Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table contains 2394 series, with data for years 1991 - 1991 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Population group (19 items: Entire cohort; Income adequacy quintile 1 (lowest);Income adequacy quintile 2;Income adequacy quintile 3 ...), Age (14 items: At 25 years; At 30 years; At 40 years; At 35 years ...), Sex (3 items: Both sexes; Females; Males ...), Characteristics (3 items: Life expectancy; High 95% confidence interval; life expectancy; Low 95% confidence interval; life expectancy ...).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Live Oak population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Live Oak across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of Live Oak was 15,953, a 0.52% increase year-by-year from 2021. Previously, in 2021, Live Oak population was 15,870, an increase of 0.32% compared to a population of 15,819 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Live Oak increased by 6,390. In this period, the peak population was 16,499 in the year 2019. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Live Oak Population by Year. You can refer the same here
Very preterm births are all live births less than 32 weeks of gestation. Important growth and development occur throughout pregnancy, especially in the final months and weeks. There is a higher risk of serious disability or death the earlier a baby is born.Data Dictionary: Column NameFormatDefinitionYearStringYear in which events occurredCountyStringMaternal County of residence (this is not necessarily the same County as where the birth occurred)Birth TypeStringEither Preterm or Very Preterm Births. Preterm births are all live births <37 weeks of gestation. Very preterm births are all live births <32 weeks of gestation. Gestational age is based on obstetric estimate at delivery. Data includes births with gestational age of 17-47 weeks. Total BirthsNumericTotal count of live births within yearEventsNumericCount of preterm or very preterm live births within year. Count is not shown when less than 10.PercentNumericCalculated by dividing the Count by Total Births, then multiplying by 100. Percents are not shown when the Count is less than 10.Lower 95% CINumericLower limit of 95% confidence interval. The 95% confidence limits depict the range within which the percentage would probably occur in 95 of 100 sets of data (if data similar to the present set were independently acquired on 100 separate occasions). In five of those 100 data sets, the percentage would fall outside the limits.Upper 95% CINumericUpper limit of 95% confidence interval. The 95% confidence limits depict the range within which the percentage would probably occur in 95 of 100 sets of data (if data similar to the present set were independently acquired on 100 separate occasions). In five of those 100 data sets, the percentage would fall outside the limits.
Life expectancy at birth and at age 65, by sex, on a three-year average basis.
Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes
Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.
Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases among people who received additional or booster doses were reported from 31 jurisdictions; 30 jurisdictions also reported data on deaths among people who received one or more additional or booster dose; 28 jurisdictions reported cases among people who received two or more additional or booster doses; and 26 jurisdictions reported deaths among people who received two or more additional or booster doses. This list will be updated as more jurisdictions participate. Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6 months through 1 year, half of the single-year population counts for ages 0 through 1 year were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred. For the primary series analysis, age-standardized rates include ages 12 years and older from April 4, 2021 through December 4, 2021, ages 5 years and older from December 5, 2021 through July 30, 2022 and ages 6 months and older from July 31, 2022 onwards. For the booster dose analysis, age-standardized rates include ages 18 years and older from September 19, 2021 through December 25, 2021, ages 12 years and older from December 26, 2021, and ages 5 years and older from June 5, 2022 onwards. Small numbers could contribute to less precision when calculating death rates among some groups. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage. Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated with a primary series either overall or with a booster dose. Publications: Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138. Johnson AG, Linde L, Ali AR, et al. COVID-19 Incidence and Mortality Among Unvaccinated and Vaccinated Persons Aged ≥12 Years by Receipt of Bivalent Booster Doses and Time Since Vaccination — 24 U.S. Jurisdictions, October 3, 2021–December 24, 2022. MMWR Morb Mortal Wkly Rep 2023;72:145–152. Johnson AG, Linde L, Payne AB, et al. Notes from the Field: Comparison of COVID-19 Mortality Rates Among Adults Aged ≥65 Years Who Were Unvaccinated and Those Who Received a Bivalent Booster Dose Within the Preceding 6 Months — 20 U.S. Jurisdictions, September 18, 2022–April 1, 2023. MMWR Morb Mortal Wkly Rep 2023;72:667–669.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Percentage of responses in range 0-6 out of 10 (corresponding to 'low wellbeing') for 'Life Satisfaction' in the First ONS Annual Experimental Subjective Wellbeing survey.
