18 datasets found
  1. People without internet

    • kaggle.com
    zip
    Updated Jan 11, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GL_Li (2018). People without internet [Dataset]. https://www.kaggle.com/madaha/people-without-internet
    Explore at:
    zip(61176 bytes)Available download formats
    Dataset updated
    Jan 11, 2018
    Authors
    GL_Li
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    Every Kaggler uses internet. Internet is a necessity in our daily life and many people consider it as a utility like water, electricity and gas. But do you know how many households in the US do not have internet, who are these people, and why they do not have internet?

    The U.S. Census Bureau began asking internet use in American Community Survey (ACS) in 2013, as part of the 2008 Broadband Data Improvement Act, and has published 1-year estimate each year since 2013. The recent 2016 data shows that in many counties, over a quarter of household still do not have internet access.

    Content

    This dataset contains data for counties with population over 65000, compiled from the 2016 ACS 1-year estimate. ACS 1-year estimates only summarize data for large geographic areas over 65000 population. The 2013-2017 ACS 5-year estimate is expected to be published at the end of 2018, which has data of all geographic areas down to block group level. Before that we will use the latest 2016 1-year estimate. It provides sufficient data for us to gain insight into internet use.

    This dataset is created with totalcensus package for R programming. Here are the list of columns:

    • county: name of the county
    • state: abbreviation of the state where the county is in
    • CEOID: geographic identifier for the county
    • lon: longitude of a point inside the county
    • lat: latitude of the point
    • P_total: total population
    • P_white: population of white, single race
    • P_black: population of black, single race
    • P_asian: population of asian, single race
    • P_native: population of native Indians and Alaska natives, single race
    • P_Hawaiian: population of Hawaiian and Pacific Islanders, single race
    • P_other: population of other people, single race
    • P_below_middle_school: population with education at or below 8th grade
    • P_some_high_school: population having some years in high school but without a diploma
    • P_high_school_equivalent: population with high school diploma or equivalent
    • P_some_college: Population having associate degree or some years in college without bachelor degree
    • P_bachelor_and_above: population with bachelor, master, professional, or doctor degrees
    • P_below_poverty: population living below poverty line
    • median_age: median age of population
    • gini_index: gini index
    • median_household_income: median household income
    • median_rent_per_income: median percent of income spent on rent
    • percent_no_internet: percent of household without internet connection

    Acknowledgements

    All data come from 2016 ACS 1-year estimate.

    Inspiration

    The U.S. Census Bureau has published tons of data that are available to public. We can create datasets from these public data to address questions we are interested in.

  2. US Broadband Usage Across Counties

    • kaggle.com
    zip
    Updated Jan 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). US Broadband Usage Across Counties [Dataset]. https://www.kaggle.com/datasets/thedevastator/us-broadband-usage-across-counties-and-zip-codes/code
    Explore at:
    zip(46127 bytes)Available download formats
    Dataset updated
    Jan 6, 2023
    Authors
    The Devastator
    Area covered
    United States
    Description

    US Broadband Usage Across Counties

    Utilizing Microsoft's Data to Estimate Access

    By Amber Thomas [source]

    About this dataset

    This dataset provides an estimation of broadband usage in the United States, focusing on how many people have access to broadband and how many are actually using it at broadband speeds. Through data collected by Microsoft from our services, including package size and total time of download, we can estimate the throughput speed of devices connecting to the internet across zip codes and counties.

    According to Federal Communications Commission (FCC) estimates, 14.5 million people don't have access to any kind of broadband connection. This data set aims to address this contrast between those with estimated availability but no actual use by providing more accurate usage numbers downscaled to county and zip code levels. Who gets counted as having access is vastly important -- it determines who gets included in public funding opportunities dedicated solely toward closing this digital divide gap. The implications can be huge: millions around this country could remain invisible if these number aren't accurately reported or used properly in decision-making processes.

    This dataset includes aggregated information about these locations with less than 20 devices for increased accuracy when estimating Broadband Usage in the United States-- allowing others to use it for developing solutions that improve internet access or label problem areas accurately where no real or reliable connectivity exists among citizens within communities large and small throughout the US mainland.. Please review the license terms before using these data so that you may adhere appropriately with stipulations set forth under Microsoft's Open Use Of Data Agreement v1.0 agreement prior to utilizing this dataset for your needs-- both professional and educational endeavors alike!

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    How to Use the US Broadband Usage Dataset

    This dataset provides broadband usage estimates in the United States by county and zip code. It is ideally suited for research into how broadband connects households, towns and cities. Understanding this information is vital for closing existing disparities in access to high-speed internet, and for devising strategies for making sure all Americans can stay connected in a digital world.

    The dataset contains six columns: - County – The name of the county for which usage statistics are provided. - Zip Code (5-Digit) – The 5-digit zip code from which usage data was collected from within that county or metropolitan area/micro area/divisions within states as reported by the US Census Bureau in 2018[2].
    - Population (Households) – Estimated number of households defined according to [3] based on data from the US Census Bureau American Community Survey's 5 Year Estimates[4].
    - Average Throughput (Mbps)- Average Mbps download speed derived from a combination of data collected anonymous devices connected through Microsoft services such as Windows Update, Office 365, Xbox Live Core Services, etc.[5]
    - Percent Fast (> 25 Mbps)- Percentage of machines with throughput greater than 25 Mbps calculated using [6]. 6) Percent Slow (< 3 Mbps)- Percentage of machines with throughput less than 3Mbps calculated using [7].

    Research Ideas

    • Targeting marketing campaigns based on broadband use. Companies can use the geographic and demographic data in this dataset to create targeted advertising campaigns that are tailored to individuals living in areas where broadband access is scarce or lacking.
    • Creating an educational platform for those without reliable access to broadband internet. By leveraging existing technologies such as satellite internet, media streaming services like Netflix, and platforms such as Khan Academy or EdX, those with limited access could gain access to new educational options from home.
    • Establishing public-private partnerships between local governments and telecom providers need better data about gaps in service coverage and usage levels in order to make decisions about investments into new infrastructure buildouts for better connectivity options for rural communities

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    See the dataset description for more information.

