quality control of cancer registry data through analysis of their output differences.MethodsThe study used cancer incidence data from 22 of the 49 registries of the Italian Network of Cancer Registries registered between 1986 and 2017. Two different data checking systems developed by the WHO International Agency for Research on Cancer (IARC) and the Joint Research Center (JRC) with the European Network of Cancer Registries (ENCR) and routinely used by registrars were used to check the quality of the data. The outputs generated by the two systems on the same dataset of each registry were analyzed and compared.ResultsThe study included a total of 1,305,689 cancer cases. The overall quality of the dataset was high, with 86% (81.7-94.1) microscopically verified cases and only 1.3% (0.03-3.06) cases with a diagnosis by death certificate only. The two check systems identified a low percentage of errors (JRC-ENCR 0.17% and IARC 0.003%) and about the same proportion of warnings (JRC-ENCR 2.79% and IARC 2.42%) in the dataset. Forty-two cases (2% of errors) and 7067 cases (11.5% of warnings) were identified by both systems in equivalent categories. 11.7% of warnings related to TNM staging were identified by the JRC-ENCR system only. The IARC system identified mainly incorrect combination of tumor grade and morphology (72.5% of warnings).ConclusionBoth systems apply checks on a common set of variables, but some variables are checked by only one of the systems (for example, checks on patient follow-up and tumor stage at diagnosis are included by the JRC-ENCR system only). Most errors and warnings were categorized differently by the two systems, but usually described the same issues, with warnings related to “morphology” (JRC-ENCR) and “histology” (IARC) being the most frequent. It is important to find the right balance between the need to maintain high standards of data quality and the workability of such systems in the daily routine of the cancer registry.

  13. S

    Saudi Arabia SA: Mortality from CVD, Cancer, Diabetes or CRD between Exact...

    • ceicdata.com
    Updated Dec 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2024). Saudi Arabia SA: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 [Dataset]. https://www.ceicdata.com/en/saudi-arabia/health-statistics/sa-mortality-from-cvd-cancer-diabetes-or-crd-between-exact-ages-30-and-70
    Explore at:
    Dataset updated
    Dec 15, 2024
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2000 - Dec 1, 2016
    Area covered
    Saudi Arabia
    Description

    Saudi Arabia SA: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data was reported at 16.400 % in 2016. This records a decrease from the previous number of 16.500 % for 2015. Saudi Arabia SA: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data is updated yearly, averaging 17.900 % from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 18.900 % in 2000 and a record low of 16.400 % in 2016. Saudi Arabia SA: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Saudi Arabia – Table SA.World Bank: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted Average;

  14. NCI State Late Stage Breast Cancer Incidence Rates

    • hub.arcgis.com
    Updated Jan 21, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Cancer Institute (2020). NCI State Late Stage Breast Cancer Incidence Rates [Dataset]. https://hub.arcgis.com/datasets/9dd0d923f8034cc8806173fdc224777d
    Explore at:
    Dataset updated
    Jan 21, 2020
    Dataset authored and provided by
    National Cancer Institutehttp://www.cancer.gov/
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    This dataset contains Cancer Incidence data for Breast Cancer (Late Stage^) including: Age-Adjusted Rate, Confidence Interval, Average Annual Count, and Trend field information for US States for the average 5 year span from 2016 to 2020.Data are for females segmented by age (All Ages, Ages Under 50, Ages 50 & Over, Ages Under 65, and Ages 65 & Over), with field names and aliases describing the sex and age group tabulated.For more information, visit statecancerprofiles.cancer.govData NotationsState Cancer Registries may provide more current or more local data.TrendRising when 95% confidence interval of average annual percent change is above 0.Stable when 95% confidence interval of average annual percent change includes 0.Falling when 95% confidence interval of average annual percent change is below 0.† Incidence rates (cases per 100,000 population per year) are age-adjusted to the 2000 US standard population (19 age groups: <1, 1-4, 5-9, ... , 80-84, 85+). Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Rates calculated using SEER*Stat. Population counts for denominators are based on Census populations as modified by NCI. The US Population Data File is used for SEER and NPCR incidence rates.‡ Incidence Trend data come from different sources. Due to different years of data availability, most of the trends are AAPCs based on APCs but some are APCs calculated in SEER*Stat. Please refer to the source for each area for additional information.Rates and trends are computed using different standards for malignancy. For more information see malignant.^ Late Stage is defined as cases determined to be regional or distant. Due to changes in stage coding, Combined Summary Stage (2004+) is used for data from Surveillance, Epidemiology, and End Results (SEER) databases and Merged Summary Stage is used for data from National Program of Cancer Registries databases. Due to the increased complexity with staging, other staging variables maybe used if necessary.Data Source Field Key(1) Source: National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Based on the 2022 submission.(5) Source: National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Based on the 2022 submission.(6) Source: National Program of Cancer Registries SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention (based on the 2022 submission).(7) Source: SEER November 2022 submission.(8) Source: Incidence data provided by the SEER Program. AAPCs are calculated by the Joinpoint Regression Program and are based on APCs. Data are age-adjusted to the 2000 US standard population (19 age groups: <1, 1-4, 5-9, ... , 80-84,85+). Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Population counts for denominators are based on Census populations as modified by NCI. The US Population Data File is used with SEER November 2022 data.Some data are not available, see Data Not Available for combinations of geography, cancer site, age, and race/ethnicity.Data for the United States does not include data from Nevada.Data for the United States does not include Puerto Rico.