The Office for National Statistics has included the four subjective well-being questions below on the Annual Population Survey (APS), the largest of their household surveys.
This dataset presents results from the first of these questions, "Overall, how satisfied are you with your life nowadays?" Respondents answer these questions on an 11 point scale from 0 to 10 where 0 is ‘not at all’ and 10 is ‘completely’. The well-being questions were asked of adults aged 16 and older.
Well-being estimates for each unitary authority or county are derived using data from those respondents who live in that place. Responses are weighted to the estimated population of adults (aged 16 and older) as at end of September 2011.
The data cabinet also makes available the proportion of people in each county and unitary authority that answer with ‘low wellbeing’ values. For the ‘life satisfaction’ question answers in the range 0-6 are taken to be low wellbeing.
This dataset contains the percentage of responses in the range 0-6. It also contains the standard error, the sample size and lower and upper confidence limits at the 95% level.
The ONS survey covers the whole of the UK, but this dataset only includes results for counties and unitary authorities in England, for consistency with other statistics available at this website.
At this stage the estimates are considered ‘experimental statistics’, published at an early stage to involve users in their development and to allow feedback. Feedback can be provided to the ONS via this email address.
The APS is a continuous household survey administered by the Office for National Statistics. It covers the UK, with the chief aim of providing between-census estimates of key social and labour market variables at a local area level. Apart from employment and unemployment, the topics covered in the survey include housing, ethnicity, religion, health and education. When a household is surveyed all adults (aged 16+) are asked the four subjective well-being questions.
The 12 month Subjective Well-being APS dataset is a sub-set of the general APS as the well-being questions are only asked of persons aged 16 and above, who gave a personal interview and proxy answers are not accepted. This reduces the size of the achieved sample to approximately 120,000 adult respondents in England.
The original data is available from the ONS website.
Detailed information on the APS and the Subjective Wellbeing dataset is available here.
As well as collecting data on well-being, the Office for National Statistics has published widely on the topic of wellbeing. Papers and further information can be found here.
This dataset contains two tables on the percent of household overcrowding (> 1.0 persons per room) and severe overcrowding (> 1.5 persons per room) for California, its regions, counties, and cities/towns. Data is from the U.S. Department of Housing and Urban Development (HUD), Comprehensive Housing Affordability Strategy (CHAS) and U.S. Census American Community Survey (ACS). The table is part of a series of indicators in the Healthy Communities Data and Indicators Project (HCI) of the Office of Health Equity: Healthy Communities Data and Indicators Project of the Office of Health Equity. Residential crowding has been linked to an increased risk of infection from communicable diseases, a higher prevalence of respiratory ailments, and greater vulnerability to homelessness among the poor. Residential crowding reflects demographic and socioeconomic conditions. Older-adult immigrant and recent immigrant communities, families with low income and renter-occupied households are more likely to experience household crowding. A form of residential overcrowding known as "doubling up"—co-residence with family members or friends for economic reasons—is the most commonly reported prior living situation for families and individuals before the onset of homelessness. More information about the data table and a data dictionary can be found in the About/Attachments section.The household crowding table is part of a series of indicators in the Healthy Communities Data and Indicators Project (HCI) of the Office of Health Equity. The goal of HCI is to enhance public health by providing data, a standardized set of statistical measures, and tools that a broad array of sectors can use for planning healthy communities and evaluating the impact of plans, projects, policy, and environmental changes on community health. The creation of healthy social, economic, and physical environments that promote healthy behaviors and healthy outcomes requires coordination and collaboration across multiple sectors, including transportation, housing, education, agriculture and others. Statistical metrics, or indicators, are needed to help local, regional, and state public health and partner agencies assess community environments and plan for healthy communities that optimize public health. More information on HCI can be found here: https://www.cdph.ca.gov/Programs/OHE/CDPH%20Document%20Library/Accessible%202%20CDPH_Healthy_Community_Indicators1pager5-16-12.pdf
The format of the household overcrowding tables is based on the standardized data format for all HCI indicators. As a result, this data table contains certain variables used in the HCI project (e.g., indicator ID, and indicator definition). Some of these variables may contain the same value for all observations.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Morrison Hispanic or Latino population. It includes the distribution of the Hispanic or Latino population, of Morrison, by their ancestries, as identified by the Census Bureau. The dataset can be utilized to understand the origin of the Hispanic or Latino population of Morrison.