    Columns

    File: broadband_data_2020October.csv

    Acknowledgements

    If you use this dataset in your research,...

  3. o

    National Neighborhood Data Archive (NaNDA): Internet Access by ZIP Code...

    • openicpsr.org
    Updated Feb 25, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mao Li; Iris Gomez-Lopez; Anam Khan; Philippa Clarke; Megan Chenoweth (2020). National Neighborhood Data Archive (NaNDA): Internet Access by ZIP Code Tabulation Area, United States, 2015-2019 [Dataset]. http://doi.org/10.3886/E155025V1
    Explore at:
    Dataset updated
    Feb 25, 2020
    Dataset provided by
    University of Michigan. Institute for Social Research
    Authors
    Mao Li; Iris Gomez-Lopez; Anam Khan; Philippa Clarke; Megan Chenoweth
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2015 - 2019
    Area covered
    United States
    Description

    This dataset contains measures of internet access per United States ZIP code tabulation area (ZCTA) from the 2015-2019 American Community Survey five-year estimate. Key variables include the number and percent of households per ZCTA with any type of internet subscription, with broadband internet, and with a computer or smartphone.A curated version of this data is available through ICPSR at https://doi.org/10.3886/ICPSR38559.v1

  4. A

    Broadband Adoption and Computer Use by year, state, demographic...

    • data.amerigeoss.org
    • data.wu.ac.at
    csv, json, rdf, xml
    Updated Jul 27, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States[old] (2019). Broadband Adoption and Computer Use by year, state, demographic characteristics [Dataset]. https://data.amerigeoss.org/zh_CN/dataset/broadband-adoption-and-computer-use-by-year-state-demographic-characteristics
    Explore at:
    xml, json, rdf, csvAvailable download formats
    Dataset updated
    Jul 27, 2019
    Dataset provided by
    United States[old]
    Description

    This dataset is imported from the US Department of Commerce, National Telecommunications and Information Administration (NTIA) and its "Data Explorer" site. The underlying data comes from the US Census

    1. dataset: Specifies the month and year of the survey as a string, in "Mon YYYY" format. The CPS is a monthly survey, and NTIA periodically sponsors Supplements to that survey.

    2. variable: Contains the standardized name of the variable being measured. NTIA identified the availability of similar data across Supplements, and assigned variable names to ease time-series comparisons.

    3. description: Provides a concise description of the variable.

    4. universe: Specifies the variable representing the universe of persons or households included in the variable's statistics. The specified variable is always included in the file. The only variables lacking universes are isPerson and isHouseholder, as they are themselves the broadest universes measured in the CPS.

    5. A large number of *Prop, *PropSE, *Count, and *CountSE columns comprise the remainder of the columns. For each demographic being measured (see below), four statistics are produced, including the estimated proportion of the group for which the variable is true (*Prop), the standard error of that proportion (*PropSE), the estimated number of persons or households in that group for which the variable is true (*Count), and the standard error of that count (*CountSE).

    DEMOGRAPHIC CATEGORIES

    1. us: The usProp, usPropSE, usCount, and usCountSE columns contain statistics about all persons and households in the universe (which represents the population of the fifty states and the District and Columbia). For example, to see how the prevelance of Internet use by Americans has changed over time, look at the usProp column for each survey's internetUser variable.

    2. age: The age category is divided into five ranges: ages 3-14, 15-24, 25-44, 45-64, and 65+. The CPS only includes data on Americans ages 3 and older. Also note that household reference persons must be at least 15 years old, so the age314* columns are blank for household-based variables. Those columns are also blank for person-based variables where the universe is "isAdult" (or a sub-universe of "isAdult"), as the CPS defines adults as persons ages 15 or older. Finally, note that some variables where children are technically in the univese will show zero values for the age314* columns. This occurs in cases where a variable simply cannot be true of a child (e.g. the workInternetUser variable, as the CPS presumes children under 15 are not eligible to work), but the topic of interest is relevant to children (e.g. locations of Internet use).

    3. work: Employment status is divided into "Employed," "Unemployed," and "NILF" (Not in the Labor Force). These three categories reflect the official BLS definitions used in official labor force statistics. Note that employment status is only recorded in the CPS for individuals ages 15 and older. As a result, children are excluded from the universe when calculating statistics by work status, even if they are otherwise considered part of the universe for the variable of interest.

    4. income: The income category represents annual family income, rather than just an individual person's income. It is divided into five ranges: below $25K, $25K-49,999, $50K-74,999, $75K-99,999, and $100K or more. Statistics by income group are only available in this file for Supplements beginning in 2010; prior to 2010, family income range is available in public use datasets, but is not directly comparable to newer datasets due to the 2010 introduction of the practice of allocating "don't know," "refused," and other responses that result in missing data. Prior to 2010, family income is unkown for approximately 20 percent of persons, while in 2010 the Census Bureau began imputing likely income ranges to replace missing data.

    5. education: Educational attainment is divided into "No Diploma," "High School Grad," "Some College," and "College Grad." High school graduates are considered to include GED completers, and those with some college include community college attendees (and graduates) and those who have attended certain postsecondary vocational or technical schools--in other words, it signifies additional education beyond high school, but short of attaining a bachelor's degree or equivilent. Note that educational attainment is only recorded in the CPS for individuals ages 15 and older. As a result, children are excluded from the universe when calculating statistics by education, even if they are otherwise considered part of the universe for the variable of interest.

    6. sex: "Male" and "Female" are the two groups in this category. The CPS does not currently provide response options for intersex individuals.

    7. race: This category includes "White," "Black," "Hispanic," "Asian," "Am Indian," and "Other" groups. The CPS asks about Hispanic origin separately from racial identification; as a result, all persons identifying as Hispanic are in the Hispanic group, regardless of how else they identify. Furthermore, all non-Hispanic persons identifying with two or more races are tallied in the "Other" group (along with other less-prevelant responses). The Am Indian group includes both American Indians and Alaska Natives.

