Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By Jeffrey Mvutu Mabilama [source]
Welcome to an exciting exploration of global C2C fashion store user behaviour! This dataset seeks to serve as a benchmark by providing valuable insights into e-commerce users, enabling you to make informed decisions and effectively grow your business. Let's dive right into the data!
This dataset contains records on over 9 million registered users from a successful online C2C fashion store launched in Europe around 2009 and later expanded worldwide. It includes metrics such as country, gender, active users, top buyers/sellers/ratio*, products bought/sold/listed* and social network features (likes/follows). Furthermore this is just a preview of much larger data set which contains more detailed information including product listings, comments from listed products etc.
E-commerce has become an essential part of our lives - people are now accustomed to buying anything with a few clicks online. With so many unknown elements that come with not only selling but also providing good customer service - understanding user behavior is key for success in this domain. By utilizing this dataset you can answer questions such as 'how many customers are likely to drop off after years of using my service?,' 'are my users active enough compared to those in this dataset?,” or “how likely are people from other countries signing up in a C2C website?' In addition, if you think this kind odf dataset may be useful don't forget do show your support or appreciation by leaving an upvote or comment on the page!
My Telegram bot will answer any queries regarding the datasets as well allow you see contact me directly if necessary; also please don't forget check out the *[data.world page](https://data.world/jfreex/e-commerce-users-of-a-french-c2c
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset provides a useful overview of global users' behavior in an online C2C fashion store. The data includes metrics such as buyers, top buyers, top buyer ratio, female buyers and their respective ratios, etc., per country. This dataset can be used to gain insights into how global audiences interact with the store and draw conclusions from comparison between different countries.
In order to make use of this dataset, one must first familiarize themselves with the various metrics included in it. These include: country; number of overall buyers; number of top buyers; ratio(s) of them (top buyer to total buyer); female-related data (buyers, top female buyers); bought-to-wish/like ration (top and non-top separately); overall products bought/wished/liked; total products sold by tops sellers in the same country versus what they sold outside the country; mean value for product stats (sold/listed/etc...) from looking at the whole population or just users that make those actions multiple times; average days for user offline /lurking around on the site without posting anything or buying anything etc.; mean follower(s) count(s).
Using this data one could generate reports about user behavior within particular countries either manually by computing all statistics or by using libraries like Pandas or SQL with queries made toward this datasets which consists of columns representing individual countries with all values necessary to answer any questions you might have regarding how many people buy something out there per region and what type they are –– Are they Top Buyer? Female? Etc.
Further potential work could involve utilising machine learning tools such as clustering algorithms to group similar customers together based on certain traits like age group, profession etc., so that personalised marketing promotions can be targetted at these customer clusters rather than aiming more generic ads at everyone!
Finally combined with other related product datasets which is available upon request via JfreexDatasets_bot provided by Jfreex team , this dataset can become another powerful tool providing you actionable insights into customers today — allowing you build better strategies towards improving customer experience tomorrow!
- Analyzing the conversion rate of users on a website - Comparing user metrics like the overall number of buyers, female buyers, top buyers ratio and top buyer gender can help determine if users in certain countries are more or less likely to convert into customers. Additionally, comparing average metrics like products bought or offl...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the United States population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for United States. The dataset can be utilized to understand the population distribution of United States by age. For example, using this dataset, we can identify the largest age group in United States.
Key observations
The largest age group in United States was for the group of age 30 to 34 years years with a population of 22.71 million (6.86%), according to the ACS 2018-2022 5-Year Estimates. At the same time, the smallest age group in United States was the 80 to 84 years years with a population of 6.25 million (1.89%). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Age. You can refer the same here
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
SharkTank dataset of USA/American business reality television series. Currently, the data set has information from SharkTank season 1 to Shark Tank US season 16. The dataset has 53 fields/columns and 1440+ records.