Key observations
Among the Hispanic population in Morrison, regardless of the race, the largest group is of Mexican origin, with a population of 152 (95% of the total Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Origin for Hispanic or Latino population include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Morrison Population by Race & Ethnicity. You can refer the same here
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Percentage of responses in range 0-6 out of 10 (corresponding to 'low wellbeing') for 'Happy Yesterday' in the First ONS Annual Experimental Subjective Wellbeing survey.
The Office for National Statistics has included the four subjective well-being questions below on the Annual Population Survey (APS), the largest of their household surveys.
This dataset presents results from the third of these questions, "Overall, how happy did you feel yesterday?" Respondents answer these questions on an 11 point scale from 0 to 10 where 0 is ‘not at all’ and 10 is ‘completely’. The well-being questions were asked of adults aged 16 and older.
Well-being estimates for each unitary authority or county are derived using data from those respondents who live in that place. Responses are weighted to the estimated population of adults (aged 16 and older) as at end of September 2011.
The data cabinet also makes available the proportion of people in each county and unitary authority that answer with ‘low wellbeing’ values. For the ‘happy yesterday’ question answers in the range 0-6 are taken to be low wellbeing.
This dataset contains the percentage of responses in the range 0-6. It also contains the standard error, the sample size and lower and upper confidence limits at the 95% level.
The ONS survey covers the whole of the UK, but this dataset only includes results for counties and unitary authorities in England, for consistency with other statistics available at this website.
At this stage the estimates are considered ‘experimental statistics’, published at an early stage to involve users in their development and to allow feedback. Feedback can be provided to the ONS via this email address.
The APS is a continuous household survey administered by the Office for National Statistics. It covers the UK, with the chief aim of providing between-census estimates of key social and labour market variables at a local area level. Apart from employment and unemployment, the topics covered in the survey include housing, ethnicity, religion, health and education. When a household is surveyed all adults (aged 16+) are asked the four subjective well-being questions.
The 12 month Subjective Well-being APS dataset is a sub-set of the general APS as the well-being questions are only asked of persons aged 16 and above, who gave a personal interview and proxy answers are not accepted. This reduces the size of the achieved sample to approximately 120,000 adult respondents in England.
The original data is available from the ONS website.
Detailed information on the APS and the Subjective Wellbeing dataset is available here.
As well as collecting data on well-being, the Office for National Statistics has published widely on the topic of wellbeing. Papers and further information can be found here.
There's a story behind every dataset and here's your opportunity to share yours.
This dataset collects characteristics of the population in each region (age distribution, unemployment rate, immigration percent and primary economic sector) and cross it with the votes per each political part.
It has 52 fields:
1) Code [String]: Region code of the different Spanish areas. There are 8126 different regions, but the dataset only contains 8119, because some sources were incomplete.
2) RegionName [String]: Name of the region.
3) Population [Int]: Amount of people living in that area (1st January 2015)
4) TotalCensus [Int]: Number of people over 18 years old, which means that can vote.
5) TotalVotes [Int]: Number of total votes.
6) AbstentionPtge [Float]: Percent of the people that have not votes in the election. (TotalCensus-TotalVotes)/TotalCensus*100 %
7) BlankVotesPtge [Float]: Percent of votes that were blank. Calculated as follows: BlankVotes/TotalVotes*100 %
8) NullVotesPtge [Float]: Percent of votes that were null. Calculated as follows: NullVotes/TotalVotes*100 %
9) PP_Ptge [Float]: Percent of the votes given to the political party called “Partido Popular”. (PP_Votes)/TotalVotes*100 %
10) PSOE_Ptge [Float]: Percent of the votes given to the political party called “Partido Socialista Obrero Español” (PSOE_Votes)/TotalVotes*100 %
11) Podemos_Ptge [Float]: Percent of the votes given to the political party called “Podemos” (Podemos_Votes)/TotalVotes*100 %
12) Ciudadanos_Ptge [Float]: Percent of the votes given to the political party called “Ciudadanos” (Ciudadanos_Votes)/TotalVotes*100 %
13) Others_Ptge [Float]: Percent of the votes given to the others political parties (∑▒MinoritaryVotes)/TotalVotes*100 %
14) Age_0-4_Ptge [Float]: Percent of the populations which age is between 0 and 4 years old. It is calculated as follows: (Number of people in (0-4))/TotalPopulation*100 %
15) Age_5-9_Ptge [Float]: Percent of the populations which age is between 5 and 9 year old.
