8 datasets found
  1. W

    Asian Population Concentration - Sierra Nevada

    • wifire-data.sdsc.edu
    geotiff, wcs, wms
    Updated Mar 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Wildfire & Forest Resilience Task Force (2025). Asian Population Concentration - Sierra Nevada [Dataset]. https://wifire-data.sdsc.edu/dataset/clm-asian-population-concentration-sierra-nevada
    Explore at:
    wcs, geotiff, wmsAvailable download formats
    Dataset updated
    Mar 25, 2025
    Dataset provided by
    California Wildfire & Forest Resilience Task Force
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Relative concentration of the Sierra Nevada region's Asian American population. The variable ASIANALN records all individuals who select Asian as their SOLE racial identity in response to the Census questionnaire, regardless of their response to the Hispanic ethnicity question. Both Hispanic and non-Hispanic in the Census questionnaire are potentially associated with the Asian race alone.

    "Relative concentration" is a measure that compares the proportion of population within each Census block group data unit that identify as ASIANALN alone to the proportion of all people that live within the 775 block groups in the Sierra Nevada RRK region that identify as ASIANALN alone. Example: if 5.2% of people in a block group identify as HSPBIPOC, the block group has twice the proportion of ASIANALN individuals compared to the Sierra Nevada RRK region (2.6%), and more than three times the proportion compared to the entire state of California (1.6%). If the local proportion is twice the regional proportion, then ASIANALN individuals are highly concentrated locally.

  2. FiveThirtyEight Police Locals Dataset

    • kaggle.com
    Updated Mar 26, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FiveThirtyEight (2019). FiveThirtyEight Police Locals Dataset [Dataset]. https://www.kaggle.com/fivethirtyeight/fivethirtyeight-police-locals-dataset/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 26, 2019
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    FiveThirtyEight
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Content

    Police Residence

    This folder contains data behind the story Most Police Don’t Live In The Cities They Serve.

    Includes the cities with the 75 largest police forces, with the exception of Honolulu for which data is not available. All calculations are based on data from the U.S. Census.

    The Census Bureau numbers are potentially going to differ from other counts for three reasons:

    1. The census category for police officers also includes sheriffs, transit police and others who might not be under the same jurisdiction as a city’s police department proper. The census category won’t include private security officers.
    2. The census data is estimated from 2006 to 2010; police forces may have changed in size since then.
    3. There is always a margin of error in census numbers; they are estimates, not complete counts.

    How to read police-locals.csv

    HeaderDefinition
    cityU.S. city
    police_force_sizeNumber of police officers serving that city
    allPercentage of the total police force that lives in the city
    whitePercentage of white (non-Hispanic) police officers who live in the city
    non-whitePercentage of non-white police officers who live in the city
    blackPercentage of black police officers who live in the city
    hispanicPercentage of Hispanic police officers who live in the city
    asianPercentage of Asian police officers who live in the city

    Note: When a cell contains ** it means that there are fewer than 100 police officers of that race serving that city.

    Context

    This is a dataset from FiveThirtyEight hosted on their GitHub. Explore FiveThirtyEight data using Kaggle and all of the data sources available through the FiveThirtyEight organization page!

    • Update Frequency: This dataset is updated daily.

    Acknowledgements

    This dataset is maintained using GitHub's API and Kaggle's API.

    This dataset is distributed under the Attribution 4.0 International (CC BY 4.0) license.

  3. i

    Asian Barometer Survey 2010-2011, Wave 3 - China, Hong Kong SAR, China,...