  15. Percentage of cancers detected at stage 1 and 2 (CCGOIS 1.18) - Dataset -...

    • ckan.publishing.service.gov.uk
    Updated Aug 1, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2017). Percentage of cancers detected at stage 1 and 2 (CCGOIS 1.18) - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/percentage-of-cancers-detected-at-stage-1-and-2-ccgois-1-181
    Explore at:
    Dataset updated
    Aug 1, 2017
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    The percentage of new cases of cancer which were diagnosed at stage 1 or 2 for the specific cancer sites, morphologies and behaviour: invasive malignancies of breast, prostate, colorectal, lung, bladder, kidney, ovary, uterus, non-Hodgkin lymphoma and invasive melanomas of skin. This indicator relates to a subset of the cancers covered by CCG indicator 1.17 Record of stage of cancer at diagnosis. Current version updated: Jun-17 Next version due: Jun-18

  16. S

    Sri Lanka LK: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages...

    • ceicdata.com
    Updated Sep 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2024). Sri Lanka LK: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female [Dataset]. https://www.ceicdata.com/en/sri-lanka/health-statistics/lk-mortality-from-cvd-cancer-diabetes-or-crd-between-exact-ages-30-and-70-female
    Explore at:
    Dataset updated
    Sep 15, 2024
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2000 - Dec 1, 2016
    Area covered
    Sri Lanka
    Description

    Sri Lanka LK: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data was reported at 13.200 NA in 2016. This records a decrease from the previous number of 13.400 NA for 2015. Sri Lanka LK: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data is updated yearly, averaging 13.200 NA from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 16.800 NA in 2000 and a record low of 12.700 NA in 2005. Sri Lanka LK: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Sri Lanka – Table LK.World Bank.WDI: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted average;

  17. NCI State Lung Cancer Incidence Rates

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • hub.arcgis.com
    Updated Jan 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Cancer Institute (2020). NCI State Lung Cancer Incidence Rates [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/NCI::nci-state-lung-cancer-incidence-rates/about
    Explore at:
    Dataset updated
    Jan 2, 2020
    Dataset authored and provided by
    National Cancer Institutehttp://www.cancer.gov/
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    This dataset contains Cancer Incidence data for Lung Cancer (All Stages^) including: Age-Adjusted Rate, Confidence Interval, Average Annual Count, and Trend field information for US States for the average 5 year span from 2016 to 2020.Data are segmented by sex (Both Sexes, Male, and Female) and age (All Ages, Ages Under 50, Ages 50 & Over, Ages Under 65, and Ages 65 & Over), with field names and aliases describing the sex and age group tabulated.For more information, visit statecancerprofiles.cancer.govData NotationsState Cancer Registries may provide more current or more local data.TrendRising when 95% confidence interval of average annual percent change is above 0.Stable when 95% confidence interval of average annual percent change includes 0.Falling when 95% confidence interval of average annual percent change is below 0.† Incidence rates (cases per 100,000 population per year) are age-adjusted to the 2000 US standard population (19 age groups: <1, 1-4, 5-9, ... , 80-84, 85+). Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Rates calculated using SEER*Stat. Population counts for denominators are based on Census populations as modified by NCI. The US Population Data File is used for SEER and NPCR incidence rates.‡ Incidence Trend data come from different sources. Due to different years of data availability, most of the trends are AAPCs based on APCs but some are APCs calculated in SEER*Stat. Please refer to the source for each area for additional information.Rates and trends are computed using different standards for malignancy. For more information see malignant.^ All Stages refers to any stage in the Surveillance, Epidemiology, and End Results (SEER) summary stage.Data Source Field Key(1) Source: National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Based on the 2022 submission.(5) Source: National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Based on the 2022 submission.(6) Source: National Program of Cancer Registries SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention (based on the 2022 submission).(7) Source: SEER November 2022 submission.(8) Source: Incidence data provided by the SEER Program. AAPCs are calculated by the Joinpoint Regression Program and are based on APCs. Data are age-adjusted to the 2000 US standard population (19 age groups: <1, 1-4, 5-9, ... , 80-84,85+). Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Population counts for denominators are based on Census populations as modified by NCI. The US Population Data File is used with SEER November 2022 data.Some data are not available, see Data Not Available for combinations of geography, cancer site, age, and race/ethnicity.Data for the United States does not include data from Nevada.Data for the United States does not include Puerto Rico.

