The Research and Development Survey (RANDS) is a platform designed for conducting survey question evaluation and statistical research. RANDS is an ongoing series of surveys from probability-sampled commercial survey panels used for methodological research at the National Center for Health Statistics (NCHS). RANDS estimates are generated using an experimental approach that differs from the survey design approaches generally used by NCHS, including possible biases from different response patterns and sampling frames as well as increased variability from lower sample sizes. Use of the RANDS platform allows NCHS to produce more timely data than would be possible using traditional data collection methods. RANDS is not designed to replace NCHS’ higher quality, core data collections. Below are experimental estimates of reduced access to healthcare for three rounds of RANDS during COVID-19. Data collection for the three rounds of RANDS during COVID-19 occurred between June 9, 2020 and July 6, 2020, August 3, 2020 and August 20, 2020, and May 17, 2021 and June 30, 2021. Information needed to interpret these estimates can be found in the Technical Notes. RANDS during COVID-19 included questions about unmet care in the last 2 months during the coronavirus pandemic. Unmet needs for health care are often the result of cost-related barriers. The National Health Interview Survey, conducted by NCHS, is the source for high-quality data to monitor cost-related health care access problems in the United States. For example, in 2018, 7.3% of persons of all ages reported delaying medical care due to cost and 4.8% reported needing medical care but not getting it due to cost in the past year. However, cost is not the only reason someone might delay or not receive needed medical care. As a result of the coronavirus pandemic, people also may not get needed medical care due to cancelled appointments, cutbacks in transportation options, fear of going to the emergency room, or an altruistic desire to not be a burden on the health care system, among other reasons. The Household Pulse Survey (https://www.cdc.gov/nchs/covid19/pulse/reduced-access-to-care.htm), an online survey conducted in response to the COVID-19 pandemic by the Census Bureau in partnership with other federal agencies including NCHS, also reports estimates of reduced access to care during the pandemic (beginning in Phase 1, which started on April 23, 2020). The Household Pulse Survey reports the percentage of adults who delayed medical care in the last 4 weeks or who needed medical care at any time in the last 4 weeks for something other than coronavirus but did not get it because of the pandemic. The experimental estimates on this page are derived from RANDS during COVID-19 and show the percentage of U.S. adults who were unable to receive medical care (including urgent care, surgery, screening tests, ongoing treatment, regular checkups, prescriptions, dental care, vision care, and hearing care) in the last 2 months. Technical Notes: https://www.cdc.gov/nchs/covid19/rands/reduced-access-to-care.htm#limitations
Abstract copyright UK Data Service and data collection copyright owner. The Organisation for Economic Co-operation and Development (OECD) Health Statistics offers the most comprehensive source of comparable statistics on health and health systems across OECD countries. It is an essential tool for health researchers and policy advisors in governments, the private sector and the academic community, to carry out comparative analyses and draw lessons from international comparisons of diverse health care systems. Within UKDS.Stat the data are presented in the following databases: Health status This datasets presents internationally comparable statistics on morbidity and mortality with variables such as life expectancy, causes of mortality, maternal and infant mortality, potential years of life lost, perceived health status, infant health, dental health, communicable diseases, cancer, injuries, absence from work due to illness. The annual data begins in 2000. Non-medical determinants of health This dataset examines the non-medical determinants of health by comparing food, alcohol, tobacco consumption and body weight amongst countries. The data are expressed in different measures such as calories, grammes, kilo, gender, population. The data begins in 1960. Healthcare resources This dataset includes comparative tables analyzing various health care resources such as total health and social employment, physicians by age, gender, categories, midwives, nurses, caring personnel, personal care workers, dentists, pharmacists, physiotherapists, hospital employment, graduates, remuneration of health professionals, hospitals, hospital beds, medical technology with their respective subsets. The statistics are expressed in different units of measure such as number of persons, salaried, self-employed, per