    8. disability: Disability status is divided into "No" and "Yes" groups, indicating whether the person was identified as having a disability. Disabilities screened for in the CPS include hearing impairment, vision impairment (not sufficiently correctable by glasses), cognitive difficulties arising from physical, mental, or emotional conditions, serious difficulty walking or climbing stairs, difficulty dressing or bathing, and difficulties performing errands due to physical, mental, or emotional conditions. The Census Bureau began collecting data on disability status in June 2008; accordingly, this category is unavailable in Supplements prior to that date. Note that disability status is only recorded in the CPS for individuals ages 15 and older. As a result, children are excluded from the universe when calculating statistics by disability status, even if they are otherwise considered part of the universe for the variable of interest.

    9. metro: Metropolitan status is divided into "No," "Yes," and "Unkown," reflecting information in the dataset about the household's location. A household located within a metropolitan statistical area is assigned to the Yes group, and those outside such areas are assigned to No. However, due to the risk of de-anonymization, the metropolitan area status of certain households is unidentified in public use datasets. In those cases, the Census Bureau has determined that revealing this geographic information poses a disclosure risk. Such households are tallied in the Unknown group.

    10. scChldHome:

  5. Computers and Internet Use 2018-2022 - COUNTIES

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • covid19-uscensus.hub.arcgis.com
    • +1more
    Updated Feb 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau (2024). Computers and Internet Use 2018-2022 - COUNTIES [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/1996947ba7df436a8d64ec363c56ab31
    Explore at:
    Dataset updated
    Feb 5, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    US Census Bureau
    Area covered
    Description

    This layer shows Computers and Internet Use. This is shown by state and county boundaries. This service contains the 2017-2021 release of data from the American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show Percentage of Households with a Broadband Internet Subscription. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2018-2022ACS Table(s): DP02, S2801Data downloaded from: Census Bureau's API for American Community Survey Date of API call: January 18, 2022National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the Cartographic Boundaries via US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates, and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico. The Counties (and equivalent) layer contains 3221 records - all counties and equivalent, Washington D.C., and Puerto Rico municipios. See Areas Published. Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes. All of these are rendered in this dataset as null (blank) values.

  6. World Internet Usage Data (2023 Updated)

    • kaggle.com
    zip
    Updated Dec 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kanchana1990 (2024). World Internet Usage Data (2023 Updated) [Dataset]. https://www.kaggle.com/datasets/kanchana1990/world-internet-usage-data-2023-updated
    Explore at:
    zip(3946 bytes)Available download formats
    Dataset updated
    Dec 21, 2024
    Authors
    Kanchana1990
    License

    Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
    License information was derived automatically

    Description

    Dataset Overview

    This dataset provides a comprehensive overview of internet usage across countries as of 2024. It includes data on the percentage of the population using the internet, sourced from multiple organizations such as the World Bank (WB), International Telecommunication Union (ITU), and the CIA. The dataset covers all United Nations member states, excluding North Korea, and provides insights into internet penetration rates, user counts, and trends over recent years. The data is derived from household surveys and internet subscription statistics, offering a reliable snapshot of global digital connectivity.

    Data Science Applications

    This dataset can be used in various data science applications, including: - Digital Divide Analysis: Evaluate disparities in internet access between developed and developing nations. - Trend Analysis: Study the growth of internet penetration over time across different regions. - Policy Recommendations: Assist policymakers in identifying underserved areas and strategizing for improved connectivity. - Market Research: Help businesses identify potential markets for digital products or services. - Correlation Studies: Analyze relationships between internet penetration and socioeconomic indicators like GDP, education levels, or urbanization.

    Column Descriptors

    The dataset contains the following columns: 1. Location: Country or region name. 2. Rate (WB): Percentage of the population using the internet (World Bank data). 3. Year (WB): Year corresponding to the World Bank data. 4. Rate (ITU): Percentage of the population using the internet (ITU data). 5. Year (ITU): Year corresponding to the ITU data. 6. Users (CIA): Estimated number of internet users in absolute terms (CIA data). 7. Year (CIA): Year corresponding to the CIA data. 8. Notes: Additional notes or observations about specific entries.

    Ethically Mined Data

    The data has been sourced from publicly available and reputable organizations such as the World Bank, ITU, and CIA. These sources ensure transparency and ethical collection methods through household surveys and official statistics. The dataset excludes North Korea due to limited reliable information on its internet usage.

    Acknowledgements

    This dataset is based on information compiled from: - World Bank - International Telecommunication Union - CIA World Factbook - Wikipedia's "List of countries by number of Internet users" page

    Special thanks to these organizations for providing open access to this valuable information, enabling deeper insights into global digital connectivity trends.

    Citations: [1] https://en.wikipedia.org/wiki/List_of_countries_by_number_of_Internet_users [2] https://en.wikipedia.org/wiki/List_of_countries_by_number_of_Internet_users

  7. ACS Internet Access by Education Variables - Centroids

    • covid-hub.gio.georgia.gov
    • hub.arcgis.com
    • +1more
    Updated Dec 7, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Internet Access by Education Variables - Centroids [Dataset]. https://covid-hub.gio.georgia.gov/maps/54f6b9d2e9b34d4aa9edefadc6d7f0ae
    Explore at:
    Dataset updated
    Dec 7, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows computer ownership and internet access by education. This is shown by tract, county, and state centroids. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the count of people age 25+ in households with no computer and the percent of the population age 25+ who are high school graduates (includes equivalency) and have some college or associate's degree in households that have no computer. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B28006 Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  8. o

    National Neighborhood Data Archive (NaNDA): Internet Access by Census Tract,...