Below are the features/fields in the dataset:
Facebook
TwitterThe report State of Land in the Mekong Region€ was launched today in Vientiane, Lao PDR. The first publication of its kind in the Mekong Region, it brings together key data and information on the current status of, and changes in, land resources, their social distribution, and the conditions of governance that shape them. The report stresses the need for urgent action towards transformational change. It was co-produced by the Centre for Development and Environment (CDE) of the University of Bern and the Mekong Region Land Governance Project (MRLG). Funding was provided by Switzerland, Germany, and Luxembourg. The Mekong region €“ Cambodia, Lao PDR, Myanmar, Thailand, and Vietnam €“ is in the midst of profound social and environmental change. Despite rapid urbanization, the region remains predominantly rural. More than 60 per cent of its population live in rural areas, and the vast majority of these people are engaged in agriculture. Due to rapid growth of its agricultural sector, the Mekong region has become a global centre of production and trade for commodities such as rubber, rice, cassava, wood, sugar cane, and palm oil. Between 1996 and 2015, overall agricultural land in the Mekong region grew by 20 per cent, or around 9 million hectares. Most of this expansion has occurred at the expense of the region’s natural capital €“ especially forests and other vegetation.
Facebook
TwitterThis web map displays data from the voter registration database as the percent of registered voters by census tract in King County, Washington. The data for this web map is compiled from King County Elections voter registration data for the years 2013-2019. The total number of registered voters is based on the geo-location of the voter's registered address at the time of the general election for each year. The eligible voting population, age 18 and over, is based on the estimated population increase from the US Census Bureau and the Washington Office of Financial Management and was calculated as a projected 6 percent population increase for the years 2010-2013, 7 percent population increase for the years 2010-2014, 9 percent population increase for the years 2010-2015, 11 percent population increase for the years 2010-2016 & 2017, 14 percent population increase for the years 2010-2018 and 17 percent population increase for the years 2010-2019. The total population 18 and over in 2010 was 1,517,747 in King County, Washington. The percentage of registered voters represents the number of people who are registered to vote as compared to the eligible voting population, age 18 and over. The voter registration data by census tract was grouped into six percentage range estimates: 50% or below, 51-60%, 61-70%, 71-80%, 81-90% and 91% or above with an overall 84 percent registration rate. In the map the lighter colors represent a relatively low percentage range of voter registration and the darker colors represent a relatively high percentage range of voter registration. PDF maps of these data can be viewed at King County Elections downloadable voter registration maps. The 2019 General Election Voter Turnout layer is voter turnout data by historical precinct boundaries for the corresponding year. The data is grouped into six percentage ranges: 0-30%, 31-40%, 41-50% 51-60%, 61-70%, and 71-100%. The lighter colors represent lower turnout and the darker colors represent higher turnout. The King County Demographics Layer is census data for language, income, poverty, race and ethnicity at the census tract level and is based on the 2010-2014 American Community Survey 5 year Average provided by the United States Census Bureau. Since the data is based on a survey, they are considered to be estimates and should be used with that understanding. The demographic data sets were developed and are maintained by King County Staff to support the King County Equity and Social Justice program. Other data for this map is located in the King County GIS Spatial Data Catalog, where data is managed by the King County GIS Center, a multi-department enterprise GIS in King County, Washington. King County has nearly 1.3 million registered voters and is the largest jurisdiction in the United States to conduct all elections by mail. In the map you can view the percent of registered voters by census tract, compare registration within political districts, compare registration and demographic data, verify your voter registration or register to vote through a link to the VoteWA, Washington State Online Voter Registration web page.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Time series data for the statistic Exports_Korea,_Dem._People's_Rep._to_Guatemala. Indicator Definition:Goods, Value of Exports, Free on board (FOB), US DollarsThe indicator "Goods, Value of Exports, Free on board (FOB), US Dollars" stands at 3E-4 Million as of 9/30/2020, the lowest value since 12/31/2019. Regarding the One-Year-Change of the series, the current value constitutes a decrease of -94.55 percent compared to the value the year prior.The 1 year change in percent is -94.55.The 3 year change in percent is -99.38.The 5 year change in percent is -99.21.The 10 year change in percent is -98.72.The Serie's long term average value is 0.162 Million. It's latest available value, on 9/30/2020, is 99.82 percent lower, compared to it's long term average value.The Serie's change in percent from it's minimum value, on 4/30/2017, to it's latest available value, on 9/30/2020, is +201.06%.The Serie's change in percent from it's maximum value, on 11/30/2001, to it's latest available value, on 9/30/2020, is -99.97%.