population. The annual data begins in 1960. Healthcare utilisation This dataset includes statistics comparing different countries’ level of health care utilisation in terms of prevention, immunisation, screening, diagnostics exams, consultations, in-patient utilisation, average length of stay, diagnostic categories, acute care, in-patient care, discharge rates, transplants, dialyses, ICD-9-CM. The data is comparable with respect to units of measures such as days, percentages, population, number per capita, procedures, and available beds. Health Care Quality Indicators This dataset includes comparative tables analyzing various health care quality indicators such as cancer care, care for acute exacerbation of chronic conditions, care for chronic conditions and care for mental disorders. The annual data begins in 1995. Pharmaceutical market This dataset focuses on the pharmaceutical market comparing countries in terms of pharmaceutical consumption, drugs, pharmaceutical sales, pharmaceutical market, revenues, statistics. The annual data begins in 1960. Long-term care resources and utilisation This dataset provides statistics comparing long-term care resources and utilisation by country in terms of workers, beds in nursing and residential care facilities and care recipients. In this table data is expressed in different measures such as gender, age and population. The annual data begins in 1960. Health expenditure and financing This dataset compares countries in terms of their current and total expenditures on health by comparing how they allocate their budget with respect to different health care functions while looking at different financing agents and providers. The data covers the years starting from 1960 extending until 2010. The countries covered are Australia, Austria, Belgium, Canada, Chile, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Korea, Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Portugal, Slovak Republic, Slovenia, Spain, Sweden, Switzerland, Turkey, United Kingdom, and United States. Social protection This dataset introduces the different health care coverage systems such as the government/social health insurance and private health insurance. The statistics are expressed in percentage of the population covered or number of persons. The annual data begins in 1960. Demographic references This dataset provides statistics regarding general demographic references in terms of population, age structure, gender, but also in term of labour force. The annual data begins in 1960. Economic references This dataset presents main economic indicators such as GDP and Purchasing power parities (PPP) and compares countries in terms of those macroeconomic references as well as currency rates, average annual wages. The annual data begins in 1960. These data were first provided by the UK Data Service in November 2014.
The Healthcare Cost and Utilization Project (HCUP) National Inpatient Sample (NIS) is the largest publicly available all-payer inpatient care database in the United States. The NIS is designed to produce U.S. regional and national estimates of inpatient utilization, access, cost, quality, and outcomes. Unweighted, it contains data from more than 7 million hospital stays each year. Weighted, it estimates more than 35 million hospitalizations nationally. Developed through a Federal-State-Industry partnership sponsored by the Agency for Healthcare Research and Quality (AHRQ), HCUP data inform decision making at the national, State, and community levels. Starting with the 2012 data year, the NIS is a sample of discharges from all hospitals participating in HCUP, covering more than 97 percent of the U.S. population. For prior years, the NIS was a sample of hospitals. The NIS allows for weighted national estimates to identify, track, and analyze national trends in health care utilization, access, charges, quality, and outcomes. The NIS's large sample size enables analyses of rare conditions, such as congenital anomalies; uncommon treatments, such as organ transplantation; and special patient populations, such as the uninsured. NIS data are available since 1988, allowing analysis of trends over time. The NIS inpatient data include clinical and resource use information typically available from discharge abstracts with safeguards to protect the privacy of individual patients, physicians, and hospitals (as required by data sources). Data elements include but are not limited to: diagnoses, procedures, discharge status, patient demographics (e.g., sex, age), total charges, length of stay, and expected payment source, including but not limited to Medicare, Medicaid, private insurance, self-pay, or those billed as ‘no charge’. The NIS excludes data elements that could directly or indirectly identify individuals. Restricted access data files are available with a data use agreement and brief online security training.