    • openicpsr.org
    Updated Feb 21, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mao Li; Iris Gomez-Lopez; Anam Khan; Philippa Clarke; Megan Chenoweth (2020). National Neighborhood Data Archive (NaNDA): Internet Access by Census Tract, United States, 2015-2019 [Dataset]. http://doi.org/10.3886/E155022V1
    Explore at:
    Dataset updated
    Feb 21, 2020
    Dataset provided by
    University of Michigan Institute for Social Research
    University of Michigan. Institute for Social Research
    Authors
    Mao Li; Iris Gomez-Lopez; Anam Khan; Philippa Clarke; Megan Chenoweth
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2015 - 2019
    Area covered
    United States
    Description

    This dataset contains measures of internet access per United States census tract from the 2015-2019 American Community Survey five-year estimate. Key variables include the number and percent of households per tract with any type of internet subscription, with broadband internet, and with a computer or smartphone. A curated version of this data is available through ICPSR at https://doi.org/10.3886/ICPSR38559.v1

  9. c

    Computers and Internet Use - Counties 2015-2019

    • covid19.census.gov
    Updated Mar 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau (2021). Computers and Internet Use - Counties 2015-2019 [Dataset]. https://covid19.census.gov/datasets/computers-and-internet-use-counties-2015-2019/api
    Explore at:
    Dataset updated
    Mar 19, 2021
    Dataset authored and provided by
    US Census Bureau
    Area covered
    Description

    This layer shows Computers and Internet Use. This is shown by county boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.
    This layer is symbolized to show Percentage of Households with a Broadband Internet Subscription. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2015-2019ACS Table(s): DP02, S2801Data downloaded from: Census Bureau's API for American Community Survey Date of API call: February 10, 2021National Figures: data.census.gov The United States Census Bureau's American Community Survey (ACS): About the SurveyGeography & ACSTechnical Documentation News & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes.
    All of these are rendered in this dataset as null (blank) values.

  10. c

    Internet Connectivity

    • data.clevelandohio.gov
    • hub.arcgis.com
    Updated Aug 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cleveland | GIS (2023). Internet Connectivity [Dataset]. https://data.clevelandohio.gov/datasets/internet-connectivity
    Explore at:
    Dataset updated
    Aug 21, 2023
    Dataset authored and provided by
    Cleveland | GIS
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    Description
    This layer shows computer ownership and type of internet subscription. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.

    This layer is symbolized to show the percentage of households with no internet connection. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right.

    Current Vintage: 2019-2023
    ACS Table(s): B28001, B28002 (Not all lines of ACS table B28002 are available in this feature layer)

    The United States Census Bureau's American Community Survey (ACS):
    This ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.

    Data Note from the Census:
    Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.

    Data Processing Notes:
    • This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.
    • Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2022 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).
    • The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico
    • Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).
    • Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.
    • Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.
    • Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:
      • The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.
      • Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.
      • The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.
      • The estimate is controlled. A statistical test for sampling variability is not appropriate.
      • The data for this geographic area cannot be displayed because the number of sample cases is too small.

  11. Food Security in the United States

    • agdatacommons.nal.usda.gov
    zip
    Updated Nov 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Department of Agriculture, Economic Research Service (2025). Food Security in the United States [Dataset]. http://doi.org/10.15482/USDA.ADC/1294355
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 22, 2025
    Dataset provided by
    United States Department of Agriculturehttp://usda.gov/
    Economic Research Servicehttp://www.ers.usda.gov/
    Authors
    US Department of Agriculture, Economic Research Service
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    United States
    Description

    The Current Population Survey Food Security Supplement (CPS-FSS) is the source of national and State-level statistics on food insecurity used in USDA's annual reports on household food security. The CPS is a monthly labor force survey of about 50,000 households conducted by the Census Bureau for the Bureau of Labor Statistics. Once each year, after answering the labor force questions, the same households are asked a series of questions (the Food Security Supplement) about food security, food expenditures, and use of food and nutrition assistance programs. Food security data have been collected by the CPS-FSS each year since 1995. Four data sets that complement those available from the Census Bureau are available for download on the ERS website. These are available as ASCII uncompressed or zipped files. The purpose and appropriate use of these additional data files are described below: 1) CPS 1995 Revised Food Security Status data--This file provides household food security scores and food security status categories that are consistent with procedures and variable naming conventions introduced in 1996. This includes the "common screen" variables to facilitate comparisons of prevalence rates across years. This file must be matched to the 1995 CPS Food Security Supplement public-use data file. 2) CPS 1998 Children's and 30-day Food Security data--Subsequent to the release of the April 1999 CPS-FSS public-use data file, USDA developed two additional food security scales to describe aspects of food security conditions in interviewed households not captured by the 12-month household food security scale. This file provides three food security variables (categorical, raw score, and scale score) for each of these scales along with household identification variables to allow the user to match this supplementary data file to the CPS-FSS April 1998 data file. 3) CPS 1999 Children's and 30-day Food Security data--Subsequent to the release of the April 1999 CPS-FSS public-use data file, USDA developed two additional food security scales to describe aspects of food security conditions in interviewed households not captured by the 12-month household food security scale. This file provides three food security variables (categorical, raw score, and scale score) for each of these scales along with household identification variables to allow the user to match this supplementary data file to the CPS-FSS April 1999 data file. 4) CPS 2000 30-day Food Security data--Subsequent to the release of the September 2000 CPS-FSS public-use data file, USDA developed a revised 30-day CPS Food Security Scale. This file provides three food security variables (categorical, raw score, and scale score) for the 30-day scale along with household identification variables to allow the user to match this supplementary data file to the CPS-FSS September 2000 data file. Food security is measured at the household level in three categories: food secure, low food security and very low food security. Each category is measured by a total count and as a percent of the total population. Categories and measurements are broken down further based on the following demographic characteristics: household composition, race/ethnicity, metro/nonmetro area of residence, and geographic region. The food security scale includes questions about households and their ability to purchase enough food and balanced meals, questions about adult meals and their size, frequency skipped, weight lost, days gone without eating, questions about children meals, including diversity, balanced meals, size of meals, skipped meals and hunger. Questions are also asked about the use of public assistance and supplemental food assistance. The food security scale is 18 items that measure insecurity. A score of 0-2 means a house is food secure, from 3-7 indicates low food security, and 8-18 means very low food security. The scale and the data also report the frequency with which each item is experienced. Data are available as .dat files which may be processed in statistical software or through the United State Census Bureau's DataFerret http://dataferrett.census.gov/. Data from 2010 onwards is available below and online. Data from 1995-2009 must be accessed through DataFerrett. DataFerrett is a data analysis and extraction tool to customize federal, state, and local data to suit your requirements. Through DataFerrett, the user can develop an unlimited array of customized spreadsheets that are as versatile and complex as your usage demands then turn those spreadsheets into graphs and maps without any additional software. Resources in this dataset:Resource Title: December 2014 Food Security CPS Supplement. File Name: dec14pub.zipResource Title: December 2013 Food Security CPS Supplement. File Name: dec13pub.zipResource Title: December 2012 Food Security CPS Supplement. File Name: dec12pub.zipResource Title: December 2011 Food Security CPS Supplement. File Name: dec11pub.zipResource Title: December 2010 Food Security CPS Supplement. File Name: dec10pub.zip

