14 datasets found
  1. Typical price of single-family homes in the U.S. 2020-2024, by state

    • statista.com
    • flwrdeptvarieties.store
    Updated Jan 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Typical price of single-family homes in the U.S. 2020-2024, by state [Dataset]. https://www.statista.com/statistics/1041708/typical-home-value-single-family-homes-usa-by-state/
    Explore at:
    Dataset updated
    Jan 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In the United States, Hawaii was the state with the most expensive housing, with the typical value of single-family homes in the 35th to 65th percentile range exceeding 981,000 U.S. dollars. Unsurprisingly, Hawaii also ranked top as the state with the highest cost of living. Meanwhile, a property was the least expensive in West Virginia, where it cost under 167,000 U.S. dollars to buy the typical single-family home. Single-family home prices increased across most states in the United States between December 2023 and December 2024, except in Louisiana, Florida, and the District of Colombia. According to the Federal Housing Association, house appreciation in 13 states exceeded nine percent in 2023.

  2. O

    Percent Change in Property Value by Location 2022-2023: Single Family Homes

    • opendata.ramseycounty.us
    application/rdfxml +5
    Updated Mar 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Percent Change in Property Value by Location 2022-2023: Single Family Homes [Dataset]. https://opendata.ramseycounty.us/Housing-Property-and-Development/Percent-Change-in-Property-Value-by-Location-2022-/e9eh-9drr
    Explore at:
    csv, application/rdfxml, application/rssxml, tsv, xml, jsonAvailable download formats
    Dataset updated
    Mar 14, 2023
    Description

    This dataset outlines the percent changes in median Estimated Market Values and Parcel Counts of Single Family Homes by Location (City of Saint Paul vs suburbs) from 2022 to 2023.

  3. T

    United States House Price Index MoM

    • tradingeconomics.com
    • ru.tradingeconomics.com
    • +17more
    csv, excel, json, xml
    Updated Mar 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States House Price Index MoM [Dataset]. https://tradingeconomics.com/united-states/house-price-index-mom
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset updated
    Mar 25, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 28, 1991 - Jan 31, 2025
    Area covered
    United States
    Description

    House Price Index MoM in the United States decreased to 0.20 percent in January from 0.50 percent in December of 2024. This dataset includes a chart with historical data for the United States FHFA House Price Index MoM.

  4. US National Rental Data | 14M+ Records in 16,000+ ZIP Codes | Rental Data...

    • datarade.ai
    .csv, .xls, .txt
    Updated Oct 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Warren Group (2024). US National Rental Data | 14M+ Records in 16,000+ ZIP Codes | Rental Data Lease Terms & Pricing Trends [Dataset]. https://datarade.ai/data-products/us-national-rental-data-14m-records-in-16-000-zip-codes-the-warren-group
    Explore at:
    .csv, .xls, .txtAvailable download formats
    Dataset updated
    Oct 21, 2024
    Dataset authored and provided by
    The Warren Group
    Area covered
    United States
    Description

    What is Rental Data?

    Rental data encompasses detailed information about residential rental properties, including single-family homes, multifamily units, and large apartment complexes. This data often includes key metrics such as rental prices, occupancy rates, property amenities, and detailed property descriptions. Advanced rental datasets integrate listings directly sourced from property management software systems, ensuring real-time accuracy and eliminating reliance on outdated or scraped information.

    Additional Rental Data Details

    The rental data is sourced from over 20,000 property managers via direct feeds and property management platforms, covering over 30 percent of the national rental housing market for diverse and broad representation. Real-time updates ensure data remains current, while verified listings enhance accuracy, avoiding errors typical of survey-based or scraped datasets. The dataset includes 14+ million rental units with detailed descriptions, rich photography, and amenities, offering address-level granularity for precise market analysis. Its extensive coverage of small multifamily and single-family rentals sets it apart from competitors focused on premium multifamily properties.

    Rental Data Includes:

    • Property Types
    • Single-Family Rentals
    • Small Multi-family Units
    • Premium Apartments
    • 16,000+ ZIP Codes
    • 800+ MSAs
    • Pricing Trends
    • Lease Terms Amenities
  5. United States House Prices Growth

    • ceicdata.com
    Updated Feb 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2020). United States House Prices Growth [Dataset]. https://www.ceicdata.com/en/indicator/united-states/house-prices-growth
    Explore at:
    Dataset updated
    Feb 15, 2020
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2021 - Sep 1, 2024
    Area covered
    United States
    Description

    Key information about House Prices Growth

    • US house prices grew 5.2% YoY in Sep 2024, following an increase of 6.2% YoY in the previous quarter.
    • YoY growth data is updated quarterly, available from Mar 1992 to Sep 2024, with an average growth rate of 5.5%.
    • House price data reached an all-time high of 17.7% in Sep 2021 and a record low of -12.4% in Dec 2008.

