Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Average weekly household expenditure on goods and services in the UK. Data are shown by region, age, income (including equivalised) group (deciles and quintiles), economic status, socio-economic class, housing tenure, output area classification, urban and rural areas (Great Britain only), place of purchase and household composition.
When asked about "Car ownership", * percent of U.S. respondents answer "Yes, a company car". This online survey was conducted in 2025, among ****** consumers. Looking to gain valuable insights about car owners across the globe? Check out our reports about consumers of car brands worldwide. These reports provide readers with a detailed understanding of car owners: their identities, preferences, opinions, and how to effectively engage with them.
Data files containing detailed information about vehicles in the UK are also available, including make and model data.
Some tables have been withdrawn and replaced. The table index for this statistical series has been updated to provide a full map between the old and new numbering systems used in this page.
Tables VEH0101 and VEH1104 have not yet been revised to include the recent changes to Large Goods Vehicles (LGV) and Heavy Goods Vehicles (HGV) definitions for data earlier than 2023 quarter 4. This will be amended as soon as possible.
Overview
VEH0101: https://assets.publishing.service.gov.uk/media/6846e8dc57f3515d9611f119/veh0101.ods">Vehicles at the end of the quarter by licence status and body type: Great Britain and United Kingdom (ODS, 151 KB)
Detailed breakdowns
VEH0103: https://assets.publishing.service.gov.uk/media/6846e8dcd25e6f6afd4c01d5/veh0103.ods">Licensed vehicles at the end of the year by tax class: Great Britain and United Kingdom (ODS, 33 KB)
VEH0105: https://assets.publishing.service.gov.uk/media/6846e8dd57f3515d9611f11a/veh0105.ods">Licensed vehicles at the end of the quarter by body type, fuel type, keepership (private and company) and upper and lower tier local authority: Great Britain and United Kingdom (ODS, 16.3 MB)
VEH0206: https://assets.publishing.service.gov.uk/media/6846e8dee5a089417c806179/veh0206.ods">Licensed cars at the end of the year by VED band and carbon dioxide (CO2) emissions: Great Britain and United Kingdom (ODS, 42.3 KB)
VEH0601: https://assets.publishing.service.gov.uk/media/6846e8df5e92539572806176/veh0601.ods">Licensed buses and coaches at the end of the year by body type detail: Great Britain and United Kingdom (ODS, 24.6 KB)
VEH1102: https://assets.publishing.service.gov.uk/media/6846e8e0e5a089417c80617b/veh1102.ods">Licensed vehicles at the end of the year by body type and keepership (private and company): Great Britain and United Kingdom (ODS, 146 KB)
VEH1103: https://assets.publishing.service.gov.uk/media/6846e8e0e5a089417c80617c/veh1103.ods">Licensed vehicles at the end of the quarter by body type and fuel type: Great Britain and United Kingdom (ODS, 992 KB)
VEH1104: https://assets.publishing.service.gov.uk/media/6846e8e15e92539572806177/veh1104.ods">Licensed vehicles at the end of the
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The data set contains registered vehicle population count by various criteria such as vehicle class, vehicle status, vechicle make, vehicle model, vehicle year, plate class, plate declaration, county, weight related class and other vehicle decriptors.