  18. d

    Data from: Use of complementary/alternative therapies by women with...

    • catalog.data.gov
    • odgavaprod.ogopendata.com
    • +1more
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institutes of Health (2025). Use of complementary/alternative therapies by women with advanced-stage breast cancer [Dataset]. https://catalog.data.gov/dataset/use-of-complementary-alternative-therapies-by-women-with-advanced-stage-breast-cancer
    Explore at:
    Dataset updated
    Jul 24, 2025
    Dataset provided by
    National Institutes of Health
    Description

    Background This study sought to describe the pattern of complementary/alternative medicine (CAM) use among a group of patients with advanced breast cancer, to examine the main reasons for their CAM use, to identify patient's information sources and their communication pattern with their physicians. Methods Face-to-face structured interviews of patients with advanced-stage breast cancer at a comprehensive oncology center. Results Seventy three percent of patients used CAM; relaxation/meditative techniques and herbal medicine were the most common. The most commonly cited primary reason for CAM use was to boost the immune system, the second, to treat cancer; however these reasons varied depending on specific CAM therapy. Friends or family members and mass media were common primary information source's about CAM. Conclusions A high proportion of advanced-stage breast cancer patients used CAM. Discussion with doctors was high for ingested products. Mass media was a prominent source of patient information. Credible sources of CAM information for patients and physicians are needed.

  19. b

    Oral cancer registrations - WMCA

    • cityobservatory.birmingham.gov.uk
    csv, excel, geojson +1
    Updated Aug 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Oral cancer registrations - WMCA [Dataset]. https://cityobservatory.birmingham.gov.uk/explore/dataset/oral-cancer-registrations-wmca/
    Explore at:
    excel, csv, json, geojsonAvailable download formats
    Dataset updated
    Aug 4, 2025
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Directly age-standardised registration rate for oral cancer (ICD-10 C00-C14), in persons of all ages, per 100,000 2013 European Standard PopulationRationaleTobacco is a known risk factor for oral cancers (1). In England, 65% of hospital admissions (2014–15) for oral cancer and 64 % of deaths (2014) due to oral cancer were attributed to smoking (2). Oral cancer registration is therefore a direct measure of smoking-related harm. Given the high proportion of these registrations that are due to smoking, a reduction in the prevalence of smoking would reduce the incidence of oral cancer.Towards a Smokefree Generation: A Tobacco Control Plan for England states that tobacco use remains one of our most significant public health challenges and that smoking is the single biggest cause of inequalities in death rates between the richest and poorest in our communities (3).In January 2012 the Public Health Outcomes Framework was published, then updated in 2016. Smoking and smoking related death plays a key role in two of the four domains: Health Improvement and Preventing premature mortality (4).References:(1) GBD 2013 Risk Factors Collaborators. Global, regional and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risk factors in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet 2015; 386:10010 2287–2323. (2) Statistics on smoking, England 2016, May 2016; http://content.digital.nhs.uk/catalogue/PUB20781 (3) Towards a Smokefree Generation: A Tobacco Control Plan for England, July 2017 https://www.gov.uk/government/publications/towards-a-smoke-free-generation-tobacco-control-plan-for-england (4) Public Health Outcomes Framework 2016 to 2019, August 2016; https://www.gov.uk/government/publications/public-health-outcomes-framework-2016-to-2019 Definition of numeratorCancer registrations for oral cancer (ICD-10, C00-C14) in the calendar years 2007-09 to 2017-2019. The National Cancer Registration and Analysis Service collects data relating to each new diagnosis of cancer that occurs in England. This does not include secondary cancers. Data are reported according to the calendar year in which the cancer was diagnosed.Definition of denominatorPopulation-years (ONS mid-year population estimates aggregated for the respective years) for people of all ages, aggregated into quinary age bands (0-4, 5-9,…, 85-89, 90+).CaveatsReviews of the quality of UK cancer registry data 1, 2 have concluded that registrations are largely complete, accurate and reliable. The data on cancer registration ‘quality indicators’ (mortality to incidence ratios, zero survival cases and unspecified site) demonstrate that although there is some variability, overall ascertainment and reliability is good. However cancer registrations are continuously being updated, so the number of registrations for each year may not be complete, as there is a small but steady stream of late registrations, some of which only come to light through death certification.1. Huggett C (1995). Review of the Quality and Comparability of Data held by Regional Cancer Registries. Bristol: Bristol Cancer Epidemiology Unit incorporating the South West Cancer Registry. 2. Seddon DJ, Williams EMI (1997). Data quality in population based cancer registration. British Journal of Cancer 76: 667-674.The data presented here replace versions previously published. Population data and the European Standard Population have been revised. ONS have provided an explanation of the change in standard population (available at http://www.ons.gov.uk/ons/guide-method/user-guidance/health-and-life-events/revised-european-standard-population-2013--2013-esp-/index.html )

  20. H

    A negative history of epidemiologic and demographic factors was associated...