    CEIC calculates House Prices Growth from quarterly House Price Index. Federal Housing Finance Agency provides House Price Index with base January 1991=100.

  6. T

    Vital Signs: Home Prices – by metro

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Sep 24, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zillow (2019). Vital Signs: Home Prices – by metro [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Home-Prices-by-metro/7ksc-i6kn
    Explore at:
    application/rssxml, xml, csv, tsv, json, application/rdfxmlAvailable download formats
    Dataset updated
    Sep 24, 2019
    Dataset authored and provided by
    Zillow
    Description

    VITAL SIGNS INDICATOR Home Prices (EC7)

    FULL MEASURE NAME Home Prices

    LAST UPDATED August 2019

    DESCRIPTION Home prices refer to the cost of purchasing one’s own house or condominium. While a significant share of residents may choose to rent, home prices represent a primary driver of housing affordability in a given region, county or city.

    DATA SOURCE Zillow Median Sale Price (1997-2018) http://www.zillow.com/research/data/

    Bureau of Labor Statistics: Consumer Price Index All Urban Consumers Data Table (1997-2018; specific to each metro area) http://data.bls.gov

    CONTACT INFORMATION vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Median housing price estimates for the region, counties, cities, and zip code come from analysis of individual home sales by Zillow. The median sale price is the price separating the higher half of the sales from the lower half. In other words, 50 percent of home sales are below or above the median value. Zillow defines all homes as single-family residential, condominium, and co-operative homes with a county record. Single-family residences are detached, which means the home is an individual structure with its own lot. Condominiums are units that you own in a multi-unit complex, such as an apartment building. Co-operative homes are slightly different from condominiums where the homeowners own shares in the corporation that owns the building, not the actual units themselves.

    For metropolitan area comparison values, the Bay Area metro area’s median home sale price is the population-weighted average of the nine counties’ median home prices. Home sales prices are not reliably available for Houston, because Texas is a non-disclosure state. For more information on non-disclosure states, see: http://www.zillow.com/blog/chronicles-of-data-collection-ii-non-disclosure-states-3783/

    Inflation-adjusted data are presented to illustrate how home prices have grown relative to overall price increases; that said, the use of the Consumer Price Index does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of CPI itself.

  7. b

    Percent of Residential Mortgages Originated or Approved - City

    • data.baltimorecity.gov
    • vital-signs-bniajfi.hub.arcgis.com
    • +1more
    Updated Apr 23, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Baltimore Neighborhood Indicators Alliance (2021). Percent of Residential Mortgages Originated or Approved - City [Dataset]. https://data.baltimorecity.gov/datasets/bniajfi::percent-of-residential-mortgages-originated-or-approved?layer=1
    Explore at:
    Dataset updated
    Apr 23, 2021
    Dataset authored and provided by
    Baltimore Neighborhood Indicators Alliance
    Area covered
    Description

    The percent of first lien mortgage applications for single family homes that were originated or approved out of all applications in the area. The Home Mortgage Disclosure Act (HMDA) requires many financial institutions to maintain, report, and publicly disclose information about mortgages in neighborhoods. Source: Consumer Financial Protection Bureau Years Available: 2019

  8. g

    EnviroAtlas - Percent Urban Land Cover by 12-Digit HUC for the Conterminous...

    • data.globalchange.gov
    • datadiscoverystudio.org
    • +5more
    Updated Sep 12, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). EnviroAtlas - Percent Urban Land Cover by 12-Digit HUC for the Conterminous United States [Dataset]. https://data.globalchange.gov/dataset/epa-enviroatlas-percent-urban-land-cover-by-12-digit-huc-for-the-conterminous-united-states
    Explore at:
    Dataset updated
    Sep 12, 2016
    Area covered
    United States
    Description

    This EnviroAtlas dataset estimates the percent urban land for each 12-digit hydrologic unit code (HUC) in the conterminous United States. For the purposes of this map, urban land cover includes a variety of development, such as open spaces, parks, golf courses, single family homes, multifamily housing units, retail, commercial, industrial sites, and associated infrastructure. Urban land cover is not confined to city limits. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  9. Single and multiple residential property owners: Demographic data and value...