  12. w

    The Global Findex Database 2025: Connectivity and Financial Inclusion in the...

    • microdata.worldbank.org
    Updated Oct 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2025). The Global Findex Database 2025: Connectivity and Financial Inclusion in the Digital Economy - United States [Dataset]. https://microdata.worldbank.org/index.php/catalog/7994
    Explore at:
    Dataset updated
    Oct 1, 2025
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2024
    Area covered
    United States
    Description

    Abstract

    The Global Findex 2025 reveals how mobile technology is equipping more adults around the world to own and use financial accounts to save formally, access credit, make and receive digital payments, and pursue opportunities. Including the inaugural Global Findex Digital Connectivity Tracker, this fifth edition of Global Findex presents new insights on the interactions among mobile phone ownership, internet use, and financial inclusion.

    The Global Findex is the world’s most comprehensive database on digital and financial inclusion. It is also the only global source of comparable demand-side data, allowing cross-country analysis of how adults access and use mobile phones, the internet, and financial accounts to reach digital information and resources, save, borrow, make payments, and manage their financial health. Data for the Global Findex 2025 were collected from nationally representative surveys of about 145,000 adults in 141 economies. The latest edition follows the 2011, 2014, 2017, and 2021 editions and includes new series measuring mobile phone ownership and internet use, digital safety, and frequency of transactions using financial services.

    The Global Findex 2025 is an indispensable resource for policy makers in the fields of digital connectivity and financial inclusion, as well as for practitioners, researchers, and development professionals.

    Geographic coverage

    National Coverage

    Analysis unit

    Individual

    Kind of data

    Observation data/ratings [obs]

    Sampling procedure

    In most low- and middle-income economies, Global Findex data were collected through face-to-face interviews. In these economies, an area frame design was used for interviewing. In most high-income economies, telephone surveys were used. In 2024, face-to-face interviews were again conducted in 22 economies after phone-based surveys had been employed in 2021 as a result of mobility restrictions related to COVID-19. In addition, an abridged form of the questionnaire was administered by phone to survey participants in Algeria, China, the Islamic Republic of Iran, Libya, Mauritius, and Ukraine because of economy-specific restrictions. In just one economy, Singapore, did the interviewing mode change from face to face in 2021 to phone based in 2024.

    In economies in which face-to-face surveys were conducted, the first stage of sampling was the identification of primary sampling units. These units were then stratified by population size, geography, or both and clustered through one or more stages of sampling. Where population information was available, sample selection was based on probabilities proportional to population size; otherwise, simple random sampling was used. Random route procedures were used to select sampled households. Unless an outright refusal occurred, interviewers made up to three attempts to survey each sampled household. To increase the probability of contact and completion, attempts were made at different times of the day and, where possible, on different days. If an interview could not be completed at a household that was initially part of the sample, a simple substitution method was used to select a replacement household for inclusion.

    Respondents were randomly selected within sampled households. Each eligible household member (that is, all those ages 15 or older) was listed, and a handheld survey device randomly selected the household member to be interviewed. For paper surveys, the Kish grid method was used to select the respondent. In economies in which cultural restrictions dictated gender matching, respondents were randomly selected from among all eligible adults of the interviewer’s gender.

    In economies in which Global Findex surveys have traditionally been phone based, respondent selection followed the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies in which mobile phone and landline penetration is high, a dual sampling frame was used.

    The same procedure for respondent selection was applied to economies in which phone-based interviews were being conducted for the first time. Dual-frame (landline and mobile phone) random digit dialing was used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digit dialing was used in economies with limited or no landline presence (less than 20 percent). For landline respondents in economies in which mobile phone or landline penetration is 80 percent or higher, respondents were selected randomly by using either the next-birthday method or the household enumeration method, which involves listing all eligible household members and randomly selecting one to participate. For mobile phone respondents in these economies or in economies in which mobile phone or landline penetration is less than 80 percent, no further selection was performed. At least three attempts were made to reach the randomly selected person in each household, spread over different days and times of day.

    Research instrument

    The English version of the questionnaire is provided for download.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in: Klapper, Leora, Dorothe Singer, Laura Starita, and Alexandra Norris. 2025. The Global Findex Database 2025: Connectivity and Financial Inclusion in the Digital Economy. Washington, DC: World Bank. https://doi.org/10.1596/978-1-4648-2204-9.