The percentage of households that do not have a personal vehicle available for use out of all households in an area.Source: American Community SurveyYears Available: 2007-2011, 2008-2012, 2009-2013, 2010-2014, 2011-2015, 2012-2016, 2013-2017, 2014-2018, 2015-2019, 2016-2020, 2017-2021, 2018-2022, 2019-2023Please note: We do not recommend comparing overlapping years of data due to the nature of this dataset. For more information, please visit: https://www.census.gov/programs-surveys/acs/guidance/comparing-acs-data.html
Over the course of the 20th century, the number of operational motor vehicles in the United States grew significantly, from just 8,000 automobiles in the year 1900 to more than 183 million private and commercial vehicles in the late 1980s. Generally, the number of vehicles increased in each year, with the most notable exceptions during the Great Depression and Second World War.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Number of Cars: Privately Owned: Per 1000 Person: CF: City of Moscow data was reported at 282.272 Unit in 2022. This records a decrease from the previous number of 297.353 Unit for 2021. Number of Cars: Privately Owned: Per 1000 Person: CF: City of Moscow data is updated yearly, averaging 232.100 Unit from Dec 1990 (Median) to 2022, with 33 observations. The data reached an all-time high of 306.351 Unit in 2017 and a record low of 69.800 Unit in 1990. Number of Cars: Privately Owned: Per 1000 Person: CF: City of Moscow data remains active status in CEIC and is reported by Federal State Statistics Service. The data is categorized under Global Database’s Russian Federation – Table RU.RAD005: Number of Cars Privately Owned per 1000 Persons.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The census is undertaken by the Office for National Statistics every 10 years and gives us a picture of all the people and households in England and Wales. The most recent census took place in March of 2021.The census asks every household questions about the people who live there and the type of home they live in. In doing so, it helps to build a detailed snapshot of society. Information from the census helps the government and local authorities to plan and fund local services, such as education, doctors' surgeries and roads.Key census statistics for Leicester are published on the open data platform to make information accessible to local services, voluntary and community groups, and residents. There is also a dashboard published showcasing various datasets from the census allowing users to view data for Leicester and compare this with national statistics.Further information about the census and full datasets can be found on the ONS website - https://www.ons.gov.uk/census/aboutcensus/censusproductsCar availabilityThis dataset provides Census 2021 estimates on the number of cars or vans available to members of households for England and Wales. The estimates are as at Census Day, 21 March 2021.Definition: The number of cars or vans owned or available for use by household members.Vehicles included:pick-ups, camper vans and motor homesvehicles that are temporarily not working vehicles that have failed their MOTvehicles owned or used by a lodgercompany cars or vans if they're available for private useVehicles not included:motorbikes, trikes, quad bikes or mobility scootersvehicles that have a Statutory Off Road Notification (SORN)vehicles owned or used only by a visitor vehicles that are kept at another address or not easily accessedThe number of cars or vans in an area relates only to households. Cars or vans used by communal establishment residents are not counted.Households with 10 to 20 cars or vans are counted as having only 10.Households with more than 20 cars or vans were treated as invalid and a value imputed.This dataset includes data for Leicester city and England overall.
Sales of used light vehicles in the United States came to around **** million units in 2024. In the same period, approximately **** million new light trucks and automobiles were sold here. Declining availability of vehicles In the fourth quarter of 2024, about ***** million vehicles were in operation in the United States, an increase of around *** percent year-over-year. The rising demand for vehicles paired with an overall price inflation lead to a rise in new vehicle prices. In contrast, used vehicle prices slightly decreased. E-commerce: a solution for the bumpy road ahead? Financial reports have revealed how the outbreak of the coronavirus pandemic has triggered a shift in vehicle-buying behavior. With many consumer goods and services now bought online due to COVID-19, the automobile industry has also started to digitally integrate its services online to reach consumers with a preference for contactless test driving amid the global crisis. Several dealers and automobile companies had already begun to tap into online car sales before the pandemic, some of them being Carvana and Tesla.
The U.S. auto industry sold nearly ************* cars in 2024. That year, total car and light truck sales were approximately ************ in the United States. U.S. vehicle sales peaked in 2016 at roughly ************ units. Pandemic impact The COVID-19 pandemic deeply impacted the U.S. automotive market, accelerating the global automotive semiconductor shortage and leading to a drop in demand during the first months of 2020. However, as demand rebounded, new vehicle supply could not keep up with the market. U.S. inventory-to-sales ratio dropped to its lowest point in February 2022, as Russia's war on Ukraine lead to gasoline price hikes. During that same period, inflation also impacted new and used car prices, pricing many U.S. consumers out of a market with increasingly lower car stocks. Focus on fuel economy The U.S. auto industry had one of its worst years in 1982 when customers were beginning to feel the effects of the 1973 oil crisis and the energy crisis of 1979. Since light trucks would often be considered less fuel-efficient, cars accounted for about ** percent of light vehicle sales back then. Thanks to improved fuel economy for light trucks and cheaper gas prices, this picture had completely changed in 2020. That year, prices for Brent oil dropped to just over ** U.S. dollars per barrel. The decline occurred in tandem with lower gasoline prices, which came to about **** U.S. dollars per gallon in 2020 - and cars only accounted for less than one-fourth of light vehicle sales that year. Four years on, prices are dropping again, after being the highest on record since 1990 in 2022.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Used Car Data’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/sanjeetsinghnaik/used-car-information on 28 January 2022.
