Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The dataset provides a comprehensive look at HIV/AIDS adult prevalence rates, the number of people living with HIV, and annual deaths across different countries. It is based on publicly available data sources such as the CIA World Factbook, UNAIDS AIDS Info, and other global health organizations. The dataset primarily focuses on adult HIV prevalence (ages 15–49) and includes estimates from recent years (e.g., 2023–2024).
This dataset can be used for: - Epidemiological Analysis: Understanding the regional distribution of HIV/AIDS and identifying high-prevalence areas. - Predictive Modeling: Developing machine learning models to predict HIV prevalence trends or identify risk factors. - Resource Allocation: Informing policymakers about regions requiring urgent intervention or resource allocation. - Health Outcome Monitoring: Tracking progress in combating HIV/AIDS over time. - Social Determinants Research: Analyzing the relationship between socio-economic factors and HIV prevalence.
The dataset is ethically sourced from publicly available and credible platforms such as the CIA World Factbook, UNAIDS, and WHO. These organizations ensure transparency and ethical standards in data collection, protecting individual privacy while providing aggregate statistics for research purposes.
This dataset serves as a valuable tool for researchers, policymakers, and public health professionals in addressing the global challenge of HIV/AIDS.
Facebook
TwitterThe following slide set is available to download for presentational use:
Data on all HIV diagnoses, AIDS and deaths among people diagnosed with HIV are collected from HIV outpatient clinics, laboratories and other healthcare settings. Data relating to people living with HIV is collected from HIV outpatient clinics. Data relates to England, Wales, Northern Ireland and Scotland, unless stated.
HIV testing, pre-exposure prophylaxis, and post-exposure prophylaxis data relates to activity at sexual health services in England only.
View the pre-release access lists for these statistics.
Previous reports, data tables and slide sets are also available for:
Our statistical practice is regulated by the Office for Statistics Regulation (OSR). The OSR sets the standards of trustworthiness, quality and value in the https://code.statisticsauthority.gov.uk/">Code of Practice for Statistics that all producers of Official Statistics should adhere to.
Additional information on HIV surveillance can be found in the HIV Action Plan for England monitoring and evaluation framework reports. Other HIV in the UK reports published by Public Health England (PHE) are available online.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Statistics relating to HIV infection
Facebook
TwitterThis shapefile provides HIV statistics by state that can be used in conjunction with the co-morbidities risk profile to provide more nuance on levels of risk by state. Note that values of 0 mean there is no data for that particular state.The source of data for HIV prevalence rates is the Nigeria Institute for Health Metrics and Evaluation (IHME), HIV Prevalence Geospatial Estimates 2000-2017.
Facebook
Twitterhttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets
Source: The World Bank Last Updated: 10/26/2023 Database: World Development Indicators Series: Prevalence of HIV, total (% of population ages 15-49) Adults (ages 15+) and children (ages 0-14) newly infected with HIV Adults (ages 15-49) newly infected with HIV Antiretroviral therapy coverage (% of people living with HIV) Antiretroviral therapy coverage for PMTCT (% of pregnant women living with HIV) Children (0-14) living with HIV Children (ages 0-14) newly infected with HIV Incidence of HIV, ages 15-24 (per 1,000 uninfected population ages 15-24) Incidence of HIV, ages 15-49 (per 1,000 uninfected population ages 15-49) Incidence of HIV, all (per 1,000 uninfected population) Prevalence of HIV, female (% ages 15-24) Prevalence of HIV, male (% ages 15-24) Women's share of population ages 15+ living with HIV (%) Young people (ages 15-24) newly infected with HIV
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
https://data.gov.hk/en-data/dataset/hk-dh-dh_spp-dh-spp-hiv-aids-1984-to-2022-yearly-figures This dataset can be sourced from the data.gov.hk website, which was provided to them by the department of health. The category of the dataset is Health and it is in a csv file format. It was last updated on 09/01/2024. Desciption: HIV/AIDS yearly statistics in Hong Kong 1984 - 2022.
