Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Home Ownership Rate in the United States decreased to 65.10 percent in the first quarter of 2025 from 65.70 percent in the fourth quarter of 2024. This dataset provides the latest reported value for - United States Home Ownership Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Homeownership Rate in the United States (RHORUSQ156N) from Q1 1965 to Q2 2025 about homeownership, housing, rate, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Home Ownership Rate in the United Kingdom decreased to 64.50 percent in 2023 from 64.70 percent in 2022. This dataset provides the latest reported value for - United Kingdom Home Ownership Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Home Ownership Rate in Canada decreased to 66.70 percent in 2023 from 69.30 percent in 2021. This dataset provides the latest reported value for - Canada Home Ownership Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Home Ownership Rate in Germany decreased to 47.20 percent in 2024 from 47.60 percent in 2023. This dataset provides the latest reported value for - Germany Home Ownership Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Home Ownership Rate in Poland decreased to 87.10 percent in 2024 from 87.30 percent in 2023. This dataset provides the latest reported value for - Poland Home Ownership Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Home Ownership Rate in Netherlands decreased to 68.80 percent in 2024 from 69.30 percent in 2023. This dataset provides the latest reported value for - Netherlands Home Ownership Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Home Ownership Rate in Sweden decreased to 64.80 percent in 2024 from 64.90 percent in 2023. This dataset provides the latest reported value for - Sweden Home Ownership Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Home Ownership Rate in Russia increased to 92.60 percent in 2023 from 92 percent in 2022. This dataset provides the latest reported value for - Russia Home Ownership Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Data on resident owners who are persons occupying one of their residential properties: sex, age, total income, the type and the assessment value of the owner-occupied property, as well as the number and the total assessment value of residential properties owned.
Tables on:
The previous Survey of English Housing live table number is given in brackets below. Please note from July 2024 amendments have been made to the following tables:
Table FA2211 and FA2221 have been combined into table FA4222.
Table FA2501 and FA2511 and FA2531 have been combined into table FA2555.
For data prior to 2022-23 for the above tables, see discontinued tables.
<p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Spreadsheet" class="gem-c-attachment_abbr">ODS</abbr></span>, <span class="gem-c-attachment_attribute">12.5 KB</span></p>
<p class="gem-c-attachment_metadata">
This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation" target="_self" class="govuk-link">OpenDocument</a> format
<p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Spreadsheet" class="gem-c-attachment_abbr">ODS</abbr></span>, <span class="gem-c-attachment_attribute">17.9 KB</span></p>
<p class="gem-c-attachment_metadata">
This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation" target="_self" class="govuk-link">OpenDocument</a> format
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Home Ownership Rate in Austria increased to 54.50 percent in 2024 from 54.30 percent in 2023. This dataset provides the latest reported value for - Austria Home Ownership Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Home Ownership Rate in Denmark increased to 60.90 percent in 2024 from 60 percent in 2023. This dataset provides the latest reported value for - Denmark Home Ownership Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Home Ownership Rate in China decreased to 89.68 percent in 2018 from 90 percent in 2014. This dataset provides - China Home Ownership Rate- actual values, historical data, forecast, chart, statistics, economic calendar and news.