    • www150.statcan.gc.ca
    • datasets.ai
    • +2more
    Updated Dec 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2024). Single and multiple residential property owners: Demographic data and value of properties owned [Dataset]. http://doi.org/10.25318/4610003801-eng
    Explore at:
    Dataset updated
    Dec 9, 2024
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Data on resident owners who are persons occupying one of their residential properties: sex, age, total income, the type and the assessment value of the owner-occupied property, as well as the number and the total assessment value of residential properties owned.

  10. g

    Indoor Plumbing Program FY 2009-2012

    • gimi9.com
    • datasets.ai
    • +2more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Indoor Plumbing Program FY 2009-2012 [Dataset]. https://gimi9.com/dataset/data-gov_indoor-plumbing-program-fy-2009-2012
    Explore at:
    Description

    PLEASE NOTE: "The following dataset will be deprecated on or around January 1, 2025, please contact brad.wolters@maryland.gov with any questions regarding this dataset" The purpose of the Indoor Plumbing Program (IPP) is to provide indoor plumbing in residential properties. Loans may be made for single-family, owner-occupied houses and rental properties with one to four units, which do not have indoor plumbing. Properties must be structurally sound. Owner-occupants of single-family homes and all residents of assisted rental housing must have an income at or below 80 percent of the statewide or Washington, D.C. Metropolitan Statistical Area median income. Interest rates range from 0% to 6% and are based on the applicant's ability to pay. Deferred loans are available to some borrowers who require health, safety or accessability improvements. For rental units, the project's income determines requirements for loan deferment or repayment. DISCLAIMER: Some of the information may be tied to the Department’s bond funded loan programs and should not be relied upon in making an investment decision. The Department provides comprehensive quarterly and annual financial information and operating data regarding its bonds and bond funded loan programs, all of which is posted on the publicly-accessible Electronic Municipal Market Access system website (commonly known as EMMA) that is maintained by the Municipal Securities Rulemaking Board, and on the Department’s website under Investor Information. More information accessible here: http://dhcd.maryland.gov/Investors/Pages/default.aspx

  11. Residential Existing Homes (One-to-Four Units) Energy Efficiency Projects...

    • data.ny.gov
    • catalog.data.gov
    • +1more
    application/rdfxml +5
    Updated Jan 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The New York State Energy Research and Development Authority’s New York Residential Existing Homes Program (2024). Residential Existing Homes (One-to-Four Units) Energy Efficiency Projects for Households with Income up to 60% State Median Income: Beginning January 2018 [Dataset]. https://data.ny.gov/Energy-Environment/Residential-Existing-Homes-One-to-Four-Units-Energ/4a2x-yp8g
    Explore at:
    csv, tsv, application/rssxml, json, application/rdfxml, xmlAvailable download formats
    Dataset updated
    Jan 22, 2024
    Dataset provided by
    New York State Energy Research and Development Authorityhttps://www.nyserda.ny.gov/
    Authors
    The New York State Energy Research and Development Authority’s New York Residential Existing Homes Program
    Description

    IMPORTANT! PLEASE READ DISCLAIMER BEFORE USING DATA. To reduce the energy burden on income-qualified households within New York State, NYSERDA offers the EmPower New York (EmPower) program, a retrofit program that provides cost-effective electric reduction measures (i.e., primarily lighting and refrigerator replacements), and cost-effective home performance measures (i.e., insulation air sealing, heating system repair and replacments, and health and safety measures) to income qualified homeowners and renters. Home assessments and implementation services are provided by Building Performance Institute (BPI) Goldstar contractors to reduce energy use for low income households. This data set includes energy efficiency projects completed since January 2018 for households with income up to 60% area (county) median income.