    • catalog.ihsn.org
    • dev.ihsn.org
    Updated Aug 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute of Political Science (2021). Asian Barometer Survey 2010-2011, Wave 3 - China, Hong Kong SAR, China, Indonesia, India, Japan, Cambodia, Korea, Rep., Sri Lanka, Mongolia, Ma [Dataset]. https://catalog.ihsn.org/catalog/3001
    Explore at:
    Dataset updated
    Aug 26, 2021
    Dataset provided by
    Institute of Political Science
    East Asia Democratic Studies
    Time period covered
    2010 - 2011
    Area covered
    Cambodia, India, Hong Kong, Indonesia, China, South Korea, Sri Lanka, Japan, Mongolia
    Description

    Abstract

    The third wave of the Asian Barometer survey (ABS) conducted in 2010 and the database contains nine countries and regions in East Asia - the Philippines, Taiwan, Thailand, Mongolia, Singapore, Vietnam, Indonesia, Malaysia and South Korea. The ABS is an applied research program on public opinion on political values, democracy, and governance around the region. The regional network encompasses research teams from 13 East Asian political systems and 5 South Asian countries. Together, this regional survey network covers virtually all major political systems in the region, systems that have experienced different trajectories of regime evolution and are currently at different stages of political transition.

    The mission and task of each national research team are to administer survey instruments to compile the required micro-level data under a common research framework and research methodology to ensure that the data is reliable and comparable on the issues of citizens' attitudes and values toward politics, power, reform, and democracy in Asia.

    The Asian Barometer Survey is headquartered in Taipei and co-hosted by the Institute of Political Science, Academia Sinica and The Institute for the Advanced Studies of Humanities and Social Sciences, National Taiwan University.

    Geographic coverage

    13 East Asian political systems: Japan, Mongolia, South Koreas, Taiwan, Hong Kong, China, the Philippines, Thailand, Vietnam, Cambodia, Singapore, Indonesia, and Malaysia; 5 South Asian countries: India, Pakistan, Bangladesh, Sri Lanka, and Nepal

    Analysis unit

    -Individuals

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Compared with surveys carried out within a single nation, cross-nation survey involves an extra layer of difficulty and complexity in terms of survey management, research design, and database modeling for the purpose of data preservation and easy analysis. To facilitate the progress of the Asian Barometer Surveys, the survey methodology and database subproject is formed as an important protocol specifically aiming at overseeing and coordinating survey research designs, database modeling, and data release.

    As a network of Global Barometer Surveys, Asian Barometer Survey requires all country teams to comply with the research protocols which Global Barometer network has developed, tested, and proved practical methods for conducting comparative survey research on public attitudes.

    Research Protocols:

    • National probability samples that give every citizen in each country an equal chance of being selected for interview. Whether using census household lists or a multistage area approach, the method for selecting sampling units is always randomized. The samples may be stratified, or weights applied, to ensure coverage of rural areas and minority populations in their correct proportions. As such, Asian Barometer samples represent the adult, voting-age population in each country surveyed.

    A model Asian Barometer Survey has a sample size of 1,200 respondents, which allows a minimum confidence interval of plus or minus 3 percent at 95 percent probability.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    A standard questionnaire instrument containing a core module of identical or functionally equivalent questions. Wherever possible, theoretical concepts are measured with multiple items in order to enable testing for construct validity. The wording of items is determined by balancing various criteria, including: the research themes emphasized in the survey, the comprehensibility of the item to lay respondents, and the proven effectiveness of the item when tested in previous surveys.