  13. ACS Internet Access by Age and Race Variables - Boundaries

    • resilience.climate.gov
    • mapdirect-fdep.opendata.arcgis.com
    • +6more
    Updated Dec 7, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Internet Access by Age and Race Variables - Boundaries [Dataset]. https://resilience.climate.gov/maps/5a1b51d3c6374c3cbb7c9ff7acdba16b
    Explore at:
    Dataset updated
    Dec 7, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows computer ownership and internet access by age and race. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent of population age 18 to 64 in households with no computer. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B28005, B28003, B28009B, B28009C, B28009D, B28009E, B28009F, B28009G, B28009H, B28009I Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  14. Business Density

    • kaggle.com
    zip
    Updated Apr 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jithin Jaison (2023). Business Density [Dataset]. https://www.kaggle.com/datasets/jjithin/business-density
    Explore at:
    zip(1694169 bytes)Available download formats
    Dataset updated
    Apr 1, 2023
    Authors
    Jithin Jaison
    License

    http://www.gnu.org/licenses/old-licenses/gpl-2.0.en.htmlhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

    Description

    Dataset contains micro-business activity across the United States, measured by the density of micro-businesses in US counties. Microbusinesses are often too small or too new to show up in traditional economic data sources, but microbusiness activity may be correlated with other economic indicators of general interest.

    Feature Description

    cfips - A unique identifier for each county using the Federal Information Processing System. The first two digits correspond to the state FIPS code, while the following 3 represent the county. county - The written name of the county. state - The name of the state. first_day_of_month - The date of the first day of the month. microbusiness_density - Microbusinesses per 100 people over the age of 18 in the given county. This is the target variable. The population figures used to calculate the density are on a two-year lag due to the pace of update provided by the U.S. Census Bureau, which provides the underlying population data annually. 2021 density figures are calculated using 2019 population figures, etc. active - The raw count of micro-businesses in the county. year - Year in which the record is published (YYYY) month - Month in which the record is published (MM) pct_broadband - The percentage of households in the county with access to broadband of any type. Derived from ACS table B28002: PRESENCE AND TYPES OF INTERNET SUBSCRIPTIONS IN HOUSEHOLD. pct_college - The percent of the population in the county over age 25 with a 4-year college degree. Derived from ACS table S1501: EDUCATIONAL ATTAINMENT. pct_foreign_born - The percent of the population in the county born outside of the United States. Derived from ACS table DP02: SELECTED SOCIAL CHARACTERISTICS IN THE UNITED STATES. pct_IT_workers - The percent of the workforce in the county employed in information related industries. Derived from ACS table S2405: INDUSTRY BY OCCUPATION FOR THE CIVILIAN EMPLOYED POPULATION 16 YEARS AND OVER. median_income - The median household income in the county. Derived from ACS table S1901: INCOME IN THE PAST 12 MONTHS (IN 2021 INFLATION-ADJUSTED DOLLARS).

  15. Race and Ethnicity 2015-2019

    • covid19.census.gov
    Updated Mar 8, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau (2021). Race and Ethnicity 2015-2019 [Dataset]. https://covid19.census.gov/datasets/us-1
    Explore at:
    Dataset updated
    Mar 8, 2021
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    US Census Bureau
    Area covered
    Description

    This layer shows Race and Ethnicity. This is shown by state and county boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.
    This layer is symbolized to show the percentage of households with no internet connection. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2015-2019ACS Table(s): B02001, B03001Data downloaded from: Census Bureau's API for American Community Survey Date of API call: February 10, 2021National Figures: data.census.gov The United States Census Bureau's American Community Survey (ACS): About the SurveyGeography & ACSTechnical Documentation News & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes.
    All of these are rendered in this dataset as null (blank) values.

  16. g

    Health Reform Monitoring Survey, United States, Second Quarter 2013 -...

    • search.gesis.org
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GESIS search, Health Reform Monitoring Survey, United States, Second Quarter 2013 - Version 2 [Dataset]. http://doi.org/10.3886/ICPSR35623.v2
    Explore at:
    Dataset provided by
    GESIS search
    Inter-University Consortium for Political and Social Research
    License

    https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de452028https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de452028

    Area covered
    United States
    Description

    Abstract (en): In January 2013, the Urban Institute launched the Health Reform Monitoring Survey (HRMS), a quarterly survey of the nonelderly population, to explore the value of cutting-edge, Internet-based survey methods to monitor the Affordable Care Act (ACA) before data from federal government surveys are available. Topics covered by the second round of the survey (second quarter 2013) include self-reported health status, type of and satisfaction with current health insurance coverage, access to and use of health care, health care affordability, whether the respondent considered purchasing or tried to purchase health insurance coverage directly from an insurance company, whether the respondent considered obtaining coverage through Medicaid or other government sponsored assistance plan based on income or disability, sources of information about health insurance, and the importance of various criteria in choosing a health insurance plan. Additional information collected by the survey includes age, education, race, Hispanic origin, gender, income, household size, housing type, marital status, employment status, number of employees at place of work, United States citizenship, smoking, internet access, home ownership, body mass index, sexual orientation, and whether the respondent reported an ambulatory care sensitive condition or a mental or behavioral condition. ICPSR data undergo a confidentiality review and are altered when necessary to limit the risk of disclosure. ICPSR also routinely creates ready-to-go data files along with setups in the major statistical software formats as well as standard codebooks to accompany the data. In addition to these procedures, ICPSR performed the following processing steps for this data collection: Checked for undocumented or out-of-range codes.. Response Rates: The HRMS response rate is roughly five percent each quarter. Datasets:DS0: Study-Level FilesDS1: Public-use DataDS2: Restricted-use Data Household population aged 18-64. Each quarterly HRMS sample is drawn from the KnowledgePanel, a probability-based, nationally representative Internet panel maintained by GfK Custom Research. Beginning with the second quarter of 2013, the HRMS includes oversamples of adults with family incomes at or below 138 percent of the federal poverty level and adults from selected state groups based on (1) the potential for gains in insurance coverage in the state under the ACA as estimated by the Urban Institute's microsimulation model and (2) states of specific interest to the HRMS funders. Additional funders have supported oversamples of adults from individual states or subgroups of interest (including children). However, ICPSR received data only for the adults in the general national sample and the income and state group oversamples. 2019-07-10 Variable Q7_F was removed from public dataset. An updated codebook excluding this variable was provided for public use. Current release will feature DS1 as public-use data only and DS2 as restricted-use data. Previous release included both public and restricted versions of DS1. Study title updated to include geographic information.2017-06-20 The principal investigators added a new weight variable to the data file and the technical documentation was updated accordingly.2015-03-23 The principal investigators deleted the multiple imputation variables _1_famsize, _2_famsize, _3_famsize, _4_famsize and _5_famsize. ICPSR revised the codebook accordingly and added to the collection a plain text version of the data with a Stata setup and record layout file. Funding institution(s): Ford Foundation. Urban Institute. Robert Wood Johnson Foundation (71390). web-based survey