This table contains data on the percent of households paying more than 30% (or 50%) of monthly household income towards housing costs for California, its regions, counties, cities/towns, and census tracts. Data is from the U.S. Department of Housing and Urban Development (HUD), Consolidated Planning Comprehensive Housing Affordability Strategy (CHAS) and the U.S. Census Bureau, American Community Survey (ACS). The table is part of a series of indicators in the [Healthy Communities Data and Indicators Project of the Office of Health Equity] Affordable, quality housing is central to health, conferring protection from the environment and supporting family life. Housing costs—typically the largest, single expense in a family's budget—also impact decisions that affect health. As housing consumes larger proportions of household income, families have less income for nutrition, health care, transportation, education, etc. Severe cost burdens may induce poverty—which is associated with developmental and behavioral problems in children and accelerated cognitive and physical decline in adults. Low-income families and minority communities are disproportionately affected by the lack of affordable, quality housing. More information about the data table and a data dictionary can be found in the Attachments.
With the recent Ebola epidemic, the flaws in Liberia’s medical infrastructure have been made painfully obvious. Liberia, a country of four million people, has only 37 practicing doctors according to health officials. This is evidence of a serious lack in the availability of medical services to the majority of Liberians. An American gynecologist who visited the country in 2012 to provide services with a team from the Mt. Sinai Hospital observed families of hospital patients supplying their own food and bed linens due to the medical facility they were working in lacking funds for basic necessities. The root issue at the heart of many of Liberia’s woes stems from the long civil war. In addition to damaging the medical infrastructure, the country’s only medical school was forced to close for long periods of time, resulting in medical students taking an average eight years to graduate. There has been a serious push for reform and revitalization with medical facilities being rebuilt and medical students now on track to spend only three years in school. Liberia is facing a number of issues, and prior to the current epidemic has not prioritized health expenditures. The government spends an estimated 16.8 percent of their GDP, the lowest in the world, on healthcare. The average GDP spending on healthcare systems in sub-Saharan Africa is ~50 percent. Liberia’s healthcare system is highly dependent on international aid. Donors finance 50 percent of total health expenditures. Approximately 80 percent of all health services are provided by non-governmental organizations (NGOs) and will continue to be so for the foreseeable future. However, the Ministry of Health and Social Welfare has been working with NGOs such as Health Systems 20/20 to improve their existing infrastructure. Attribute Table Field DescriptionsISO3 - International Organization for Standardization 3-digit country code ADM0_NAME - Administration level zero identification / name ADM1_NAME - Administration level one identification / name ADM2_NAME - Administration level two identification / name NAME - Name of health facility TYPE1 - Primary classification in the geodatabase TYPE2 - Secondary classification in the geodatabase CITY - City location available SPA_ACC - Spatial accuracy of site location (1 – high, 2 – medium, 3 – low) COMMENTS - Comments or notes regarding themedical facility SOURCE_DT - Source one creation date SOURCE - Source one SOURCE2_DT - Source two creation date SOURCE2 - Source two CollectionThe feature class was generated utilizing data from OpenStreetMap, Wikimapia, GeoNames and other sources. OpenStreetMap is a free worldwide map, created by crowd-sourcing. Wikimapia is open-content mapping focused on gathering all geographical objects in the world. GeoNames is a geographical places database maintained and edited by the online community. Consistent naming conventions for geographic locations were attempted but name variants may exist, which can include historical or less widespread interpretations.The data included herein have not been derived from a registered survey and should be considered approximate unless otherwise defined. While rigorous steps have been taken to ensure the quality of each dataset, DigitalGlobe is not responsible for the accuracy and completeness of data compiled from outside sources.Sources (HGIS)Aizenman, Nurith and Beemsterboer, Nicole. “Why Patients Aren’t Coming to Liberia’s Redemption Hospital.” August 27, 2014. Accessed September 26, 2014. www.npr.org.