Facebook
TwitterHIV/AIDS yearly statistics in Hong Kong 1984 - 2023
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Prevalence of HIV: Total: % of Population Aged 15-49 data was reported at 0.500 % in 2014. This stayed constant from the previous number of 0.500 % for 2013. United States US: Prevalence of HIV: Total: % of Population Aged 15-49 data is updated yearly, averaging 0.500 % from Dec 2008 (Median) to 2014, with 7 observations. The data reached an all-time high of 0.500 % in 2014 and a record low of 0.500 % in 2014. United States US: Prevalence of HIV: Total: % of Population Aged 15-49 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. Prevalence of HIV refers to the percentage of people ages 15-49 who are infected with HIV.; ; UNAIDS estimates.; Weighted Average;
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The New York City Department of Health and Mental Hygiene publishes mid-year and annual HIV surveillance reports each year. This dataset is taken from these reports and includes data gathered from 2011 to June 30, 2016.
This dataset includes HIV infections and AIDS diagnoses, viral suppression in persons living with diagnosed HIV infection (PLWDHI), deaths of those with diagnosed HIV infection, and other statistics from 2011 to 2015 in New York City boroughs.
The data contained here shows trends in age, gender, and geographic demographics over time for HIV infections in NYC, and this can be used to visualize the prevalence of the virus in the city.
This data was pulled from NYC's OpenData at https://data.cityofnewyork.us/Health/DOHMH-HIV-AIDS-Annual-Report/fju2-rdad .
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
People aged 15 to 59 years seen at HIV services in the UK, expressed as a rate per 1,000 population.Data is presented by area of residence, and exclude people diagnosed with HIV in England who are resident in Wales, Scotland, Northern Ireland or abroad.RationaleThe geographical distribution of people seen for HIV care and treatment is not uniform across or within regions in England. Knowledge of local diagnosed HIV prevalence and identification of local risk groups can be used to help direct resources for HIV prevention and treatment.In 2008, http://www.bhiva.org/HIV-testing-guidelines.aspx recommended that Local Authority and NHS bodies consider implementing routine HIV testing for all general medical admissions as well as new registrants in primary care where the diagnosed HIV prevalence exceeds 2 in 1,000 population aged 15 to 59 years.In 2017, guidelines were updated by https://www.nice.org.uk/guidance/NG60 which is co-badged with Public Health England. This guidance continues to define high HIV prevalence local authorities as those with a diagnosed HIV prevalence of between 2 and 5 per 1,000 and extremely high prevalence local authorities as those with a diagnosed HIV prevalence of 5 or more per 1,000 people aged 15 to 59 years.When this is applied to national late HIV diagnosis data, it shows that two-thirds of late HIV diagnoses occur in high-prevalence and extremely-high-prevalence local authorities. This means that if this recommendation is successfully applied in high and extremely-high-prevalence areas, it could potentially affect two-thirds of late diagnoses nationally.Local authorities should find out their diagnosed prevalence published in UKHSA's http://fingertips.phe.org.uk/profile/sexualhealth , as well as that of surrounding areas and adapt their strategy for HIV testing using the national guidelines.Commissioners can use these data to plan and ensure access to comprehensive and specialist local HIV care and treatment for HIV diagnosed individuals according to the http://www.medfash.org.uk/uploads/files/p17abl6hvc4p71ovpkr81ugsh60v.pdf and http://www.bhiva.org/monitoring-guidelines.aspx .Definition of numeratorThe number of people (aged 15 to 59 years) living with a diagnosed HIV infection and accessing HIV care at an NHS service in the UK and who are resident in England.Definition of denominatorResident population aged 15 to 59.The denominators for 2011 to 2023 are taken from the respective 2011 to 2023 Office for National Statistics (ONS) revised population estimates from the 2021 Census.Further details on the ONS census are available from the https://www.ons.gov.uk/census .CaveatsData is presented by geographical area of residence. Where data on residence were unavailable, residence have been assigned to the local health area of care.Every effort is made to ensure accuracy and completeness of the data, including web-based reporting with integrated checks on data quality. The overall data quality is high as the dataset is used for commissioning purposes and for the national allocation of funding. However, responsibility for the accuracy and completeness of data lies with the reporting service.Data is as reported but rely on ‘record linkage’ to integrate data and ‘de-duplication’ to prevent double counting of the same individual. The data may not be representative in areas where residence information is not known for a significant proportion of people accessing HIV care.Data supplied for previous years are updated on an annual basis due to clinic or laboratory resubmissions and improvements to data cleaning. Data may therefore differ from previous publications.Values are benchmarked against set thresholds and categorised into the following groups: <2 (low), 2 to 5 (high) and≥5 (extremely high). These have been determined by developments in national testing guidelines.The data reported in 2020 and 2021 is impacted by the reconfiguration of sexual health services during the national response to COVID-19.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Dataset refers to the Statistics Relating to Notification of HIV Aids Cases and Deaths in Mauritius for the year 2000 to 2023
Facebook
TwitterMuch of the information on national HIV prevalence in Tanzania derives from surveillance of HIV in special populations, such as women attending antenatal clinics and blood donors. For example, Mainland Tanzania currently maintains a network of 134 antenatal care (ANC) sites from which HIV prevalence estimates are generated. However, these surveillance data do not provide an estimate of the HIV prevalence among the general population. HIV prevalence is higher among individuals who are employed (6 percent) than among those who are not employed (3 percent) and is higher in urban areas than in rural areas (7percent and 4 percent, respectively). In Mainland Tanzania, HIV prevalence is markedly higher than in Zanzibar (5 percent versus 1 percent). Differentials by region are large. Among regions on the Mainland,Njombe has the highest prevalence estimate (15 percent), followed by Iringa and Mbeya (9 percent each);Manyara and Tanga have the lowest prevalence (2 percent). Among the five regions that comprise Zanzibar, all have HIV prevalence estimates at 1 percent or below. Consistent with the overall national estimate among men and women, HIV prevalence is higher among women than men in nearly all regions of Tanzania.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides detailed insights into the prevalence of HIV/AIDS among adults (ages 15–49) across various countries and regions. The data is primarily sourced from the CIA World Factbook and the UNAIDS AIDSinfo platform and reflects the most recent available estimates as of 2022–2024.
What’s Included:
Country/Region – The name of each nation or area.
Adult Prevalence of HIV/AIDS (%) – The percentage of adults estimated to be living with HIV.
Number of People with HIV/AIDS – Estimated count of people infected in each country.
Annual Deaths from HIV/AIDS – Estimated number of HIV/AIDS-related deaths per year.
Year of Estimate – The year the data was reported or estimated.
Key Highlights:
Global Prevalence: Around 0.7% of the global population was living with HIV in 2022, affecting nearly 39 million people.
Hotspots: The epidemic is most severe in Southern Africa, with countries like Eswatini, Botswana, Lesotho, and Zimbabwe reporting adult prevalence rates above 20%.
High Burden Countries:
South Africa: 17.3% prevalence, approximately 9.2 million infected
Tanzania: approximately 7.49 million
Mozambique: approximately 2.48 million
Nigeria: approximately 2.45 million (1.3% prevalence)
Notes:
Data may vary in accuracy and is subject to ongoing updates and verification.
Some entries include a dash ("-") where data was not published or available.
Countries with over 1% adult prevalence are categorized under Generalized HIV Epidemics (GHEs) by UNAIDS.
Facebook
Twitterhttps://data.gov.sg/open-data-licencehttps://data.gov.sg/open-data-licence
Dataset from Singapore Department of Statistics. For more information, visit https://data.gov.sg/datasets/d_250a8096f848835cb4a835d31fcd8ffd/view
Facebook
TwitterIn 2021, 1.9 million people in Nigeria were living with HIV. Women were the most affected group, counting 1.1 thousand individuals. Also, children up to age 14 who were HIV positive equaled 170 thousand.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
• HIV (human immunodeficiency virus) is a virus that attacks the body's immune system. If HIV is not treated, it can lead to AIDS (acquired immunodeficiency syndrome) which currently has no cure. Once people get HIV, they have it for life. But with proper medical care, HIV can be controlled. Symptoms: Influenza-like illness; Fatigue… Treatments: Management of HIV/AIDS Type of infectious agent: Virus (Human Immunodeficiency Virus) • AIDS (acquired immune deficiency syndrome) is the name used to describe a number of potentially life-threatening infections and illnesses that happen when one’s immune system has been severely damaged by the HIV virus. While AIDS cannot be transmitted from 1 person to another, the HIV virus can.