  17. Leading social media usage reasons worldwide 2024

    • statista.com
    • de.statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Leading social media usage reasons worldwide 2024 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    A global survey conducted in the third quarter of 2024 found that the main reason for using social media was to keep in touch with friends and family, with over 50.8 percent of social media users saying this was their main reason for using online networks. Overall, 39 percent of social media users said that filling spare time was their main reason for using social media platforms, whilst 34.5 percent of respondents said they used it to read news stories. Less than one in five users were on social platforms for the reason of following celebrities and influencers.

                  The most popular social network
    
                  Facebook dominates the social media landscape. The world's most popular social media platform turned 20 in February 2024, and it continues to lead the way in terms of user numbers. As of February 2025, the social network had over three billion global users. YouTube, Instagram, and WhatsApp follow, but none of these well-known brands can surpass Facebook’s audience size.
                  Moreover, as of the final quarter of 2023, there were almost four billion Meta product users.
    
                  Ever-evolving social media usage
    
                  The utilization of social media remains largely gratuitous; however, companies have been encouraging users to become paid subscribers to reduce dependence on advertising profits. Meta Verified entices users by offering a blue verification badge and proactive account protection, among other things. X (formerly Twitter), Snapchat, and Reddit also offer users the chance to upgrade their social media accounts for a monthly free.
    
  18. SafeGraph Grocery Stores

    • nv-thrive-data-hub-csustanislaus.hub.arcgis.com
    Updated May 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2021). SafeGraph Grocery Stores [Dataset]. https://nv-thrive-data-hub-csustanislaus.hub.arcgis.com/datasets/UrbanObservatory::safegraph-grocery-stores/about
    Explore at:
    Dataset updated
    May 4, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    This layer shows which parts of the United States and Puerto Rico fall within ten minutes" walk of one or more grocery stores. It is estimated that 20% of U.S. population live within a 10 minute walk of a grocery store, and 92% of the population live within a 10 minute drive of a grocery store. The layer is suitable for looking at access at a neighborhood scale. When you add this layer to your web map, along with the drivable access layer and the SafeGraph grocery store layer, it becomes easier to spot grocery stores that sit within a highly populated area, and grocery stores that sit in a shopping center far away from populated areas. Add the Census block points layer to show a popup with the count of stores within 10 minutes" walk and drive. This view of a city begins to hint at the question: how many people have each type of access to grocery stores? And, what if they are unable to walk a mile regularly, or don"t own a car? How to Use This Layer in a Web MapUse this layer in a web map to introduce the concepts of access to grocery stores in your city or town. This is the kind of map where people will want to look up their home or work address to validate what the map is saying. See this example web map which you can use in your projects, storymaps, apps and dashboards. The layer was built with that use in mind. Many maps of access use straight-line, as-the-crow-flies distance, which ignores real-world barriers to walkability like rivers, lakes, interstates and other characteristics of the built environment. Block analysis using a network data set and Origin-Destination analysis factors these barriers in, resulting in a more realistic depiction of access. Lastly, this layer can serve as backdrop to other community resources, like food banks, farmers markets (example), and transit (example). Add a transit layer to immediately gauge its impact on the population"s grocery access. You can also use this map to see how it relates to communities of concern. Add a layer of any block group or tract demographics, such as Percent Senior Population (examples), or Percent of Households with Access to 0 Vehicles (examples). The layer is a useful visual resource for helping community leaders, business and government leaders see their town from the perspective of its residents, and begin asking questions about how their community could be improved. Data sourcesPopulation data is from the 2010 U.S. Census blocks. Each census block has a count of stores within a 10 minute walk, and a count of stores within a ten minute drive. Census blocks known to be unpopulated are given a score of 0. The layer is available as a hosted feature layer. Grocery store locations are from SafeGraph, reflecting what was in the data as of October 2020. Access to the layer was obtained from the SafeGraph offering in ArcGIS Marketplace. For this project, ArcGIS StreetMap Premium was used for the street network in the origin-destination analysis work, because it already has the necessary attributes on each street segment to identify which streets are considered walkable, and supports a wide variety of driving parameters. The walkable access layer and drivable access layers are rasters, whose colors were chosen to allow the drivable access layer to serve as backdrop to the walkable access layer. Data PreparationArcGIS Network Analyst was used to set up a network street layer for analysis. ArcGIS StreetMap Premium was installed to a local hard drive and selected in the Origin-Destination workflow as the network data source. This allows the origins (Census block centroids) and destinations (SafeGraph grocery stores) to be connected to that network, to allow origin-destination analysis. The Census blocks layer contains the centroid of each Census block. The data allows a simple popup to be created. This layer"s block figures can be summarized further, to tract, county and state levels. The SafeGraph grocery store locations were created by querying the SafeGraph source layer based on primary NAICS code. After connecting to the layer in ArcGIS Pro, a definition query was set to only show records with NAICS code 445110 as an initial screening. The layer was exported to a local disk drive for further definition query refinement, to eliminate any records that were obviously not grocery stores. The final layer used in the analysis had approximately 53,600 records. In this map, this layer is included as a vector tile layer. Methodology Every census block in the U.S. was assigned two access scores, whose numbers are simply how many grocery stores are within a 10 minute walk and a 10 minute drive of that census block. Every census block has a score of 0 (no stores), 1, 2 or more stores. The count of accessible stores was determined using Origin-Destination Analysis in ArcGIS Network Analyst, in ArcGIS Pro. A set of Tools in this ArcGIS Pro package allow a similar analysis to be conducted for any city or other area. The Tools step through the data prep and analysis steps. Download the Pro package, open it and substitute your own layers for Origins and Destinations. Parcel centroids are a suggested option for Origins, for example. Origin-Destination analysis was configured, using ArcGIS StreetMap Premium as the network data source. Census block centroids with population greater than zero were used as the Origins, and grocery store locations were used as the Destinations. A cutoff of 10 minutes was used with the Walk Time option. Only one restriction was applied to the street network: Walkable, which means Interstates and other non-walkable street segments were treated appropriately. You see the results in the map: wherever freeway overpasses and underpasses are present near a grocery store, the walkable area extends across/through that pass, but not along the freeway. A cutoff of 10 minutes was used with the Drive Time option. The default restrictions were applied to the street network, which means a typical vehicle"s access to all types of roads was factored in. The results for each analysis were captured in the Lines layer, which shows which origins are within the cutoff of each destination over the street network, given the assumptions about that network (walking, or driving a vehicle). The Lines layer was then summarized by census block ID to capture the Maximum value of the Destination_Rank field. A census block within 10 minutes of 3 stores would have 3 records in the Lines layer, but only one value in the summarized table, with a MAX_Destination_Rank field value of 3. This is the number of stores accessible to that census block in the 10 minutes measured, for walking and driving. These data were joined to the block centroids layer and given unique names. At this point, all blocks with zero population or null values in the MAX_Destination_Rank fields were given a store count of 0, to help the next step. Walkable and Drivable areas are calculated into a raster layer, using Nearest Neighbor geoprocessing tool on the count of stores within a 10 minute walk, and a count of stores within a ten minute drive, respectively. This tool uses a 200 meter grid and interpolates the values between each census block. A census tracts layer containing all water polygons "erased" from the census tract boundaries was used as an environment setting, to help constrain interpolation into/across bodies of water. The same layer use used to "shoreline" the Nearest Neighbor results, to eliminate any interpolation into the ocean or Great Lakes. This helped but was not perfect. Notes and LimitationsThe map provides a baseline for discussing access to grocery stores in a city. It does not presume local population has the desire or means to walk or drive to obtain groceries. It does not take elevation gain or loss into account. It does not factor time of day nor weather, seasons, or other variables that affect a person"s commute choices. Walking and driving are just two ways people get to a grocery store. Some people ride a bike, others take public transit, have groceries delivered, or rely on a friend with a vehicle. Thank you to Melinda Morang on the Network Analyst team for guidance and suggestions at key moments along the way; to Emily Meriam for reviewing the previous version of this map and creating new color palettes and marker symbols specific to this project. Additional ReadingThe methods by which access to food is measured and reported have improved in the past decade or so, as has the uses of such measurements. Some relevant papers and articles are provided below as a starting point. Measuring Food Insecurity Using the Food Abundance Index: Implications for Economic, Health and Social Well-BeingHow to Identify Food Deserts: Measuring Physical and Economic Access to Supermarkets in King County, WashingtonAccess to Affordable and Nutritious Food: Measuring and Understanding Food Deserts and Their ConsequencesDifferent Measures of Food Access Inform Different SolutionsThe time cost of access to food – Distance to the grocery store as measured in minutes