For detailed information, visit the Tucson Equity Priority Index StoryMap.Download the layer's data dictionaryNote: This layer is symbolized to display the percentile distribution of the Limited Resources Sub-Index. However, it includes all data for each indicator and sub-index within the citywide census tracts TEPI.What is the Tucson Equity Priority Index (TEPI)?The Tucson Equity Priority Index (TEPI) is a tool that describes the distribution of socially vulnerable demographics. It categorizes the dataset into 5 classes that represent the differing prioritization needs based on the presence of social vulnerability: Low (0-20), Low-Moderate (20-40), Moderate (40-60), Moderate-High (60-80) High (80-100). Each class represents 20% of the dataset’s features in order of their values. The features within the Low (0-20) classification represent the areas that, when compared to all other locations in the study area, have the lowest need for prioritization, as they tend to have less socially vulnerable demographics. The features that fall into the High (80-100) classification represent the 20% of locations in the dataset that have the greatest need for prioritization, as they tend to have the highest proportions of socially vulnerable demographics. How is social vulnerability measured?The Tucson Equity Priority Index (TEPI) examines the proportion of vulnerability per feature using 11 demographic indicators:Income Below Poverty: Households with income at or below the federal poverty level (FPL), which in 2023 was $14,500 for an individual and $30,000 for a family of fourUnemployment: Measured as the percentage of unemployed persons in the civilian labor forceHousing Cost Burdened: Homeowners who spend more than 30% of their income on housing expenses, including mortgage, maintenance, and taxesRenter Cost Burdened: Renters who spend more than 30% of their income on rentNo Health Insurance: Those without private health insurance, Medicare, Medicaid, or any other plan or programNo Vehicle Access: Households without automobile, van, or truck accessHigh School Education or Less: Those highest level of educational attainment is a High School diploma, equivalency, or lessLimited English Ability: Those whose ability to speak English is "Less Than Well."People of Color: Those who identify as anything other than Non-Hispanic White Disability: Households with one or more physical or cognitive disabilities Age: Groups that tend to have higher levels of vulnerability, including children (those below 18), and seniors (those 65 and older)An overall percentile value is calculated for each feature based on the total proportion of the above indicators in each area. How are the variables combined?These indicators are divided into two main categories that we call Thematic Indices: Economic and Personal Characteristics. The two thematic indices are further divided into five sub-indices called Tier-2 Sub-Indices. Each Tier-2 Sub-Index contains 2-3 indicators. Indicators are the datasets used to measure vulnerability within each sub-index. The variables for each feature are re-scaled using the percentile normalization method, which converts them to the same scale using values between 0 to 100. The variables are then combined first into each of the five Tier-2 Sub-Indices, then the Thematic Indices, then the overall TEPI using the mean aggregation method and equal weighting. The resulting dataset is then divided into the five classes, where:High Vulnerability (80-100%): Representing the top classification, this category includes the highest 20% of regions that are the most socially vulnerable. These areas require the most focused attention. Moderate-High Vulnerability (60-80%): This upper-middle classification includes areas with higher levels of vulnerability compared to the median. While not the highest, these areas are more vulnerable than a majority of the dataset and should be considered for targeted interventions. Moderate Vulnerability (40-60%): Representing the middle or median quintile, this category includes areas of average vulnerability. These areas may show a balanced mix of high and low vulnerability. Detailed examination of specific indicators is recommended to understand the nuanced needs of these areas. Low-Moderate Vulnerability (20-40%): Falling into the lower-middle classification, this range includes areas that are less vulnerable than most but may still exhibit certain vulnerable characteristics. These areas typically have a mix of lower and higher indicators, with the lower values predominating. Low Vulnerability (0-20%): This category represents the bottom classification, encompassing the lowest 20% of data points. Areas in this range are the least vulnerable, making them the most resilient compared to all other features in the dataset.
Data on resident buyers who are persons that purchased a residential property in a market sale and filed their T1 tax return form: number of and incomes of residential property buyers, sale price, price-to-income ratio by the number of buyers as part of a sale, age groups, first-time home buyer status, buyer characteristics (sex, family type, immigration status, period of immigration, admission category).