“Liberia: ArcelorMittal Folds Partly – Terminates Expansion Contract.” All Africa. August 14, 2013. Accessed September 26, 2014. allafrica.com. Cohen, Elizabeth. “Ebola Patients Left to Lie on the Ground.” CNN. September 23, 2014. Accessed September 26, 2014. www.cnn.com.“Kingdom Care Medical Center Reaches Rural Communities with Health Care.” Daily Observer. January 28, 2014. Accessed September 26, 2014. www.liberianobserver.com. DigitalGlobe, "DigitalGlobe Imagery Archive." Accessed September 24, 2014.“Eternal Love Winning Africa: ELWA Hospital.” Eternal Love Winning Africa. January 2014. Accessed September 26, 2014. www.elwaministries.org.Freeman, Colin. “One Patient in a 200-bed Hospital: How Ebola has Devastated Liberia’s Health System.” The Telegraph. August 15, 2014. Accessed September 26, 2014. www.telegraph.co.uk.“Lewin Reaches Out to River Gee, Maryland.” Gale Global Issues. March 4, 2013. . Accessed September 26, 2014. find.galegroup.com. Gbelewala, Korboi. “Liberia: Health Offical – Ebola Death Toll Hits 11 in Lofa.” All Africa. June 24, 2014. Accessed September 26, 2014. allafrica.com. GeoNames, "Liberia." September 23, 2014. Accessed September 23, 2014. www.geonames.org.Google, September 2014. Accessed September 2014. www.google.com.Kollie, Namotee P.M. “Liberia: C.B. Dunbar Hospital Receives Medical Supplies.” September 27, 2013. Accessed September 26, 2014. allafrica.com.“MSF Hands Over Last Hospitals to Ministry of Health after 20 Years of Emergency Aid in Liberia.” Medecins Sans Frontieres. June 25, 2010. Accessed September 26, 2014. www.msf.org. Nah, Vivian M. and Johnson, Obediah. “Liberia: Ebola Kills Woman at Duside Hospital in Firestone.” All Africa. April 4, 2014. Accessed September 26, 2014. allafrica.com. “Catholic Hospital Director Dies of Ebola in Liberia.” National Catholic Register. August 05, 2014. Accessed September 26, 2014. www.ncregister.com.OpenStreetMap, "Liberia." September 2014. Accessed September 18, 2014. www.openstreetmap.org.Senkpeni, Alpha Daffae. “No Ebola Gears for Clinic in Grand Bassa District #2.” Front Page Africa. August 12, 2014. Accessed September 26, 2014. www.frontpageafricaonline.com. “Seventh-day Adventist Cooper Hospital” Seventh-Day Adventist Church. November 18, 2004. Accessed September 26, 2014. www.adventistdirectory.org.“St. Benedict Menni Rehabilitation Centre, Liberia.” Sisters Hospitallers. January 2014. Accessed September 26, 2014. www.sistershospitallers.org. “Liberia – SOS Medical and Social Centres.” SOS Children’s Villages. January 2014. Accessed September 26, 2014. www.sos-medical-centres.org.“Liberia.” Sustainable Marketplace. January 2014. Accessed September 26, 2014. liberia.buildingmarkets.org. “Reconstruction of the Vinjama Hospital in Liberia.” Swiss Agency for Development and Cooperation (SDC). January 2014. Accessed September 26, 2014. www.sdc.admin.ch. Verdier, Lewis S. “Liberia: TB On the Rise in Pleebo.” All Africa. March 28, 2013. Accessed September 26, 2014. allafrica.com.Wikimapia, "Liberia." September 2014. Accessed September 22, 2014. wikimapia.org.“Snapper Hill Clinic.” Word Press. November 12, 2012. Accessed September 26, 2014. jbloodnc.wordpress.com.Sources (Metadata)Neporent, Liz. "Liberia's Medical Conditions Dire Even Before Ebola Outbreak." ABC News. August 4, 2014. Accessed October 3, 2014. abcnews.go.com."Liberia." Health Systems Strengthening: Where We Work:. January 1, 2014. Accessed October 3, 2014. www.healthsystems2020.org."Financing Liberia's Health Care." Health Systems Strengthening: News:. February 13, 2012. Accessed October 3, 2014. www.healthsystems2020.org.UNCLASSIFIED
This study examines various dimensions of primary health care delivery in Uganda, using a baseline survey of public and private dispensaries, the most common lower level health facilities in the country.