The data set contains data of the following:- 1. The top causes of deaths in the world 2. Total number of deaths due to HIV/AIDS 3. ART (Anti Retro-viral Therapy) coverage among people living with HIV 4. Knowledge among young citizens (15-24years) about HIV/AIDS 5. Population of HIV/AIDS patients living with TB and their death rate 6. Life expectancy rate among HIV/AIDS patients 7. HIV/AIDS Patients in different age groups 8. Women population living with HIV 9. Young women in India having the knowledge of HIV/AIDS 10. HIV/AIDS deaths in Indian states
Data was scrapped from the official website of UNICEF -https://data.unicef.org/ and https://data.gov.in/
• Data gives the trend of increasing no. of HIV/AIDS patients across the world • The information available for each country is percentage of total Global AIDS patients • Time period traced is 2000-2019 • Key Questions to answer: Which countries and regions are affected the most? How are the different age groups affected? How much is the ART (Anti Retro-viral Therapy) coverage among the patients and what is the life expectancy rate? What percentage of the population is aware of the prevention and causes of HIV/AIDS
• By tabulating and filtering the data the required data was obtained to bring out observations. • Data was formatted to the desired format to perform further calculations. • Sorting of data region wise. • Columns with inconsistent and empty cells were deleted. • The data of India was extracted for further analysis • Duplicate entries and undesired data was removed
For cleaning the dataset for further analysis MS Excel was used due to small data. • Used sumifs() functions to aggregate the data region wise • Used sumif() to segregate the no. of patients within different age groups • Used sumifs() to find the total number of TB patients among HIV deaths. • Used countif() to find the percentage of male and female patients. • Sorted data to find the top and bottom nation with most and least HIV/AIDS patients
• Formed the following pivot tables to answer key target questions Year v/s number of death rates Country v/s death numbers to bring out nation wise deaths Causes of death v/s the number of deaths to bring at which position AIDS causes causality Year v/s percentage of life expectancy to observe the pattern of no. of survivors
The data was visualized using Tableau.
The final presentation was prepared by accumulating all observations and inferences which is linked below https://docs.google.com/presentation/d/1NEX10Vz5u5Va3CrTLVbvsUHZjO-fn8EOeiOHkP03T3Q/edit?usp=sharing
Facebook
TwitterThe 2005 Guyana HIV/AIDS Indicator Survey (GAIS) is the first household-based, comprehensive survey on HIV/AIDS to be carried out in Guyana. The 2005 GAIS was implemented by the Guyana Responsible Parenthood Association (GRPA) for the Ministry of Health (MoH). ORC Macro of Calverton, Maryland provided technical assistance to the project through its contract with the U.S. Agency for International Development (USAID) under the MEASURE DHS program. Funding to cover technical assistance by ORC Macro and for local costs was provided in their entirety by USAID/Washington and USAID/Guyana.
The 2005 GAIS is a nationally representative sample survey of women and men age 15-49 initiated by MoH with the purpose of obtaining national baseline data for indicators on knowledge/awareness, attitudes, and behavior regarding HIV/AIDS. The survey data can be effectively used to calculate valuable indicators of the President’s Emergency Plan for AIDS Relief (PEPFAR), the Joint United Nations Program on HIV/AIDS (UNAIDS), the United Nations General Assembly Special Session (UNGASS), the United Nations Children Fund (UNICEF) Orphan and Vulnerable Children unit (OVC), and the World Health Organization (WHO), among others. The overall goal of the survey was to provide program managers and policymakers involved in HIV/AIDS programs with information needed to monitor and evaluate existing programs; and to effectively plan and implement future interventions, including resource mobilization and allocation, for combating the HIV/AIDS epidemic in Guyana.
Other objectives of the 2005 GAIS include the support of dissemination and utilization of the results in planning, managing and improving family planning and health services in the country; and enhancing the survey capabilities of the institutions involved in order to facilitate the implementation of surveys of this type in the future.