    D I S C L A I M E R: Estimated Annual kWh Savings, Estimated Annual MMBtu Savings, and First Year Energy Savings $ Estimate represent contractor reported savings derived from energy modeling software calculations and not actual realized energy savings. The accuracy of the Estimated Annual kWh Savings and Estimated Annual MMBtu Savings for projects has been evaluated by an independent third party. The results of the impact analysis indicate that, on average, actual savings amount to 54 percent of the Estimated Annual kWh Savings and 70 percent of the Estimated Annual MMBtu Savings. The analysis did not evaluate every single project, but rather a sample of projects from 2007 and 2008, so the results are applicable to the population on average but not necessarily to any individual project which could have over or under achieved in comparison to the evaluated savings. The results from the impact analysis will be updated when more recent information is available. Some reasons individual households may realize savings different from those projected include, but are not limited to, changes in the number or needs of household members, changes in occupancy schedules, changes in energy usage behaviors, changes to appliances and electronics installed in the home, and beginning or ending a home business. For more information, please refer to the Evaluation Report published on NYSERDA’s website at: https://www.nyserda.ny.gov/-/media/Files/Publications/PPSER/Program-Evaluation/2012ContractorReports/2012-EmPower-New-York-Impact-Report.pdf.

    This dataset includes the following data points for projects completed after January 1, 2018: Reporting Period, Project ID, Project County, Project City, Project ZIP, Gas Utility, Electric Utility, Project Completion Date, Total Project Cost (USD), Pre-Retrofit Home Heating Fuel Type, Year Home Built, Size of Home, Number of Units, Job Type, Type of Dwelling, Measure Type, Estimated Annual kWh Savings, Estimated Annual MMBtu Savings, First Year Modeled Energy Savings $ Estimate (USD).

    How does your organization use this dataset? What other NYSERDA or energy-related datasets would you like to see on Open NY? Let us know by emailing OpenNY@nyserda.ny.gov.

  12. d

    2010 County and City-Level Water-Use Data and Associated Explanatory...

    • catalog.data.gov
    • data.usgs.gov
    • +4more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). 2010 County and City-Level Water-Use Data and Associated Explanatory Variables [Dataset]. https://catalog.data.gov/dataset/2010-county-and-city-level-water-use-data-and-associated-explanatory-variables
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Description

    This data release contains the input-data files and R scripts associated with the analysis presented in [citation of manuscript]. The spatial extent of the data is the contiguous U.S. The input-data files include one comma separated value (csv) file of county-level data, and one csv file of city-level data. The county-level csv (“county_data.csv”) contains data for 3,109 counties. This data includes two measures of water use, descriptive information about each county, three grouping variables (climate region, urban class, and economic dependency), and contains 18 explanatory variables: proportion of population growth from 2000-2010, fraction of withdrawals from surface water, average daily water yield, mean annual maximum temperature from 1970-2010, 2005-2010 maximum temperature departure from the 40-year maximum, mean annual precipitation from 1970-2010, 2005-2010 mean precipitation departure from the 40-year mean, Gini income disparity index, percent of county population with at least some college education, Cook Partisan Voting Index, housing density, median household income, average number of people per household, median age of structures, percent of renters, percent of single family homes, percent apartments, and a numeric version of urban class. The city-level csv (city_data.csv) contains data for 83 cities. This data includes descriptive information for each city, water-use measures, one grouping variable (climate region), and 6 explanatory variables: type of water bill (increasing block rate, decreasing block rate, or uniform), average price of water bill, number of requirement-oriented water conservation policies, number of rebate-oriented water conservation policies, aridity index, and regional price parity. The R scripts construct fixed-effects and Bayesian Hierarchical regression models. The primary difference between these models relates to how they handle possible clustering in the observations that define unique water-use settings. Fixed-effects models address possible clustering in one of two ways. In a "fully pooled" fixed-effects model, any clustering by group is ignored, and a single, fixed estimate of the coefficient for each covariate is developed using all of the observations. Conversely, in an unpooled fixed-effects model, separate coefficient estimates are developed only using the observations in each group. A hierarchical model provides a compromise between these two extremes. Hierarchical models extend single-level regression to data with a nested structure, whereby the model parameters vary at different levels in the model, including a lower level that describes the actual data and an upper level that influences the values taken by parameters in the lower level. The county-level models were compared using the Watanabe-Akaike information criterion (WAIC) which is derived from the log pointwise predictive density of the models and can be shown to approximate out-of-sample predictive performance. All script files are intended to be used with R statistical software (R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org) and Stan probabilistic modeling software (Stan Development Team. 2017. RStan: the R interface to Stan. R package version 2.16.2. http://mc-stan.org).

  13. a

    SGSEP - Rental Affordability Index - All dwellings for Australia (Polygon)...