    Survey Topics: 1.Economic Evaluations: What is the economic condition of the nation and your family: now, over the last five years, and in the next five years? 2.Trust in institutions: How trustworthy are public institutions, including government branches, the media, the military, and NGOs. 3.Social Capital: Membership in private and public groups, the frequency and degree of group participation, trust in others, and influence of guanxi. 4.Political Participatio: Voting in elections, national and local, country-specific voting patterns, and active participation in the political process as well as demonstrations and strikes. Contact with government and elected officials, political organizations, NGOs and media. 5.Electoral Mobilization: Personal connections with officials, candidates, and political parties; influence on voter choice. 6.Psychological Involvement and Partisanship: Interest in political news coverage, impact of government policies on daily life, and party allegiance. 7.Traditionalism: Importance of consensus and family, role of the elderly, face, and woman in theworkplace. 8.Democratic Legitimacy and Preference for Democracy: Democratic ranking of present and previous regime, and expected ranking in the next five years; satisfaction with how democracy works, suitability of democracy; comparisons between current and previous regimes, especially corruption; democracy and economic development, political competition, national unity, social problems, military government, and technocracy. 9.Efficacy, Citizen Empowerment, System Responsiveness: Accessibility of political system: does a political elite prevent access and reduce the ability of people to influence the government. 10.Democratic vs. Authoritarian Values: Level of education and political equality, government leadership and superiority, separation of executive and judiciary. 11.Cleavage: Ownership of state-owned enterprises, national authority over local decisions, cultural insulation, community and the individual. 12.Belief in Procedural Norms of Democracy: Respect of procedures by political leaders: compromise, tolerance of opposing and minority views. 13.Social-Economic Background Variables: Gender, age, marital status, education level, years of formal education, religion and religiosity, household, income, language and ethnicity. 14.Interview Record: Gender, age, class, and language of the interviewer, people present at the interview; did the respondent: refuse, display impatience, and cooperate; the language or dialect spoken in interview, and was an interpreter present.

    Cleaning operations

    Quality checks are enforced at every stage of data conversion to ensure that information from paper returns is edited, coded, and entered correctly for purposes of computer analysis. Machine readable data are generated by trained data entry operators and a minimum of 20 percent of the data is entered twice by independent teams for purposes of cross-checking. Data cleaning involves checks for illegal and logically inconsistent values.

  4. Data from: Lost on the frontline, and lost in the data: COVID-19 deaths...

    • figshare.com
    zip
    Updated Jul 22, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Loraine Escobedo (2022). Lost on the frontline, and lost in the data: COVID-19 deaths among Filipinx healthcare workers in the United States [Dataset]. http://doi.org/10.6084/m9.figshare.20353368.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 22, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Loraine Escobedo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    To estimate county of residence of Filipinx healthcare workers who died of COVID-19, we retrieved data from the Kanlungan website during the month of December 2020.22 In deciding who to include on the website, the AF3IRM team that established the Kanlungan website set two standards in data collection. First, the team found at least one source explicitly stating that the fallen healthcare worker was of Philippine ancestry; this was mostly media articles or obituaries sharing the life stories of the deceased. In a few cases, the confirmation came directly from the deceased healthcare worker's family member who submitted a tribute. Second, the team required a minimum of two sources to identify and announce fallen healthcare workers. We retrieved 86 US tributes from Kanlungan, but only 81 of them had information on county of residence. In total, 45 US counties with at least one reported tribute to a Filipinx healthcare worker who died of COVID-19 were identified for analysis and will hereafter be referred to as “Kanlungan counties.” Mortality data by county, race, and ethnicity came from the National Center for Health Statistics (NCHS).24 Updated weekly, this dataset is based on vital statistics data for use in conducting public health surveillance in near real time to provide provisional mortality estimates based on data received and processed by a specified cutoff date, before data are finalized and publicly released.25 We used the data released on December 30, 2020, which included provisional COVID-19 death counts from February 1, 2020 to December 26, 2020—during the height of the pandemic and prior to COVID-19 vaccines being available—for counties with at least 100 total COVID-19 deaths. During this time period, 501 counties (15.9% of the total 3,142 counties in all 50 states and Washington DC)26 met this criterion. Data on COVID-19 deaths were available for six major racial/ethnic groups: Non-Hispanic White, Non-Hispanic Black, Non-Hispanic Native Hawaiian or Other Pacific Islander, Non-Hispanic American Indian or Alaska Native, Non-Hispanic Asian (hereafter referred to as Asian American), and Hispanic. People with more than one race, and those with unknown race were included in the “Other” category. NCHS suppressed county-level data by race and ethnicity if death counts are less than 10. In total, 133 US counties reported COVID-19 mortality data for Asian Americans. These data were used to calculate the percentage of all COVID-19 decedents in the county who were Asian American. We used data from the 2018 American Community Survey (ACS) five-year estimates, downloaded from the Integrated Public Use Microdata Series (IPUMS) to create county-level population demographic variables.27 IPUMS is publicly available, and the database integrates samples using ACS data from 2000 to the present using a high degree of precision.27 We applied survey weights to calculate the following variables at the county-level: median age among Asian Americans, average income to poverty ratio among Asian Americans, the percentage of the county population that is Filipinx, and the percentage of healthcare workers in the county who are Filipinx. Healthcare workers encompassed all healthcare practitioners, technical occupations, and healthcare service occupations, including nurse practitioners, physicians, surgeons, dentists, physical therapists, home health aides, personal care aides, and other medical technicians and healthcare support workers. County-level data were available for 107 out of the 133 counties (80.5%) that had NCHS data on the distribution of COVID-19 deaths among Asian Americans, and 96 counties (72.2%) with Asian American healthcare workforce data. The ACS 2018 five-year estimates were also the source of county-level percentage of the Asian American population (alone or in combination) who are Filipinx.8 In addition, the ACS provided county-level population counts26 to calculate population density (people per 1,000 people per square mile), estimated by dividing the total population by the county area, then dividing by 1,000 people. The county area was calculated in ArcGIS 10.7.1 using the county boundary shapefile and projected to Albers equal area conic (for counties in the US contiguous states), Hawai’i Albers Equal Area Conic (for Hawai’i counties), and Alaska Albers Equal Area Conic (for Alaska counties).20