16) Age_10-14_Ptge [Float]: Percent of the populations which age is between 10 and 14 years old
17) Age_15-19_Ptge [Float]: Percent of the populations which age is between 15 and 19 years old
18) Age_20-24_Ptge [Float]: Percent of the populations which age is between 20 and 24 years old
19) Age_25-29_Ptge [Float]: Percent of the populations which age is between 25 and 29 years old
20) Age_30-34_Ptge [Float]: Percent of the populations which age is between 30 and 34 years old
21) Age_35-39_Ptge [Float]: Percent of the populations which age is between 35 and 39 years old
22) Age_40-44_Ptge [Float]: Percent of the populations which age is between 40 and 44 years old
23) Age_45-49_Ptge [Float]: Percent of the populations which age is between 45 and 49 years old
24) Age_50-54_Ptge [Float]: Percent of the populations which age is between 50 and 54 years old
25) Age_55-59_Ptge [Float]: Percent of the populations which age is between 55 and 59 years old
26) Age_60-64_Ptge [Float]: Percent of the populations which age is between 60 and 64 years old
27) Age_65-69_Ptge [Float]: Percent of the populations which age is between 65 and 69 years old
28) Age_70-74_Ptge [Float]: Percent of the populations which age is between 70 and 74 years old
29) Age_75-79_Ptge [Float]: Percent of the populations which age is between 75 and 79 year old
30) Age_80-84_Ptge [Float]: Percent of the populations which age is between 80 and 84 years old
31) Age_85-89_Ptge [Float]: Percent of the populations which age is between 85 and 89 year old
32) Age_90-94_Ptge [Float]: Percent of the populations which age is between 90 and 94 years old
33) Age_95-99_Ptge [Float]: Percent of the populations which age is between 95 and 99 years old
34) Age_100+_Ptge [Float]: Percent of the populations which is older than 100 years old.
35) ManPopulationPtge [Float]: Percentage of masculine population in a region. Calculated as follows: ManPopulation/TotalPopulation*100
36) WomanPopulationPtge [Float]: Percentage of masculine population in a region. Calculated as follows: WomanPopulation/TotalPopulation*100
37) SpanishPtge [Float]: Percentage of people with spanish nationality in a region. Calculated as follows: NativeSpanishPopulation/TotalPopulation*100
38) ForeignersPtge [Float]: Percentage of foreign people in a region. Calculated as follows: ForeignPopulation/TotalPopulation*100
39) SameComAutonPtge [Float]: Percentage of people who live in the same autonomic community (same province) that was born. Calculated as follows: SameComAutonPopulation/TotalPopulation*100
40) SameComAutonDiffProvPtge [Float]: Percentage of people who live in the same autonomic community (different province) that was born. Calculated as follows: SameComAutonDiffProvPopulation/TotalPopulation*100
41) DifComAutonPtge [Float]: Percentage of people who live in different autonomic community that was born. Calculated as follows: SameComAutonDiffProvPopulation/TotalPopulation*100
42) UnemployLess25_Ptge [Float]: Percent of unemployed people that are under 25 years and older than 18. It is calculated over the total amount of unemployment. (UnemploymentLess25_Man+ UnemploymentLess25_Woman)/TotalUnemployment*100
43) Unemploy25_40_Ptge [Float]: Percent of unemployed people that are 25-40 years over the total amount of unemployment. (Unemployment(25-40)_Man+ Unemployment(25-40)_Woman )/TotalUnemployment*100
44) UnemployMore40_Ptge [Float]: Percent of unemployed people that are older that 40 and younger than 69 years over the total amount of unemployment. (Unemployment(40-69)_Man+Unemployment(40-69)_Woman)/TotalUnemployment*100
45) UnemployLess25_population_Ptge [Float]: Percent of unemployed people younger than 25 and older than 18, over the total population of the region. Note that the percent is calculated over the total population and not over the total active population. (UnemploymentLess25_Man+ UnemploymentLess25_Woman)/TotalPopulation*100
46) Unemploy25_40_population_Ptge [Float]: Percent of unemployed people (25-40) years old, over the total population of the region. Note that the percent is calculated over the total population and not over the total active population. (Unemployment(25-40)_Man+ Unemployment(25-40)_Woman )/TotalPopulation*100
47) UnemployMore40_population_Ptge [Float]: Percent of unemployed people (40-69) years old, over the total population of the region. Note that the percent is calculated over the total population and not over the total active population. (UnemploymentLess25_Man+ UnemploymentLess25_Woman)/TotalPopulation*100