The 2005 GAIS sampled over 3,000 households and completed interviews with 2,425 eligible women and 1,875 eligible men. In addition to the data on HIV/AIDS indicators, data on the characteristics of households and its members, malaria, infant and child mortality, tuberculosis, fertility, and family planning were also collected.
National
Sample survey data [ssd]
The primary objective of the 2005 GAIS is to provide estimates with acceptable precision for important population characteristics such as HIV/AIDS related knowledge, attitudes, and behavior. The population to be covered by the 2005 GAIS was defined as the universe of all women and men age 15-49 in Guyana.
The major domains to be distinguished in the tabulation of important characteristics for the eligible population are: • Guyana as a whole • The urban area and the rural area each as a separate major domain • Georgetown and the remainder urban areas.
Administratively, Guyana is divided into 10 major regions. For census purposes, each region is further subdivided in enumeration districts (EDs). Each ED is classified as either urban or rural. There is a list of EDs that contains the number of households and population for each ED from the 2002 census. The list of EDs is grouped by administrative units as townships. The available demarcated cartographic material for each ED from the last census makes an adequate sample frame for the 2005 GAIS.
The sampling design had two stages with enumeration districts (EDs) as the primary sampling units (PSUs) and households as the secondary sampling units (SSUs). The standard design for the GAIS called for the selection of 120 EDs. Twenty-five households were selected by systematic random sampling from a full list of households from each of the selected enumeration districts for a total of 3,000 households. All women and men 15-49 years of age in the sample households were eligible to be interviewed with the individual questionnaire.
The database for the recently completed 2002 Census was used as a sampling frame to select the sampling units. In the census frame, EDs are grouped by urban-rural location within the ten administrative regions and they are also ordered in each administrative unit in serpentine fashion. Therefore, this stratification and ordering will be also reflected in the 2005 GAIS sample.
Based on response rates from other surveys in Guyana, around 3,000 interviews of women and somewhat fewer of men expected to be completed in the 3,000 households selected.
Several allocation schemes were considered for the sample of clusters for each urban-rural domain. One option was to allocate clusters to urban and rural areas proportionally to the population in the area. According to the census, the urban population represents only 29 percent of the population of the country. In this case, around 35 clusters out of the 120 would have been allocated to the urban area. Options to obtain the best allocation by region were also examined. It should be emphasized that optimality is not guaranteed at the regional level but the power for analysis is increased in the urban area of Georgetown by departing from proportionality. Upon further analysis of the different options, the selection of an equal number of clusters in each major domain (60 urban and 60 rural) was recommended for the 2005 GAIS. As a result of the nonproportionalallocation of the number of EDs for the urban-rural and regional domains, the household sample for the 2005 GAIS is not a self-weighted sample.
The 2005 GAIS sample of households was selected using a stratified two-stage cluster design consisting of 120 clusters. The first stage-units (primary sampling units or PSUs) are the enumeration areas used for the 2002 Population and Housing Census. The number of EDs (clusters) in each domain area was calculated dividing its total allocated number of households by the sample take (25 households for selection per ED). In each major domain, clusters are selected systematically with probability proportional to size.
The sampling procedures are more fully described in "Guyana HIV/AIDS Indicator Survey 2005 - Final Report" pp.135-138.
Face-to-face [f2f]
Two types of questionnaires were used in the survey, namely: the Household Questionnaire and the Individual Questionnaire. The contents of these questionnaires were based on model questionnaires developed by the MEASURE DHS program. In consultation with USAID/Guyana, MoH, GRPA, and other government agencies and local organizations, the model questionnaires were modified to reflect issues relevant to HIV/AIDS in Guyana. The questionnaires were finalized around mid-May.
The Household Questionnaire was used to list all the usual members and visitors in the selected households. For each person listed, information was collected on sex, age, education, and relationship to the head of the household. An important purpose of the Household Questionnaire was to identify women and men who were eligible for the individual interview.
The Household Questionnaire also collected non-income proxy indicators about the household's dwelling unit, such as the source of water; type of toilet facilities; materials used for the floor, roof and walls of the house; and ownership of various durable goods and land. As part of the Malaria Module, questions were included on ownership and use of mosquito bednets.