  5. S

    2023 Census population change by ethnic group and regional council

    • datafinder.stats.govt.nz
    csv, dwg, geodatabase +6
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ, 2023 Census population change by ethnic group and regional council [Dataset]. https://datafinder.stats.govt.nz/layer/117643-2023-census-population-change-by-ethnic-group-and-regional-council/
    Explore at:
    mapinfo tab, geodatabase, mapinfo mif, kml, geopackage / sqlite, csv, shapefile, dwg, pdfAvailable download formats
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    Dataset contains ethnic group census usually resident population counts from the 2013, 2018, and 2023 Censuses, as well as the percentage change in the ethnic group population count between the 2013 and 2018 Censuses, and between the 2018 and 2023 Censuses. Data is available by regional council.

    The ethnic groups are:

    • European
    • Māori
    • Pacific peoples
    • Asian
    • Middle Eastern/Latin American/African
    • Other ethnicity.

    Map shows percentage change in the census usually resident population count for ethnic groups between the 2018 and 2023 Censuses.

    Download lookup file from Stats NZ ArcGIS Online or embedded attachment in Stats NZ geographic data service. Download data table (excluding the geometry column for CSV files) using the instructions in the Koordinates help guide.

    Footnotes

    Geographical boundaries

    Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.

    Subnational census usually resident population

    The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.

    Caution using time series

    Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).

    About the 2023 Census dataset

    For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.

    Data quality

    The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.

    Quality rating of a variable

    The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.

    Ethnicity concept quality rating

    Ethnicity is rated as high quality.

    Ethnicity – 2023 Census: Information by concept has more information, for example, definitions and data quality.

    Using data for good

    Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.

    Confidentiality

    The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.

    Symbol

    -998 Not applicable

    Percentages

    To calculate percentages, divide the figure for the category of interest by the figure for ‘Total stated’ where this applies.

  6. b

    Marginality Hotspots and Poverty Head Count Ratio, Sub-Saharan Africa and...

    • bonndata.uni-bonn.de
    • daten.zef.de
    gif, png, txt, xml
    Updated Sep 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Valerie Graw; Valerie Graw (2023). Marginality Hotspots and Poverty Head Count Ratio, Sub-Saharan Africa and South Asia, 2005-2010 [Dataset]. http://doi.org/10.60507/FK2/E2XJOR
    Explore at:
    txt(365), png(209620), gif(6676), xml(30500)Available download formats
    Dataset updated
    Sep 18, 2023
    Dataset provided by
    bonndata
    Authors
    Valerie Graw; Valerie Graw
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2005 - Dec 31, 2010
    Area covered
    South Asia, Africa, Asia, South of Sahara
    Description