--- Dataset description provided by original source is as follows ---
I have scraped the data of used cars which are out for sale. It is important to know the price and kms driven on the car as well as the brand to know if the car is a good purchase for second hand owner or not. This data can help many people reach to that conclusion.
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table contains information on private households owning passenger cars and motor-two-wheelers/motorcycles as at 1 January of the year. If someone within the household has a lease car that is also used for private purposes, this is also regarded as car ownership. A household can own both a car and a motorcycle. In that case, this household is included in both households with a car and households with a motorcycle. In addition to the absolute number of households with cars/motorcycles, the number of households with cars/motorcycles is also presented as a percentage of the total number of private households. The percentage is calculated within the group of households with the same background characteristic. Example: in 2010, 71.6 percent of all private households owned at least one passenger car: 49.1 percent had one car, 18.4 percent had two cars and 4.0 percent had three or more cars. Data available for 2010 - 2015 Status of the figures: The figures in this table are provisional Changes as of 9 March 2017 The provisional figures for 2015 have been added. When will new figures be available? This table was discontinued on 20 August 2018. However, it is possible to have tables with more up-to-date or other figures on vehicle ownership by individuals and households customized by Statistics Netherlands. To do so, please contact the Infoservice.
This map shows the percent of households where there are more cars than people in the household. This includes:1-person households with 2 cars1-person households with 3 cars1-person households with 4 or more cars2-person households with 3 cars2-person households with 4 or more cars3-person households with 4 or more carsThe pop-up shows the count of households by the various categories above. The pattern is shown by states, counties, and tracts. There are bookmarks in the map to help you jump to different cities. You can also search for any city in the Untied States to learn more about that area. Notice that cities tend to have less cars than people, whereas suburbs are more likely to have more cars than people.The data is from the American Community Survey (ACS), and is updated annually when the Census releases their newest estimates. To learn more about the ACS tables used in this layer and additional information about the layer, visit the layer metadata here.
The number of cars in operation per 1,000 people in the United Arab Emirates was forecast to continuously increase between 2023 and 2028 by in total **** cars (+**** percent). The number of cars is estimated to amount to ****** cars in 2028.Cars in this context do not take into account vans or trucks.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to *** countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of cars in operation per 1,000 people in countries like Qatar and Iran.
Accessible Tables and Improved Quality
As part of the Analysis Function Reproducible Analytical Pipeline Strategy, processes to create all National Travel Survey (NTS) statistics tables have been improved to follow the principles of Reproducible Analytical Pipelines (RAP). This has resulted in improved efficiency and quality of NTS tables and therefore some historical estimates have seen very minor change, at least the fifth decimal place.
All NTS tables have also been redesigned in an accessible format where they can be used by as many people as possible, including people with an impaired vision, motor difficulties, cognitive impairments or learning disabilities and deafness or impaired hearing.
If you wish to provide feedback on these changes then please contact us.
NTS0701: https://assets.publishing.service.gov.uk/media/66ce119ebc00d93a0c7e1f7a/nts0701.ods">Average number of trips, miles and time spent travelling by household car availability and personal car access: England, 2002 onwards (ODS, 36.5 KB)
NTS0702: https://assets.publishing.service.gov.uk/media/66ce119e4e046525fa39cf85/nts0702.ods">Travel by personal car access, sex and mode: England, 2002 onwards (ODS, 87.7 KB)
NTS0703: https://assets.publishing.service.gov.uk/media/66ce119f8e33f28aae7e1f7c/nts0703.ods">Household car availability by household income quintile: England, 2002 onwards (ODS, 17.4 KB)
NTS0704: https://assets.publishing.service.gov.uk/media/66ce119fface0992fa41f65e/nts0704.ods">Adult personal car access by household income quintile, aged 17 and over: England, 2002 onwards (ODS, 22.5 KB)
NTS0705: https://assets.publishing.service.gov.uk/media/66ce119f8e33f28aae7e1f7d/nts0705.ods">Average number of trips and miles by household income quintile and mode: England, 2002 onwards (ODS, 78.6 KB)
NTS0706: https://assets.publishing.service.gov.uk/media/66ce119f1aaf41b21139cf87/nts0706.ods">Average number of trips and miles by household type and mode: England, 2002 onwards (ODS, 89.8 KB)
NTS0707: https://assets.publishing.service.gov.uk/media/66ce119f4e046525fa39cf86/nts0707.ods">Adult personal car access and trip rates, by ethnic group, aged 17 and over: England, 2002 onwards (ODS, 28.2 KB)
NTS0708: https://assets.publishing.service.gov.uk/media/66ce119f1aaf41b21139cf88/nts0708.ods">Average number of trips and miles by National Statistics Socio-economic Classification and mode, aged 16 and over: England, 2004 onwards (<abbr title="OpenDocument Spreadsheet" class=
When asked about "Car ownership", * percent of Russian respondents answer "Yes, a company car". This online survey was conducted in 2023, among *** consumers.As an element of Statista Consumer Insights, our Consumer Insights Global survey offers you up-to-date market research data from over ** countries and territories worldwide.