    • data.aurin.org.au
    Updated Jun 27, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). SGSEP - Rental Affordability Index - All dwellings for Australia (Polygon) Q1 2011-Q2 2021 - Dataset - AURIN [Dataset]. https://data.aurin.org.au/dataset/sgsep-sgs-rai-index-national-total-2021-na
    Explore at:
    Dataset updated
    Jun 27, 2023
    License

    Attribution-NonCommercial 2.0 (CC BY-NC 2.0)https://creativecommons.org/licenses/by-nc/2.0/
    License information was derived automatically

    Area covered
    Australia
    Description

    This dataset presents the Rental Affordability Index (RAI) for all dwellings. The data uses a single median income value for all of Australia (enabling comparisons across regions), and spans the quarters Q1 2011 to Q2 2021. The RAI covers all states with available data, the Northern Territory does not form part of this dataset. National Shelter, Bendigo Bank, The Brotherhood of St Laurence, and SGS Economics and Planning have released the RentalAffordability Index (RAI) on a biannual basis since 2015. Since 2019, the RAI has been released annually. It is generally accepted that if housing costs exceed 30% of a low-income household's gross income, the household is experiencing housing stress (30/40 rule). That is, housing is unaffordable and housing costs consume a disproportionately high amount of household income. The RAI uses the 30 per cent of income rule. Rental affordability is calculated using the following equation, where 'qualifying income' refers to the household income required to pay rent where rent is equal to 30% of income: RAI = (Median income ∕ Qualifying Income) x 100 In the RAI, households who are paying 30% of income on rent have a score of 100, indicating that these households are at the critical threshold for housing stress. A score of 100 or less indicates that households would pay more than 30% of income to access a rental dwelling, meaning they are at risk of experiencing housing stress. For more information on the Rental Affordability Index please refer to SGS Economics and Planning. The RAI is a price index for housing rental markets. It is a clear and concise indicator of rental affordability relative to household incomes, applied to geographic areas across Australia. AURIN has spatially enabled the original data using geometries provided by SGS Economics and Planning. Values of 'NA' in the original data have been set to NULL.

  14. Cost of living index in the U.S. 2024, by state

    • statista.com
    Updated Feb 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Cost of living index in the U.S. 2024, by state [Dataset]. https://www.statista.com/statistics/1240947/cost-of-living-index-usa-by-state/
    Explore at:
    Dataset updated
    Feb 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    West Virginia and Kansas had the lowest cost of living across all U.S. states, with composite costs being half of those found in Hawaii. This was according to a composite index that compares prices for various goods and services on a state-by-state basis. In West Virginia, the cost of living index amounted to 84.8 - well below the national benchmark of 100. Nevada - which had an index value of 100.1 - was only slightly above that benchmark. Expensive places to live included Hawaii, Massachusetts, and California Housing costs in the U.S. Housing is usually the highest expense in a household’s budget. In 2023, the average house sold for approximately 427,000 U.S. dollars, but house prices in the Northeast and West regions were significantly higher. Conversely, the South had some of the least expensive housing. In West Virginia, Mississippi, and Louisiana, the median price of the typical single-family home was less than 200,000 U.S. dollars. That makes living costs in these states significantly lower than in states such as Hawaii and California, where housing is much more expensive. What other expenses affect the cost of living? Utility costs such as electricity, natural gas, water, and internet also influence the cost of living. In Alaska, Hawaii, and Connecticut, the average monthly utility cost exceeded 500 U.S. dollars. That was because of the significantly higher prices for electricity and natural gas in these states.

  15. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Typical price of single-family homes in the U.S. 2020-2024, by state [Dataset]. https://www.statista.com/statistics/1041708/typical-home-value-single-family-homes-usa-by-state/
Organization logo

Typical price of single-family homes in the U.S. 2020-2024, by state

Explore at:
Dataset updated
Jan 30, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

In the United States, Hawaii was the state with the most expensive housing, with the typical value of single-family homes in the 35th to 65th percentile range exceeding 981,000 U.S. dollars. Unsurprisingly, Hawaii also ranked top as the state with the highest cost of living. Meanwhile, a property was the least expensive in West Virginia, where it cost under 167,000 U.S. dollars to buy the typical single-family home. Single-family home prices increased across most states in the United States between December 2023 and December 2024, except in Louisiana, Florida, and the District of Colombia. According to the Federal Housing Association, house appreciation in 13 states exceeded nine percent in 2023.

Search
Clear search
Close search
Google apps
Main menu