Facebook
TwitterThe Survey of Consumer Finances (SCF) is normally a triennial cross-sectional survey of U.S. families. The survey data include information on families' balance sheets, pensions, income, and demographic characteristics.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
This dataset contains HR information for employees of a multinational corporation (MNC). It includes 2 Million (20 Lakhs) employee records with details about personal identifiers, job-related attributes, performance, employment status, and salary information. The dataset can be used for HR analytics, including workforce distribution, attrition analysis, salary trends, and performance evaluation.
This data is available as a CSV file. We are going to analyse this data set using the Pandas. This analyse will be helpful for those working in HR domain.
Q.1) What is the distribution of Employee Status (Active, Resigned, Retired, Terminated) ?
Q.2) What is the distribution of work modes (On-site, Remote) ?
Q.3) How many employees are there in each department ?
Q.4) What is the average salary by Department ?
Q.5) Which job title has the highest average salary ?
Q.6) What is the average salary in different Departments based on Job Title ?
Q.7) How many employees Resigned & Terminated in each department ?
Q.8) How does salary vary with years of experience ?
Q.9) What is the average performance rating by department ?
Q.10) Which Country have the highest concentration of employees ?
Q.11) Is there a correlation between performance rating and salary ?
Q.12) How has the number of hires changed over time (per year) ?
Q.13) Compare salaries of Remote vs. On-site employees — is there a significant difference ?
Q.14) Find the top 10 employees with the highest salary in each department.
Q.15) Identify departments with the highest attrition rate (Resigned %).
Enrol in our Udemy courses : 1. Python Data Analytics Projects - https://www.udemy.com/course/bigdata-analysis-python/?referralCode=F75B5F25D61BD4E5F161 2. Python For Data Science - https://www.udemy.com/course/python-for-data-science-real-time-exercises/?referralCode=9C91F0B8A3F0EB67FE67 3. Numpy For Data Science - https://www.udemy.com/course/python-numpy-exercises/?referralCode=FF9EDB87794FED46CBDF
1) Unnamed: 0 – Index column (auto-generated, not useful for analysis, will be deleted).
2) Employee_ID – Unique identifier assigned to each employee (e.g., EMP0000001).
3) Full_Name – Full name of the employee.
4) Department – Department in which the employee works (e.g., IT, HR, Marketing, Operations).
5) Job_Title – Designation or role of the employee (e.g., Software Engineer, HR Manager).
6) Hire_Date – The date when the employee was hired by the company.
7) Location – Geographical location of the employee (city, country).
8) Performance_Rating – Performance evaluation score (numeric scale, higher is better).
9) Experience_Years – Number of years of professional experience the employee has.
10) Status – Current employment status (e.g., Active, Resigned).
11) Work_Mode – Mode of working (e.g., On-site, Hybrid, Remote).
12) Salary_INR – Annual salary of the employee in Indian Rupees.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Washington population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Washington across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2024, the population of Washington was 7.96 million, a 1.28% increase year-by-year from 2023. Previously, in 2023, Washington population was 7.86 million, an increase of 0.81% compared to a population of 7.79 million in 2022. Over the last 20 plus years, between 2000 and 2024, population of Washington increased by 2.05 million. In this period, the peak population was 7.96 million in the year 2024. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Washington Population by Year. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the California population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for California. The dataset can be utilized to understand the population distribution of California by age. For example, using this dataset, we can identify the largest age group in California.
Key observations
The largest age group in California was for the group of age 30 to 34 years years with a population of 2.98 million (7.61%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in California was the 80 to 84 years years with a population of 680,447 (1.73%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for California Population by Age. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the New York population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for New York. The dataset can be utilized to understand the population distribution of New York by age. For example, using this dataset, we can identify the largest age group in New York.
Key observations
The largest age group in New York was for the group of age 30 to 34 years years with a population of 1.43 million (7.22%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in New York was the 80 to 84 years years with a population of 403,663 (2.03%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for New York Population by Age. You can refer the same here
Facebook
TwitterList of the data tables as part of the Immigration system statistics Home Office release. Summary and detailed data tables covering the immigration system, including out-of-country and in-country visas, asylum, detention, and returns.