SpaceKnow uses satellite (SAR) data to capture activity in electric vehicles and automotive factories.
Data is updated daily, has an average lag of 4-6 days, and history back to 2017.
The insights provide you with level and change data that monitors the area which is covered with assembled light vehicles in square meters.
We offer 3 delivery options: CSV, API, and Insights Dashboard
Available companies Rivian (NASDAQ: RIVN) for employee parking, logistics, logistic centers, product distribution & product in the US. (See use-case write up on page 4) TESLA (NASDAQ: TSLA) indices for product, logistics & employee parking for Fremont, Nevada, Shanghai, Texas, Berlin, and Global level Lucid Motors (NASDAQ: LCID) for employee parking, logistics & product in US
Why get SpaceKnow's EV datasets?
Monitor the company’s business activity: Near-real-time insights into the business activities of Rivian allow users to better understand and anticipate the company’s performance.
Assess Risk: Use satellite activity data to assess the risks associated with investing in the company.
Types of Indices Available Continuous Feed Index (CFI) is a daily aggregation of the area of metallic objects in square meters. There are two types of CFI indices. The first one is CFI-R which gives you level data, so it shows how many square meters are covered by metallic objects (for example assembled cars). The second one is CFI-S which gives you change data, so it shows you how many square meters have changed within the locations between two consecutive satellite images.
How to interpret the data SpaceKnow indices can be compared with the related economic indicators or KPIs. If the economic indicator is in monthly terms, perform a 30-day rolling sum and pick the last day of the month to compare with the economic indicator. Each data point will reflect approximately the sum of the month. If the economic indicator is in quarterly terms, perform a 90-day rolling sum and pick the last day of the 90-day to compare with the economic indicator. Each data point will reflect approximately the sum of the quarter.
Product index This index monitors the area covered by manufactured cars. The larger the area covered by the assembled cars, the larger and faster the production of a particular facility. The index rises as production increases.
Product distribution index This index monitors the area covered by assembled cars that are ready for distribution. The index covers locations in the Rivian factory. The distribution is done via trucks and trains.
Employee parking index Like the previous index, this one indicates the area covered by cars, but those that belong to factory employees. This index is a good indicator of factory construction, closures, and capacity utilization. The index rises as more employees work in the factory.
Logistics index The index monitors the movement of materials supply trucks in particular car factories.
Logistics Centers index The index monitors the movement of supply trucks in warehouses.
Where the data comes from: SpaceKnow brings you information advantages by applying machine learning and AI algorithms to synthetic aperture radar and optical satellite imagery. The company’s infrastructure searches and downloads new imagery every day, and the computations of the data take place within less than 24 hours.
In contrast to traditional economic data, which are released in monthly and quarterly terms, SpaceKnow data is high-frequency and available daily. It is possible to observe the latest movements in the EV industry with just a 4-6 day lag, on average.
The EV data help you to estimate the performance of the EV sector and the business activity of the selected companies.
The backbone of SpaceKnow’s high-quality data is the locations from which data is extracted. All locations are thoroughly researched and validated by an in-house team of annotators and data analysts.
Each individual location is precisely defined so that the resulting data does not contain noise such as surrounding traffic or changing vegetation with the season.
We use radar imagery and our own algorithms, so the final indices are not devalued by weather conditions such as rain or heavy clouds.
→ Reach out to get a free trial
Use Case - Rivian:
SpaceKnow uses the quarterly production and delivery data of Rivian as a benchmark. Rivian targeted to produce 25,000 cars in 2022. To achieve this target, the company had to increase production by 45% by producing 10,683 cars in Q4. However the production was 10,020 and the target was slightly missed by reaching total production of 24,337 cars for FY22.