The survey was designed and implemented by the World Bank in collaboration with the Makerere Institute for Social Research and the Ugandan Ministries of Health and of Finance, Planning and Economic Development. It was carried out in October - December 2000 and covered 155 local health facilities and seven district administrations in ten districts. In addition, 1617 patients exiting health facilities were interviewed. Three types of dispensaries (both with and without maternity units) were included: those run by the government, by private for-profit providers, and by private nonprofit providers, mainly religious.
This research is a Quantitative Service Delivery Survey (QSDS). It collected microlevel data on service provision and analyzed health service delivery from a public expenditure perspective with a view to informing expenditure and budget decision-making, as well as sector policy.
Objectives of the study included:
1) Measuring and explaining the variation in cost-efficiency across health units in Uganda, with a focus on the flow and use of resources at the facility level;
2) Diagnosing problems with facility performance, including the extent of drug leakage, as well as staff performance and availability;
3) Providing information on pricing and user fee policies and assessing the types of service actually provided;
4) Shedding light on the quality of service across the three categories of service provider - government, for-profit, and nonprofit;
5) Examining the patterns of remuneration, pay structure, and oversight and monitoring and their effects on health unit performance;
6) Assessing the private-public partnership, particularly the program of financial aid to nonprofits.
The study districts were Mpigi, Mukono, and Masaka in the central region; Mbale, Iganga, and Soroti in the east; Arua and Apac in the north; and Mbarara and Bushenyi in the west.
The survey covered government, for-profit and nonprofit private dispensaries with or without maternity units in ten Ugandan districts.
Sample survey data [ssd]
The survey covered government, for-profit and nonprofit private dispensaries with or without maternity units in ten Ugandan districts.
The sample design was governed by three principles. First, to ensure a degree of homogeneity across sampled facilities, attention was restricted to dispensaries, with and without maternity units (that is, to the health center III level). Second, subject to security constraints, the sample was intended to capture regional differences. Finally, the sample had to include facilities in the main ownership categories: government, private for-profit, and private nonprofit (religious organizations and NGOs). The sample of government and nonprofit facilities was based on the Ministry of Health facility register for 1999. Since no nationwide census of for-profit facilities was available, these facilities were chosen by asking sampled government facilities to identify the closest private dispensary.
Of the 155 health facilities surveyed, 81 were government facilities, 30 were private for-profit facilities, and 44 were nonprofit facilities. An exit poll of clients covered 1,617 individuals.
The final sample consisted of 155 primary health care facilities drawn from ten districts in the central, eastern, northern, and western regions of the country. It included government, private for-profit, and private nonprofit facilities. The nonprofit sector includes facilities owned and operated by religious organizations and NGOs. Approximately one third of the surveyed facilities were dispensaries without maternity units; the rest provided maternity care. The facilities varied considerably in size, from units run by a single individual to facilities with as many as 19 staff members.
Ministry of Health facility register for 1999 was used to design the sampling frame. Ten districts were randomly selected. From the selected districts, a sample of government and private nonprofit facilities and a reserve list of replacement facilities were randomly drawn. Because of the unreliability of the register for private for-profit facilities, it was decided that for-profit facilities would be identified on the basis of information from the government facilities sampled. The administrative records for facilities in the original sample were first reviewed at the district headquarters, where some facilities that did not meet selection criteria and data collection requirements were dropped from the sample. These were replaced by facilities from the reserve list. Overall, 30 facilities were replaced.
The sample was designed in such a way that the proportion of facilities drawn from different regions and ownership categories broadly mirrors that of the universe of facilities. Because no nationwide census of for-profit health facilities is available, it is difficult to assess the extent to which the sample is representative of this category. A census of health care facilities in selected districts, carried out in the context of the Delivery of Improved Services for Health (DISH) project supported by the U.S. Agency for International Development (USAID), suggests that about 63 percent of all facilities operate on a for-profit basis, while government and nonprofit providers run 26 and 11 percent of facilities, respectively. This would suggest an undersampling of private providers in the survey. It is not clear, however, whether the DISH districts are representative of other districts in Uganda in terms of the market for health care.