    • dataverse.harvard.edu
    Updated Apr 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mourad Errasfa (2022). A negative history of epidemiologic and demographic factors was associated with high numbers of Covid-19 [Dataset]. http://doi.org/10.7910/DVN/XWOREU
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 28, 2022
    Dataset provided by
    Harvard Dataverse
    Authors
    Mourad Errasfa
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Background : Substantial differences between countries were observed in terms of Covid-19 death tolls during the past two years. It was of interest to find out how the epidemiologic and/or demographic history of the population may have had a role in the high prevalence of the Covid-19 in some countries. Objective : This observational study aimed to investigate possible relations between Covid-19 death numbers in 39 countries and the prepandemic history of epidemiologic and demographic conditions. Methods : We sought the Covid-19 death toll in 39 countries in Europe, America, Africa, and Asia. Records (2019) of epidemiologic (Cancer, Alzheimer's disease) and demographic (natality, mortality, and fetility rates, percentage of people aged 65 and over) parameters as well as data on alcohol intake per capita were retrieved from official web pages. Data was analysed by simple linear or polynomial regression by the mean of Microsoft Excell software (2016). Results : When Covid-19 death numbers were plotted against the geographic latitude of each country, a bell-shaped curve was obtained for both the first and second years (coefficient of determination R2=0.38) of the pandemic. In a similar manner, bell-shaped curves were obtained when latitudes were plotted against the scores of (cancer plus Alzheimer's disease, R² = 0,65,), the percentage of advanced age (R² = 0,52,) and the alcohol intake level (R² = 0,64,). Covid-19 death numbers were positively correlated to the scores of (cancer plus Alzheimer's disease) (R2= 0.41, P= 1.61x10-5), advanced age (R2= 0.38, P= 4.09x10-5) and alcohol intake (R2= 0.48, P= 1.55x10-6). Instead, inverted bell-shaped curves were obtained when latitudes were plotted against the birth rate/mortality rate ratio (R² = 0,51) and the fetility rate (R² = 0,33). In addition, Covid-19 deaths were negatively correlated with the birth rate/mortality rate ratio (R2= 0.67) and fertility rate (R2= 0.50). Conclusion : The results show that the 39 countries in both hemisphers in this study have different patterns of epidemiologic and demographic factors, and that the negative history of epidemiologic and demographic factors of the northern hemisphere countries, as well as their high alcohol intake, were very correlated with their Covid-19 death tolls. Hence, also nutritional habits may have had a role in the general health status of people in regard to their immunity against the coronavirus.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Harvard Dataverse (2011). SEER Cancer Statistics Database [Dataset]. http://doi.org/10.7910/DVN/C9KBBC

SEER Cancer Statistics Database

Explore at:
17 scholarly articles cite this dataset (View in Google Scholar)
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Jul 11, 2011
Dataset provided by
Harvard Dataverse
License

CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically

Description

Users can access data about cancer statistics in the United States including but not limited to searches by type of cancer and race, sex, ethnicity, age at diagnosis, and age at death. Background Surveillance Epidemiology and End Results (SEER) database’s mission is to provide information on cancer statistics to help reduce the burden of disease in the U.S. population. The SEER database is a project to the National Cancer Institute. The SEER database collects information on incidence, prevalence, and survival from specific geographic areas representing 28 percent of the United States population. User functionality Users can access a variety of reso urces. Cancer Stat Fact Sheets allow users to look at summaries of statistics by major cancer type. Cancer Statistic Reviews are available from 1975-2008 in table format. Users are also able to build their own tables and graphs using Fast Stats. The Cancer Query system provides more flexibility and a larger set of cancer statistics than F ast Stats but requires more input from the user. State Cancer Profiles include dynamic maps and graphs enabling the investigation of cancer trends at the county, state, and national levels. SEER research data files and SEER*Stat software are available to download through your Internet connection (SEER*Stat’s client-server mode) or via discs shipped directly to you. A signed data agreement form is required to access the SEER data Data Notes Data is available in different formats depending on which type of data is accessed. Some data is available in table, PDF, and html formats. Detailed information about the data is available under “Data Documentation and Variable Recodes”.

Search
Clear search
Close search
Google apps
Main menu