If you have any feedback, please email MigrationStatsEnquiries@homeoffice.gov.uk.
The Microsoft Excel .xlsx files may not be suitable for users of assistive technology.
If you use assistive technology (such as a screen reader) and need a version of these documents in a more accessible format, please email MigrationStatsEnquiries@homeoffice.gov.uk
Please tell us what format you need. It will help us if you say what assistive technology you use.
Immigration system statistics, year ending September 2025
Immigration system statistics quarterly release
Immigration system statistics user guide
Publishing detailed data tables in migration statistics
Policy and legislative changes affecting migration to the UK: timeline
Immigration statistics data archives
https://assets.publishing.service.gov.uk/media/691afc82e39a085bda43edd8/passenger-arrivals-summary-sep-2025-tables.ods">Passenger arrivals summary tables, year ending September 2025 (ODS, 31.5 KB)
‘Passengers refused entry at the border summary tables’ and ‘Passengers refused entry at the border detailed datasets’ have been discontinued. The latest published versions of these tables are from February 2025 and are available in the ‘Passenger refusals – release discontinued’ section. A similar data series, ‘Refused entry at port and subsequently departed’, is available within the Returns detailed and summary tables.
https://assets.publishing.service.gov.uk/media/691b03595a253e2c40d705b9/electronic-travel-authorisation-datasets-sep-2025.xlsx">Electronic travel authorisation detailed datasets, year ending September 2025 (MS Excel Spreadsheet, 58.6 KB)
ETA_D01: Applications for electronic travel authorisations, by nationality
ETA_D02: Outcomes of applications for electronic travel authorisations, by nationality
https://assets.publishing.service.gov.uk/media/6924812a367485ea116a56bd/visas-summary-sep-2025-tables.ods">Entry clearance visas summary tables, year ending September 2025 (ODS, 53.3 KB)
https://assets.publishing.service.gov.uk/media/691aebbf5a253e2c40d70598/entry-clearance-visa-outcomes-datasets-sep-2025.xlsx">Entry clearance visa applications and outcomes detailed datasets, year ending September 2025 (MS Excel Spreadsheet, 30.2 MB)
Vis_D01: Entry clearance visa applications, by nationality and visa type
Vis_D02: Outcomes of entry clearance visa applications, by nationality, visa type, and outcome
Additional data relating to in country and overse
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Texas population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Texas. The dataset can be utilized to understand the population distribution of Texas by age. For example, using this dataset, we can identify the largest age group in Texas.
Key observations
The largest age group in Texas was for the group of age 10 to 14 years years with a population of 2.19 million (7.40%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Texas was the 85 years and over years with a population of 400,722 (1.35%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Texas Population by Age. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the California population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of California across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2024, the population of California was 39.43 million, a 0.59% increase year-by-year from 2023. Previously, in 2023, California population was 39.2 million, an increase of 0.14% compared to a population of 39.14 million in 2022. Over the last 20 plus years, between 2000 and 2024, population of California increased by 5.44 million. In this period, the peak population was 39.52 million in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for California Population by Year. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Ohio population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Ohio. The dataset can be utilized to understand the population distribution of Ohio by age. For example, using this dataset, we can identify the largest age group in Ohio.
Key observations
The largest age group in Ohio was for the group of age 60 to 64 years years with a population of 801,454 (6.80%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Ohio was the 80 to 84 years years with a population of 237,360 (2.01%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Ohio Population by Age. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Florida population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Florida. The dataset can be utilized to understand the population distribution of Florida by age. For example, using this dataset, we can identify the largest age group in Florida.
Key observations
The largest age group in Florida was for the group of age 60 to 64 years years with a population of 1.49 million (6.80%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Florida was the 85 years and over years with a population of 564,476 (2.57%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Florida Population by Age. You can refer the same here
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
**🌍 World Countries Dataset This World Countries Dataset contains detailed information about countries across the globe, offering insights into their geographic, demographic, and economic characteristics.