    Overlaying the number of marginality dimensions with percentage of people living below 1.25$/day. This map is included in a global study on mapping marginality focusing on Sub-Saharan Africa and South Asia. The Dimensions of Marginality are based on different data sources representing different spheres of life. The poverty dataset used in this study is based on calculations by Harvest Choice. The underlying Marginality map is based on the approach on Marginality Mapping (http://www.zef.de/fileadmin/webfiles/downloads/zef_wp/wp88.pdf). The respective map can be found here: https://daten.zef.de/#/metadata/ae4ae68c-cea3-44e7-8199-1c2ae04abb88 Quality/Lineage: Poverty Data was provided and generated by Harvest Choice GIS lab. Marginality hotspots are based on the approach by Graw, V. using five dimensions of marginality. In ArcGIS thresholds were defined based on percentages and overlapping dimensions. Using raster data this data was reclassified and overlayed to build a new classification with regard to the here presented purpose. This approach is similar to the overlap over marginality and poverty mass except this map shows percentage of poverty instead of number of poor people. Purpose: This map was created in the MARGIP project to identify the marginalized and poor by highlighting those areas where the "spheres of life" have a low performance. Those areas where multiple "low performance indicators" did overlap got the highest attention for further research.

  7. Number of internet users worldwide 2014-2029

    • statista.com
    Updated Apr 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Number of internet users worldwide 2014-2029 [Dataset]. https://www.statista.com/topics/1145/internet-usage-worldwide/
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    World
    Description

    The global number of internet users in was forecast to continuously increase between 2024 and 2029 by in total 1.3 billion users (+23.66 percent). After the fifteenth consecutive increasing year, the number of users is estimated to reach 7 billion users and therefore a new peak in 2029. Notably, the number of internet users of was continuously increasing over the past years.Depicted is the estimated number of individuals in the country or region at hand, that use the internet. As the datasource clarifies, connection quality and usage frequency are distinct aspects, not taken into account here.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of internet users in countries like the Americas and Asia.

  8. Mobile internet usage reach in North America 2020-2029

    • statista.com
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Mobile internet usage reach in North America 2020-2029 [Dataset]. https://www.statista.com/topics/779/mobile-internet/
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    The population share with mobile internet access in North America was forecast to increase between 2024 and 2029 by in total 2.9 percentage points. This overall increase does not happen continuously, notably not in 2028 and 2029. The mobile internet penetration is estimated to amount to 84.21 percent in 2029. Notably, the population share with mobile internet access of was continuously increasing over the past years.The penetration rate refers to the share of the total population having access to the internet via a mobile broadband connection.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the population share with mobile internet access in countries like Caribbean and Europe.

  9. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
California Wildfire & Forest Resilience Task Force (2025). Asian Population Concentration - Sierra Nevada [Dataset]. https://wifire-data.sdsc.edu/dataset/clm-asian-population-concentration-sierra-nevada

Asian Population Concentration - Sierra Nevada

Explore at:
wcs, geotiff, wmsAvailable download formats
Dataset updated
Mar 25, 2025
Dataset provided by
California Wildfire & Forest Resilience Task Force
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Relative concentration of the Sierra Nevada region's Asian American population. The variable ASIANALN records all individuals who select Asian as their SOLE racial identity in response to the Census questionnaire, regardless of their response to the Hispanic ethnicity question. Both Hispanic and non-Hispanic in the Census questionnaire are potentially associated with the Asian race alone.

"Relative concentration" is a measure that compares the proportion of population within each Census block group data unit that identify as ASIANALN alone to the proportion of all people that live within the 775 block groups in the Sierra Nevada RRK region that identify as ASIANALN alone. Example: if 5.2% of people in a block group identify as HSPBIPOC, the block group has twice the proportion of ASIANALN individuals compared to the Sierra Nevada RRK region (2.6%), and more than three times the proportion compared to the entire state of California (1.6%). If the local proportion is twice the regional proportion, then ASIANALN individuals are highly concentrated locally.

Search
Clear search
Close search
Google apps
Main menu