For the exit poll, 10 interviews per facility were carried out in approximately 85 percent of the facilities. In the remaining facilities the target of 10 interviews was not met, as a result of low activity levels.
In the first stage in the sampling process, eight districts (out of 45) had to be dropped from the sample frame due to security concerns. These districts were Bundibugyo, Gulu, Kabarole, Kasese, Kibaale, Kitgum, Kotido, and Moroto.
Face-to-face [f2f]
The following survey instruments are available:
The survey collected data at three levels: district administration, health facility, and client. In this way it was possible to capture central elements of the relationships between the provider organization, the frontline facility, and the user. In addition, comparison of data from different levels (triangulation) permitted cross-validation of information.
At the district level, a District Health Team Questionnaire was administered to the district director of health services (DDHS), who was interviewed on the role of the DDHS office in health service delivery. Specifically, the questionnaire collected data on health infrastructure, staff training, support and supervision arrangements, and sources of financing.
The District Facility Data Sheet was used at the district level to collect more detailed information on the sampled health units for fiscal 1999-2000, including data on staffing and the related salary structures, vaccine supplies and immunization activity, and basic and supplementary supplies of drugs to the facilities. In addition, patient data, including monthly returns from facilities on total numbers of outpatients, inpatients, immunizations, and deliveries, were reviewed for the period April-June 2000.
At the facility level, the Uganda Health Facility Survey Questionnaire collected a broad range of information related to the facility and its activities. The questionnaire, which was administered to the in-charge, covered characteristics of the facility (location, type, level, ownership, catchment area, organization, and services); inputs (staff, drugs, vaccines, medical and nonmedical consumables, and capital inputs); outputs (facility utilization and referrals); financing (user charges, cost of services by category, expenditures, and financial and in-kind support); and institutional support (supervision, reporting, performance assessment, and procurement). Each health facility questionnaire was supplemented by a Facility Data Sheet (FDS). The FDS was designed to obtain data from the health unit records on staffing and the related salary structure; daily patient records for fiscal 1999-2000; the type of patients using the facility; vaccinations offered; and drug supply and use at the facility.
Finally, at the facility level, an exit poll was used to interview about 10 patients per facility on the cost of treatment, drugs received, perceived quality of services, and reasons for using that unit instead of alternative sources of health care.
Detailed information about data editing procedures is available in "Data Cleaning Guide for PETS/QSDS Surveys" in external resources.
STATA cleaning do-files and the data quality reports on the datasets can also be found in external resources.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table contains data on the living wage and the percent of families with incomes below the living wage for California, its counties, regions and cities/towns. Living wage is the wage needed to cover basic family expenses (basic needs budget) plus all relevant taxes; it does not include publicly provided income or housing assistance. The percent of families below the living wage was calculated using data from the Living Wage Calculator and the U.S. Census Bureau, American Community Survey. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. The living wage is the wage or annual income that covers the cost of the bare necessities of life for a worker and his/her family. These necessities include housing, transportation, food, childcare, health care, and payment of taxes. Low income populations and non-white race/ethnic have disproportionately lower wages, poorer housing, and higher levels of food insecurity. More information about the data table and a data dictionary can be found in the About/Attachments section.
The current healthcare spending per capita in Colombia was forecast to continuously increase between 2024 and 2028 by in total 174.8 U.S. dollars (+27.31 percent). After the eigth consecutive increasing year, the spending is estimated to reach 814.86 U.S. dollars and therefore a new peak in 2028. Depicted here is the average per capita spending, in a given country or region, with regards to healthcare. The spending refers to the average current spending of both governments and consumers per inhabitant.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
The current healthcare spending in Argentina was forecast to continuously increase between 2024 and 2029 by in total 9.2 billion U.S. dollars (+16.13 percent). After the fourth consecutive increasing year, the spending is estimated to reach 66.5 billion U.S. dollars and therefore a new peak in 2029. According to Worldbank health spending includes expenditures with regards to healthcare services and goods. The spending refers to current spending of both governments and consumers.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the current healthcare spending in countries like Chile and Paraguay.