It includes various features such as population, area, GDP, languages, and regional classifications. This dataset is ideal for projects related to data visualization, statistical analysis, geographical studies, or machine learning applications such as clustering or classification of countries.
This dataset was manually compiled/collected from reliable open data sources (e.g., Wikipedia, World Bank, or other governmental datasets).
**🔍 Sample Questions Explored Using Python: - Q. 1) Which countries have the highest and lowest population? - Q. 2) What is the average area (in sq. km) of countries in each region? - Q. 3) Which countries have more than 100 million population and GDP above $1 trillion? - Q. 4) Which languages are most commonly spoken across countries? - Q. 5) Show a bar graph comparing GDPs of G7 nations. - Q. 6) How many countries are there in each continent or region? - Q. 7) Which countries have both a high population density and low GDP per capita? - Q. 8) Create a world map visualization of population or GDP distribution. - Q. 9) What are the top 10 most densely populated countries? - Q. 10) How many landlocked countries are there in the world?
**🧾 Features / Columns in the Dataset: - Country: The name of the country (e.g., "Pakistan", "France").
Capital: The capital city of the country.
Region: Broad geographical region (e.g., "Asia", "Europe").
Subregion: More specific geographical grouping (e.g., "Southern Asia").
Population: Total population of the country.
Area (sq. km): Total land area in square kilometers.
Population Density: Number of people per square kilometer.
GDP (USD): Gross Domestic Product (in U.S. dollars).
GDP per Capita: GDP divided by the population.
Official Languages: Officially recognized language(s) spoken.
Currency: Name of the currency used.
Timezones: Timezones in which the country falls.
Borders: List of bordering countries (if any).
Landlocked: Whether the country is landlocked (Yes/No).
Latitude / Longitude: Coordinates for geographical plotting.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Wisconsin population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of Wisconsin. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 to 64 years with a poulation of 3.56 million (60.35% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Wisconsin Population by Age. You can refer the same here
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
There is a lack of public available datasets on financial services and specially in the emerging mobile money transactions domain. Financial datasets are important to many researchers and in particular to us performing research in the domain of fraud detection. Part of the problem is the intrinsically private nature of financial transactions, that leads to no publicly available datasets.
We present a synthetic dataset generated using the simulator called PaySim as an approach to such a problem. PaySim uses aggregated data from the private dataset to generate a synthetic dataset that resembles the normal operation of transactions and injects malicious behaviour to later evaluate the performance of fraud detection methods.
PaySim simulates mobile money transactions based on a sample of real transactions extracted from one month of financial logs from a mobile money service implemented in an African country. The original logs were provided by a multinational company, who is the provider of the mobile financial service which is currently running in more than 14 countries all around the world.
This synthetic dataset is scaled down 1/4 of the original dataset and it is created just for Kaggle.
This is a sample of 1 row with headers explanation:
1,PAYMENT,1060.31,C429214117,1089.0,28.69,M1591654462,0.0,0.0,0,0
step - maps a unit of time in the real world. In this case 1 step is 1 hour of time. Total steps 744 (30 days simulation).
type - CASH-IN, CASH-OUT, DEBIT, PAYMENT and TRANSFER.
amount - amount of the transaction in local currency.
nameOrig - customer who started the transaction
oldbalanceOrg - initial balance before the transaction
newbalanceOrig - new balance after the transaction.
nameDest - customer who is the recipient of the transaction
oldbalanceDest - initial balance recipient before the transaction. Note that there is not information for customers that start with M (Merchants).
newbalanceDest - new balance recipient after the transaction. Note that there is not information for customers that start with M (Merchants).
isFraud - This is the transactions made by the fraudulent agents inside the simulation. In this specific dataset the fraudulent behavior of the agents aims to profit by taking control or customers accounts and try to empty the funds by transferring to another account and then cashing out of the system.
isFlaggedFraud - The business model aims to control massive transfers from one account to another and flags illegal attempts. An illegal attempt in this dataset is an attempt to transfer more than 200.000 in a single transaction.
There are 5 similar files that contain the run of 5 different scenarios. These files are better explained at my PhD thesis chapter 7 (PhD Thesis Available here http://urn.kb.se/resolve?urn=urn:nbn:se:bth-12932.