VITAL SIGNS INDICATOR
Housing Affordability (EQ2)
FULL MEASURE NAME
Housing Affordability
LAST UPDATED
December 2022
DATA SOURCE
U.S. Census Bureau: Decennial Census - https://nhgis.org
Form STF3 – https://nhgis.org (1980-1990)
Form SF3a – https://nhgis.org (2000)
U.S. Census Bureau: American Community Survey - https://data.census.gov/
Form B25074 (2009-2021)
Form B25095 (2009-2021)
CONTACT INFORMATION
vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator)
The share of income brackets used for different Census and American Community Survey (ACS) forms vary over time. To allow for historical comparisons, the Census Bureau merges housing expenditure brackets into three consistent bins (less than 20 percent, 20 percent to 34 percent, and more than 35 percent) that work for all years. The highest income bracket for renters in the ACS data was $100,000 or more, while the homeowner dataset included brackets for $100,000 to $149,999 and $150,000 and above. These brackets were merged together to allow for uniform comparison across tenure. While some studies use 30 percent as the affordability threshold, Vital Signs uses 35 percent as this is the closest break point using the standardized affordability brackets above.
ACS 1-year data is used for larger geographies – Bay counties and most metropolitan area counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Note that 2020 data uses the 5-year estimates because the ACS did not collect 1-year data for 2020.
Income breakdown data is only provided for one year as it is not possible to compare consistent inflation-adjusted income brackets over time given Census data limitations. For the county breakdown, Napa was missing ACS 1-Year renter data for all years except 2012 and 2013, and Marin was missing ACS 1-Year renter data for 2019 — these counties used 5-Year data for those years.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Home Ownership Rate in Ireland decreased to 69.30 percent in 2024 from 69.40 percent in 2023. This dataset provides the latest reported value for - Ireland Home Ownership Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
To prevent homeowners from becoming homeless due to foreclosure, the City initiated the Residential Mortgage Foreclosure Prevention Program, an innovative program that links a Court of Common Pleas order requiring that homeowners facing foreclosure have an opportunity to meet with their lenders to negotiate an alternative to foreclosure with City-funded housing counseling, outreach, a hotline and legal assistance. Working together, the City and the Court have created and implemented a national model. - SaveYourHomePhilly Hotline - To help keep Philadelphians in their homes, the City supports a hotline that enables homeowners to seek assistance as soon as they begin to have mortgage problems. At the SaveYourHomePhilly hotline (215-334-HOME), trained operators evaluate callers’ needs and make appointments with housing counselors or make other referrals. Since the hotline began focusing on foreclosure prevention (its previous focus was on anti-predatory lending), the City has promoted it with inserts into utility bills, public service announcements, and through the outreach efforts outlined below. Philadelphia Legal Assistance manages and staffs the SaveYourHomePhilly hotline. - Foreclosure Prevention Outreach - A roadblock to saving the homes of households facing foreclosure is the paralysis many homeowners feel upon receiving a foreclosure notice. To combat that inertia the City funds proactive outreach to provide information on the services available to homeowners as early in the process as possible. Utilizing its network of Neighborhood Advisory Committees and select citywide organizations, the City supports door-to-door outreach to educate homeowners about their rights in the foreclosure process, the availability of housing counseling and legal support, and the SaveYourHomePhilly hotline through which homeowners can begin to access these services. - Housing Counseling - A key element of the success of the Foreclosure Prevention Program is that every homeowner is matched with an OHCD-funded housing counselor. These counselors are knowledgeable about available sources of mortgage support, have experience negotiating with lenders, and have worked with homeowners in and out of foreclosure on issues such as budgeting, credit repair and meeting the responsibilities of owning a home. For those homeowners who are able to save their homes – more than 40 percent of program participants to date – they emerge from the process not only still in their homes but also more prepared to avoid future financial problems. - Community Legal Services - Although the housing counselors in the Foreclosure Prevention Program are skilled in negotiating with lenders and their attorneys, there are instances in which homeowners facing foreclosure require legal support to resolve their cases. To that end, OHCD funds Community Legal Services (CLS) to provide mortgage foreclosure legal services to homeowners facing foreclosure. CLS attorney/paralegal teams help homeowners responding to foreclosure lawsuits to negotiate with lenders to modify mortgage loan terms to preserve homeownership, or will represent the homeowner to defend foreclosure, as appropriate.