The current healthcare spending per capita in Argentina was forecast to continuously increase between 2024 and 2029 by in total 178.8 U.S. dollars (+14.26 percent). According to this forecast, in 2029, the spending will have increased for the fourth consecutive year to 1,432.6 U.S. dollars. Depicted here is the average per capita spending, in a given country or region, with regards to healthcare. The spending refers to the average current spending of both governments and consumers per inhabitant.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the current healthcare spending per capita in countries like Chile and Uruguay.
The current health expenditure as a share of the GDP in Colombia was forecast to continuously increase between 2024 and 2029 by in total 0.4 percentage points. After the seventh consecutive increasing year, the share is estimated to reach 9.62 percent and therefore a new peak in 2029. According to Worldbank health spending includes expenditures with regards to healthcare services and goods. It is depicted here in relation to the total gross domestic product (GDP) of the country or region at hand.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
The current healthcare spending in Ghana was forecast to continuously increase between 2024 and 2029 by in total 1.1 billion U.S. dollars (+33.4 percent). After the fifth consecutive increasing year, the spending is estimated to reach 4.2 billion U.S. dollars and therefore a new peak in 2029. According to Worldbank health spending includes expenditures with regards to healthcare services and goods. The spending refers to current spending of both governments and consumers.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the current healthcare spending in countries like Senegal and Ivory Coast.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
The Research and Development Survey (RANDS) is a platform designed for conducting survey question evaluation and statistical research. RANDS is an ongoing series of surveys from probability-sampled commercial survey panels used for methodological research at the National Center for Health Statistics (NCHS). RANDS estimates are generated using an experimental approach that differs from the survey design approaches generally used by NCHS, including possible biases from different response patterns and sampling frames as well as increased variability from lower sample sizes. Use of the RANDS platform allows NCHS to produce more timely data than would be possible using traditional data collection methods. RANDS is not designed to replace NCHS’ higher quality, core data collections. Below are experimental estimates of reduced access to healthcare for three rounds of RANDS during COVID-19. Data collection for the three rounds of RANDS during COVID-19 occurred between June 9, 2020 and July 6, 2020, August 3, 2020 and August 20, 2020, and May 17, 2021 and June 30, 2021. Information needed to interpret these estimates can be found in the Technical Notes. RANDS during COVID-19 included questions about unmet care in the last 2 months during the coronavirus pandemic. Unmet needs for health care are often the result of cost-related barriers. The National Health Interview Survey, conducted by NCHS, is the source for high-quality data to monitor cost-related health care access problems in the United States. For example, in 2018, 7.3% of persons of all ages reported delaying medical care due to cost and 4.8% reported needing medical care but not getting it due to cost in the past year. However, cost is not the only reason someone might delay or not receive needed medical care. As a result of the coronavirus pandemic, people also may not get needed medical care due to cancelled appointments, cutbacks in transportation options, fear of going to the emergency room, or an altruistic desire to not be a burden on the health care system, among other reasons. The Household Pulse Survey (https://www.cdc.gov/nchs/covid19/pulse/reduced-access-to-care.htm), an online survey conducted in response to the COVID-19 pandemic by the Census Bureau in partnership with other federal agencies including NCHS, also reports estimates of reduced access to care during the pandemic (beginning in Phase 1, which started on April 23, 2020). The Household Pulse Survey reports the percentage of adults who delayed medical care in the last 4 weeks or who needed medical care at any time in the last 4 weeks for something other than coronavirus but did not get it because of the pandemic. The experimental estimates on this page are derived from RANDS during COVID-19 and show the percentage of U.S. adults who were unable to receive medical care (including urgent care, surgery, screening tests, ongoing treatment, regular checkups, prescriptions, dental care, vision care, and hearing care) in the last 2 months. Technical Notes: https://www.cdc.gov/nchs/covid19/rands/reduced-access-to-care.htm#limitations