The Individual Questionnaire was used to collect information from women and men age 15-49 years and covered the following topics: • Background characteristics (age, education, media exposure, employment, etc.) • Reproductive history (number of births and—for women—a birth history, birth registration, current pregnancy, and current family planning use) • Marriage and sexual activity • Husband’s background • Knowledge about HIV/AIDS and exposure to specific HIV-related mass media programs • Attitudes toward people living with HIV/AIDS • Knowledge and experience with HIV testing • Knowledge and symptoms of other sexually transmitted infections (STIs) • The malaria module and questions on tuberculosis
The processing of the GAIS questionnaires began in mid-July 2005, shortly after the beginning of fieldwork and during the first visit of the ORC Macro data processing specialist. Questionnaires for completed clusters (enumeration districts) were periodically submitted to GRPA offices in Georgetown, where they were edited by data processing personnel who had been trained specifically for this task. The concurrent processing of the data—standard for surveys participating in the DHS program—allowed GRPA to produce field-check tables to monitor response rates and other variables, and advise field teams of any problems that were detected during data entry. All data were entered twice, allowing 100 percent verification. Data processing, including data entry, data editing, and tabulations, was done using CSPro, a program developed by ORC Macro, the U.S. Bureau of Census, and SERPRO for processing surveys and censuses. The data entry and editing of the questionnaires was completed during a second visit by the ORC Macro specialist in mid-September. At this time, a clean data set was produced and basic tables with the basic HIV/AIDS indicators were run. The tables included in the current report were completed by the end of November 2005.
• From a total of 3,055 households in the sample, 2,800 were occupied. Among these households, interviews were completed in 2,608, for a response rate of 93 percent. • A total of 2,776 eligible women were identified and
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cuba CU: Prevalence of HIV: Total: % of Population Aged 15-49 data was reported at 0.600 % in 2022. This stayed constant from the previous number of 0.600 % for 2021. Cuba CU: Prevalence of HIV: Total: % of Population Aged 15-49 data is updated yearly, averaging 0.200 % from Dec 1990 (Median) to 2022, with 33 observations. The data reached an all-time high of 0.600 % in 2022 and a record low of 0.100 % in 2003. Cuba CU: Prevalence of HIV: Total: % of Population Aged 15-49 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Cuba – Table CU.World Bank.WDI: Social: Health Statistics. Prevalence of HIV refers to the percentage of people ages 15-49 who are infected with HIV.;UNAIDS estimates.;Weighted average;
Facebook
TwitterDescription: The Adult data set contains information on: biographical data, media, communication and norms, knowledge and perceptions of HIV/AIDS, male circumcision, sexual debut, partners and partner characteristics, condoms, vulnerability, HIV testing, alcohol and substance use, general perceptions about government, health and violence in the community. The data set contains 879 variables and 30563 cases. Abstract: South Africa continues to have the largest number of people living with HIV/AIDS in the World. This study intends to understand the determinants that lead South Africans to be vulnerable and susceptible to HIV. This is the fourth in a series of household surveys conducted by Human Sciences Research council (HSRC), that allow for tracking of HIV and associated determinants over time using a slightly same methodology used in 2002 and 2008 survey, making it the fourth national-level repeat survey. The 2002 and 2005 surveys included individuals aged 2+ years living in South Africa while 2008 and 2012 survey included individuals of all ages living in South Africa, including infants less than 2 years of age. The 2008 study included only four people per household, while in 2012 all members of the households participated. The interval of three years since 2002 allows for an exploration of shifts over time against a complex of demographic and other variables, as well as allowing for investigation of the new areas. The surveys provide the nationally representative HIV incidence estimates showing changes over time. The 2012 study key objectives were: to determine the proportion of PLHIV who are on Antiretroviral treatment (ART) in South Africa; to determine the prevalence and incidence of HIV infection in South Africa in relation to social and behavioural determinants; to determine the proportion of males in South Africa who are circumcised; to investigate the link between social values, and cultural determinants and HIV infection in South Africa; to determine the extent to which mother-child pairs include HIV-negative mothers and HIV-positive infants; to describe trends in HIV prevalence, HIV incidence, and risk behaviour in South Africa over the period 2002 to 2012 collect data on the health conditions of South Africans; and contribute to the analysis of the impact of HIV/AIDS on society. In 2012, of the 15000 selected households or visiting points, 11079 agreed to participate in the survey, 42950 individuals (all household members were included) were eligible to be interviewed, and 38431 individuals completed the interview. Of the 38431 eligible individuals, 28997 agreed to provide a blood specimen for HIV testing and were anonymously linked to the behavioural questionnaires. The household response rate was 87.2% , the individual response rate was 89.5% and the overall response rate for HIV testing was 67.5% Clinical measurements Face-to-face interview Focus group Observation South African population. This