SpaceKnow indices help us to observe the company’s operations, and we are able to monitor if the company is set to meet its forecasts or not. We deliver five different indices for Rivian, and these indices observe logistic centers, employee parking lot, logistics, product, and prod...
This data contains information about people involved in a crash and if any injuries were sustained. This dataset should be used in combination with the traffic Crash and Vehicle dataset. Each record corresponds to an occupant in a vehicle listed in the Crash dataset. Some people involved in a crash may not have been an occupant in a motor vehicle, but may have been a pedestrian, bicyclist, or using another non-motor vehicle mode of transportation. Injuries reported are reported by the responding police officer. Fatalities that occur after the initial reports are typically updated in these records up to 30 days after the date of the crash. Person data can be linked with the Crash and Vehicle dataset using the “CRASH_RECORD_ID” field. A vehicle can have multiple occupants and hence have a one to many relationship between Vehicle and Person dataset. However, a pedestrian is a “unit” by itself and have a one to one relationship between the Vehicle and Person table. The Chicago Police Department reports crashes on IL Traffic Crash Reporting form SR1050. The crash data published on the Chicago data portal mostly follows the data elements in SR1050 form. The current version of the SR1050 instructions manual with detailed information on each data elements is available here. Change 11/21/2023: We have removed the RD_NO (Chicago Police Department report number) for privacy reasons.
**This data set was last updated 3:30 PM ET Monday, January 4, 2021. The last date of data in this dataset is December 31, 2020. **
Data shows that mobility declined nationally since states and localities began shelter-in-place strategies to stem the spread of COVID-19. The numbers began climbing as more people ventured out and traveled further from their homes, but in parallel with the rise of COVID-19 cases in July, travel declined again.
This distribution contains county level data for vehicle miles traveled (VMT) from StreetLight Data, Inc, updated three times a week. This data offers a detailed look at estimates of how much people are moving around in each county.
Data available has a two day lag - the most recent data is from two days prior to the update date. Going forward, this dataset will be updated by AP at 3:30pm ET on Monday, Wednesday and Friday each week.
This data has been made available to members of AP’s Data Distribution Program. To inquire about access for your organization - publishers, researchers, corporations, etc. - please click Request Access in the upper right corner of the page or email kromano@ap.org. Be sure to include your contact information and use case.
01_vmt_nation.csv - Data summarized to provide a nationwide look at vehicle miles traveled. Includes single day VMT across counties, daily percent change compared to January and seven day rolling averages to smooth out the trend lines over time.
02_vmt_state.csv - Data summarized to provide a statewide look at vehicle miles traveled. Includes single day VMT across counties, daily percent change compared to January and seven day rolling averages to smooth out the trend lines over time.
03_vmt_county.csv - Data providing a county level look at vehicle miles traveled. Includes VMT estimate, percent change compared to January and seven day rolling averages to smooth out the trend lines over time.
* Filter for specific state - filters 02_vmt_state.csv
daily data for specific state.
* Filter counties by state - filters 03_vmt_county.csv
daily data for counties in specific state.
* Filter for specific county - filters 03_vmt_county.csv
daily data for specific county.
The AP has designed an interactive map to show percent change in vehicle miles traveled by county since each counties lowest point during the pandemic:
@(https://interactives.ap.org/vmt-map/)
This data can help put your county's mobility in context with your state and over time. The data set contains different measures of change - daily comparisons and seven day rolling averages. The rolling average allows for a smoother trend line for comparison across counties and states. To get the full picture, there are also two available baselines - vehicle miles traveled in January 2020 (pre-pandemic) and vehicle miles traveled at each geography's low point during the pandemic.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The graph displays the number of retail car sales in the United States from 1976 to 2025. The x-axis represents the years, ranging from 1976 to 2025, while the y-axis indicates the number of cars sold, spanning from 10,357,300 to 17,477,300. Throughout this period, car sales exhibit significant fluctuations, with the highest sales of 17,477,300 units occurring in 2016 and the lowest of 10,357,300 units in 1982. Overall, the data reveals an upward trend in retail car sales over the decades, despite occasional declines during certain years. The information is presented in a line graph format, effectively highlighting the annual variations and long-term growth in car sales within the United States.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Average weekly household expenditure on goods and services in the UK. Data are shown by region, age, income (including equivalised) group (deciles and quintiles), economic status, socio-economic class, housing tenure, output area classification, urban and rural areas (Great Britain only), place of purchase and household composition.