For detailed information, visit the Tucson Equity Priority Index StoryMap.Download the Data DictionaryWhat is the Tucson Equity Priority Index (TEPI)?The Tucson Equity Priority Index (TEPI) is a tool that describes the distribution of socially vulnerable demographics. It categorizes the dataset into 5 classes that represent the differing prioritization needs based on the presence of social vulnerability: Low (0-20), Low-Moderate (20-40), Moderate (40-60), Moderate-High (60-80) High (80-100). Each class represents 20% of the dataset’s features in order of their values. The features within the Low (0-20) classification represent the areas that, when compared to all other locations in the study area, have the lowest need for prioritization, as they tend to have less socially vulnerable demographics. The features that fall into the High (80-100) classification represent the 20% of locations in the dataset that have the greatest need for prioritization, as they tend to have the highest proportions of socially vulnerable demographics. How is social vulnerability measured?The Tucson Equity Priority Index (TEPI) examines the proportion of vulnerability per feature using 11 demographic indicators:Income Below Poverty: Households with income at or below the federal poverty level (FPL), which in 2023 was $14,500 for an individual and $30,000 for a family of fourUnemployment: Measured as the percentage of unemployed persons in the civilian labor forceHousing Cost Burdened: Homeowners who spend more than 30% of their income on housing expenses, including mortgage, maintenance, and taxesRenter Cost Burdened: Renters who spend more than 30% of their income on rentNo Health Insurance: Those without private health insurance, Medicare, Medicaid, or any other plan or programNo Vehicle Access: Households without automobile, van, or truck accessHigh School Education or Less: Those highest level of educational attainment is a High School diploma, equivalency, or lessLimited English Ability: Those whose ability to speak English is "Less Than Well."People of Color: Those who identify as anything other than Non-Hispanic White Disability: Households with one or more physical or cognitive disabilities Age: Groups that tend to have higher levels of vulnerability, including children (those below 18), and seniors (those 65 and older)An overall percentile value is calculated for each feature based on the total proportion of the above indicators in each area. How are the variables combined?These indicators are divided into two main categories that we call Thematic Indices: Economic and Personal Characteristics. The two thematic indices are further divided into five sub-indices called Tier-2 Sub-Indices. Each Tier-2 Sub-Index contains 2-3 indicators. Indicators are the datasets used to measure vulnerability within each sub-index. The variables for each feature are re-scaled using the percentile normalization method, which converts them to the same scale using values between 0 to 100. The variables are then combined first into each of the five Tier-2 Sub-Indices, then the Thematic Indices, then the overall TEPI using the mean aggregation method and equal weighting. The resulting dataset is then divided into the five classes, where:High Vulnerability (80-100%): Representing the top classification, this category includes the highest 20% of regions that are the most socially vulnerable. These areas require the most focused attention. Moderate-High Vulnerability (60-80%): This upper-middle classification includes areas with higher levels of vulnerability compared to the median. While not the highest, these areas are more vulnerable than a majority of the dataset and should be considered for targeted interventions. Moderate Vulnerability (40-60%): Representing the middle or median quintile, this category includes areas of average vulnerability. These areas may show a balanced mix of high and low vulnerability. Detailed examination of specific indicators is recommended to understand the nuanced needs of these areas. Low-Moderate Vulnerability (20-40%): Falling into the lower-middle classification, this range includes areas that are less vulnerable than most but may still exhibit certain vulnerable characteristics. These areas typically have a mix of lower and higher indicators, with the lower values predominating. Low Vulnerability (0-20%): This category represents the bottom classification, encompassing the lowest 20% of data points. Areas in this range are the least vulnerable, making them the most resilient compared to all other features in the dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Home Ownership Rate in the United States decreased to 65.10 percent in the first quarter of 2025 from 65.70 percent in the fourth quarter of 2024. This dataset provides the latest reported value for - United States Home Ownership Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.