project used the updated 2007-2011 HSRC's master sample. Aerial photographs drawn from Google Earth were utilised to ensure that the most up-to-date information was available sample. the master sample is defined as a selection, for the purpose of repeated community or household surveys, of a probability sample of census enumeration areas throughout South Africa that are representative of the country's provincial, settlement and racial diversity. The sampling frame that was used in the design of the Master Sample was the 2001 census Enumerator Areas (EAs) from Statistics South Africa (Stats SA). The target population for this study were all people in South Africa, excluding persons in so-called special institutions (e.g. hospitals, military camps, old age homes, schools and university hostels). The EAs were used as the Primary Sampling Units (PSUs) and the Secondary Sampling Units (SSUs) were the visiting points (VPs) or households (HHs). The Ultimate Sampling Units (USUs) were the individuals eligible to be selected for the survey. Any member of the household "who slept here last night", including visitors was an eligible household member for the interview. This sampling approach was used in the 2001 census and is a standard demographic household survey procedure. The sample was designed with two main explicit strata, the provinces and the geography types (geotype) of the EA. In the 2001 census, the four geotypes were urban formal, urban informal, rural formal (including commercial farms) and tribal areas (rural informal) (i.e. the deep rural areas). In the formal urban areas, race was used as a third stratification variable. What this means is that the Master Sample was designed to allow reporting of results (i.e. reporting domain) at a provincial, geotype and race level. A reporting domain is defined as that domain at which estimates of a population characteristic or variable should be of an acceptable precision for the presentation of survey results. A visiting point is defined as a separate (non-vacant) residential stand, address, structure, and flat in a block of flats or homestead. The 2001 estimate of visiting points was used as the Measure of Size (MOS) in the drawing of the sample. A maximum of four visits were made to each VP to optimise response. Fieldworkers enumerated household members, using a random number generator to select the respondent and then preceded with the interview. All people in the households, resident at the visiting point were invited to participate in the study. These individuals constituted the USUs of this study. Having completed the sample design, the sample was drawn with 1 000 PSUs or EAs being selected throughout South Africa. These PSUs were allocated to each of the explicit strata. With a view to obtaining an approximately self-weighting sample of visiting points (i.e. SSUs), (a) the EAs were drawn with probability proportional to the size of the EA using the 2001 estimate of the number of visiting points in the EA database as a measure of size (MOS) and (b) to draw an equal number of visiting points (i.e. SSUs) from each drawn EA. An acceptable precision of estimates per reporting domain requires that a sample of sufficient size be drawn from each of the reporting domains. Consequently, a cluster of 15 VP was systematically selected on the aerial photography produced for each of the EAs in the master sample. Since it is not possible to determine on an aerial photograph whether a 'dwelling unit' is indeed a residential structure or whether it was occupied (i.e. people sleeping there), it was decided to form clusters of 15 dwelling units per PSU, allowing on average for one invalid dwelling unit in the cluster of 15 dwelling units. Previous experience at Statistics SA indicated a sample size of 10 households per PSU to be very efficient, balancing cost and efficiency. The VP questionnaire was administered by the fieldworker, and in follow-up, participant selection was made by the supervisor. Participants aged 12 years and older who consented were all interviewed and also asked to provide dried blood spots (DBS) specimens for HIV testing. In case of 0-11 years, parents/guardians were interviewed but DBS specimens were obtained from the children. The sample size estimate for the 2012 survey was guided by the (1) requirement for measuring change over time in order to detect a change in HIV prevalence of 5 percentage points in each of the main reporting domains, namely gender, age-group, race, locality type, and province (5% level of significance, 80% power, two-sided test), and (2) the requirement of an acceptable precision of estimates per reporting domain; that is, to be able to estimate HIV prevalence in each of the main reporting domains with a precision level of less than ± 4%, which is equivalent to the expected width of the 95% confidence interval (z-score at the 95% level for two-sided test). A design effect of 2 was assumed. Overall, a total of 38 431 interviewed participants composed of 29.7% children (0-14 years), 19.3% youths (15-24 years), 35.6% adults (25-49 years), and 15.4% adults (50+ years ) were interviewed. The sample was designed with the view to enable reporting of the results on province level, on geography type area and on race of the respondent. The total sample size was limited by financial constraints, but based on other HSRC experience in sample surveys it was decided to aim at obtaining a minimum of 1 200 households per race group. The number of respondents per household for the study was expected to vary between one and three (one respondent in each of the three age groups). More females (70.3%) than males (64.2%) were tested for HIV. The 15-24 year's age group was the most compliant (71.6%), and less than 2 years the least (51.6%). The highest testing response rate was found in rural formal settlements (80.8%) and the least in urban formal areas (59.7%).