  19. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
GL_Li (2018). People without internet [Dataset]. https://www.kaggle.com/madaha/people-without-internet
Organization logo

People without internet

Who do not have internet and why

Explore at:
zip(61176 bytes)Available download formats
Dataset updated
Jan 11, 2018
Authors
GL_Li
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

Context

Every Kaggler uses internet. Internet is a necessity in our daily life and many people consider it as a utility like water, electricity and gas. But do you know how many households in the US do not have internet, who are these people, and why they do not have internet?

The U.S. Census Bureau began asking internet use in American Community Survey (ACS) in 2013, as part of the 2008 Broadband Data Improvement Act, and has published 1-year estimate each year since 2013. The recent 2016 data shows that in many counties, over a quarter of household still do not have internet access.

Content

This dataset contains data for counties with population over 65000, compiled from the 2016 ACS 1-year estimate. ACS 1-year estimates only summarize data for large geographic areas over 65000 population. The 2013-2017 ACS 5-year estimate is expected to be published at the end of 2018, which has data of all geographic areas down to block group level. Before that we will use the latest 2016 1-year estimate. It provides sufficient data for us to gain insight into internet use.

This dataset is created with totalcensus package for R programming. Here are the list of columns:

  • county: name of the county
  • state: abbreviation of the state where the county is in
  • CEOID: geographic identifier for the county
  • lon: longitude of a point inside the county
  • lat: latitude of the point
  • P_total: total population
  • P_white: population of white, single race
  • P_black: population of black, single race
  • P_asian: population of asian, single race
  • P_native: population of native Indians and Alaska natives, single race
  • P_Hawaiian: population of Hawaiian and Pacific Islanders, single race
  • P_other: population of other people, single race
  • P_below_middle_school: population with education at or below 8th grade
  • P_some_high_school: population having some years in high school but without a diploma
  • P_high_school_equivalent: population with high school diploma or equivalent
  • P_some_college: Population having associate degree or some years in college without bachelor degree
  • P_bachelor_and_above: population with bachelor, master, professional, or doctor degrees
  • P_below_poverty: population living below poverty line
  • median_age: median age of population
  • gini_index: gini index
  • median_household_income: median household income
  • median_rent_per_income: median percent of income spent on rent
  • percent_no_internet: percent of household without internet connection

Acknowledgements

All data come from 2016 ACS 1-year estimate.

Inspiration

The U.S. Census Bureau has published tons of data that are available to public. We can create datasets from these public data to address questions we are interested in.

Search
Clear search
Close search
Google apps
Main menu