We ran PaySim several times using random seeds for 744 steps, representing each hour of one month of real time, which matches the original logs. Each run took around 45 minutes on an i7 intel processor with 16GB of RAM. The final result of a run contains approximately 24 million of financial records divided into the 5 types of categories: CASH-IN, CASH-OUT, DEBIT, PAYMENT and TRANSFER.
This work is part of the research project ”Scalable resource-efficient systems for big data analytics” funded by the Knowledge Foundation (grant: 20140032) in Sweden.
Please refer to this dataset using the following citations:
PaySim first paper of the simulator:
E. A. Lopez-Rojas , A. Elmir, and S. Axelsson. "PaySim: A financial mobile money simulator for fraud detection". In: The 28th European Modeling and Simulation Symposium-EMSS, Larnaca, Cyprus. 2016
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Employment Rate in the United States increased to 59.70 percent in September from 59.60 percent in August of 2025. This dataset provides - United States Employment Rate- actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By Jeffrey Mvutu Mabilama [source]
Welcome to an exciting exploration of global C2C fashion store user behaviour! This dataset seeks to serve as a benchmark by providing valuable insights into e-commerce users, enabling you to make informed decisions and effectively grow your business. Let's dive right into the data!
This dataset contains records on over 9 million registered users from a successful online C2C fashion store launched in Europe around 2009 and later expanded worldwide. It includes metrics such as country, gender, active users, top buyers/sellers/ratio*, products bought/sold/listed* and social network features (likes/follows). Furthermore this is just a preview of much larger data set which contains more detailed information including product listings, comments from listed products etc.
E-commerce has become an essential part of our lives - people are now accustomed to buying anything with a few clicks online. With so many unknown elements that come with not only selling but also providing good customer service - understanding user behavior is key for success in this domain. By utilizing this dataset you can answer questions such as 'how many customers are likely to drop off after years of using my service?,' 'are my users active enough compared to those in this dataset?,” or “how likely are people from other countries signing up in a C2C website?' In addition, if you think this kind odf dataset may be useful don't forget do show your support or appreciation by leaving an upvote or comment on the page!
My Telegram bot will answer any queries regarding the datasets as well allow you see contact me directly if necessary; also please don't forget check out the *[data.world page](https://data.world/jfreex/e-commerce-users-of-a-french-c2c
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset provides a useful overview of global users' behavior in an online C2C fashion store. The data includes metrics such as buyers, top buyers, top buyer ratio, female buyers and their respective ratios, etc., per country. This dataset can be used to gain insights into how global audiences interact with the store and draw conclusions from comparison between different countries.
In order to make use of this dataset, one must first familiarize themselves with the various metrics included in it. These include: country; number of overall buyers; number of top buyers; ratio(s) of them (top buyer to total buyer); female-related data (buyers, top female buyers); bought-to-wish/like ration (top and non-top separately); overall products bought/wished/liked; total products sold by tops sellers in the same country versus what they sold outside the country; mean value for product stats (sold/listed/etc...) from looking at the whole population or just users that make those actions multiple times; average days for user offline /lurking around on the site without posting anything or buying anything etc.; mean follower(s) count(s).
Using this data one could generate reports about user behavior within particular countries either manually by computing all statistics or by using libraries like Pandas or SQL with queries made toward this datasets which consists of columns representing individual countries with all values necessary to answer any questions you might have regarding how many people buy something out there per region and what type they are –– Are they Top Buyer? Female? Etc.
Further potential work could involve utilising machine learning tools such as clustering algorithms to group similar customers together based on certain traits like age group, profession etc., so that personalised marketing promotions can be targetted at these customer clusters rather than aiming more generic ads at everyone!
Finally combined with other related product datasets which is available upon request via JfreexDatasets_bot provided by Jfreex team , this dataset can become another powerful tool providing you actionable insights into customers today — allowing you build better strategies towards improving customer experience tomorrow!
- Analyzing the conversion rate of users on a website - Comparing user metrics like the overall number of buyers, female buyers, top buyers ratio and top buyer gender can help determine if users in certain countries are more or less likely to convert into customers. Additionally, comparing average metrics like products bought or offl...