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Source: https://en.wikipedia.org/wiki/HIV_adult_prevalence_rate This dataset provides detailed insights into the prevalence of HIV/AIDS among adults (ages 15–49) across various countries and regions 🌐. The data is primarily sourced from the CIA World Factbook and UNAIDS AIDS info platform, and reflects the most recent available estimates as of 2022–2024 📅.
📌 What's Included: Country/Region 🗺️ – The name of each nation or area.
Adult Prevalence of HIV/AIDS (%) 🔬 – The percentage of adults estimated to be living with HIV.
Number of People with HIV/AIDS 👥 – Estimated count of people infected in each country.
Annual Deaths from HIV/AIDS ⚰️ – Estimated number of HIV/AIDS-related deaths per year.
Year of Estimate 📆 – The year the data was reported or estimated.
📈 Key Highlights: Global Prevalence: Around 0.7% of the global population was living with HIV in 2022, affecting nearly 39 million people.
Hotspots: The epidemic is most severe in Southern Africa, with countries like Eswatini, Botswana, Lesotho, and Zimbabwe reporting adult prevalence rates above 20% 🔥.
High Burden Countries:
🇿🇦 South Africa: 17.3% prevalence, ~9.2 million infected.
🇹🇿 Tanzania: ~7.49 million.
🇲🇿 Mozambique: ~2.48 million.
🇳🇬 Nigeria: ~2.45 million (1.3% prevalence).
⚠️ Notes: Data may vary in accuracy and is subject to ongoing updates and verification 🔍.
Some entries include a dash ("-") where data was not published or available ❌.
Countries with over 1% adult prevalence are categorized under Generalized HIV Epidemics (GHEs) by UNAIDS 🚨.
📚 Data Sources: CIA World Factbook 🌐
UNAIDS AIDS Info 💉
Wikipedia 🧠 (used as a collection and compilation point, not primary source)
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The dataset provides a comprehensive look at HIV/AIDS adult prevalence rates, the number of people living with HIV, and annual deaths across different countries. It is based on publicly available data sources such as the CIA World Factbook, UNAIDS AIDS Info, and other global health organizations. The dataset primarily focuses on adult HIV prevalence (ages 15–49) and includes estimates from recent years (e.g., 2023–2024).
This dataset can be used for: - Epidemiological Analysis: Understanding the regional distribution of HIV/AIDS and identifying high-prevalence areas. - Predictive Modeling: Developing machine learning models to predict HIV prevalence trends or identify risk factors. - Resource Allocation: Informing policymakers about regions requiring urgent intervention or resource allocation. - Health Outcome Monitoring: Tracking progress in combating HIV/AIDS over time. - Social Determinants Research: Analyzing the relationship between socio-economic factors and HIV prevalence.
The dataset is ethically sourced from publicly available and credible platforms such as the CIA World Factbook, UNAIDS, and WHO. These organizations ensure transparency and ethical standards in data collection, protecting individual privacy while providing aggregate statistics for research purposes.
This dataset serves as a valuable tool for researchers, policymakers, and public health professionals in addressing the global challenge of HIV/AIDS.