48) AgricultureUnemploymentPtge [Float]: Percent of unemployment in the agriculture sector relative to the total amount of unemployment. PeopleUnemployedInAgriculture/TotalUnemployment*100
49) IndustryUnemploymentPtge [Float]: Percent of unemployment in the industry sector relative to the total amount of unemployment. PeopleUnemployedInIndustry/TotalUnemployment*100
50) ConstructionUnemploymentPtge [Float]: Percent of unemployment in the construction sector relative to the total amount of unemployment. PeopleUnemployedInConstruction/TotalUnemployment*100
51) ServicesUnemploymentPtge [Float]: Percent of unemployment in the services sector relative to the total amount of unemployment. PeopleUnemployedInServices/TotalUnemployment*100
52) NotJobBeforeUnemploymentPtge [Float]: Percent of unemployment of people that didn’t have an employ before, over the total amount of unemployment. PeopleUnemployedWithoutEmployBefore/TotalUnemployment*100
References:
[1] Unemployment: www.datos.gob.es/es/catalogo/e00142804-paro-registrado-por-municipios
[2] Age distribution per region Relation between Spanish and foreigners Relation between woman and man Relation between people born in the same area or different areas of Spain http://www.ine.es/dynt3/inebase/index.htm?type=pcaxis&file=pcaxis&path=%2Ft20%2Fe245%2Fp05%2F%2Fa2015
[3] Congress elections result of Spanish election (June 2016) http://www.infoelectoral.interior.es/min/areaDescarga.html?method=inicio
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Percentage of responses in range 0-6 out of 10 (corresponding to 'low wellbeing') for 'Worthwhile' in the First ONS Annual Experimental Subjective Wellbeing survey.
The Office for National Statistics has included the four subjective well-being questions below on the Annual Population Survey (APS), the largest of their household surveys.
This dataset presents results from the second of these questions, "Overall, to what extent do you feel the things you do in your life are worthwhile?" Respondents answer these questions on an 11 point scale from 0 to 10 where 0 is ‘not at all’ and 10 is ‘completely’. The well-being questions were asked of adults aged 16 and older.
Well-being estimates for each unitary authority or county are derived using data from those respondents who live in that place. Responses are weighted to the estimated population of adults (aged 16 and older) as at end of September 2011.
The data cabinet also makes available the proportion of people in each county and unitary authority that answer with ‘low wellbeing’ values. For the ‘worthwhile’ question answers in the range 0-6 are taken to be low wellbeing.
This dataset contains the percentage of responses in the range 0-6. It also contains the standard error, the sample size and lower and upper confidence limits at the 95% level.
The ONS survey covers the whole of the UK, but this dataset only includes results for counties and unitary authorities in England, for consistency with other statistics available at this website.
At this stage the estimates are considered ‘experimental statistics’, published at an early stage to involve users in their development and to allow feedback. Feedback can be provided to the ONS via this email address.
The APS is a continuous household survey administered by the Office for National Statistics. It covers the UK, with the chief aim of providing between-census estimates of key social and labour market variables at a local area level. Apart from employment and unemployment, the topics covered in the survey include housing, ethnicity, religion, health and education. When a household is surveyed all adults (aged 16+) are asked the four subjective well-being questions.
The 12 month Subjective Well-being APS dataset is a sub-set of the general APS as the well-being questions are only asked of persons aged 16 and above, who gave a personal interview and proxy answers are not accepted. This reduces the size of the achieved sample to approximately 120,000 adult respondents in England.
The original data is available from the ONS website.
Detailed information on the APS and the Subjective Wellbeing dataset is available here.
As well as collecting data on well-being, the Office for National Statistics has published widely on the topic of wellbeing. Papers and further information can be found here.
http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence
Percentage of responses in range 4-10 out of 10 (corresponding to 'low wellbeing') for 'Anxious Yesterday' in the First ONS Annual Experimental Subjective Wellbeing survey.
The Office for National Statistics has included the four subjective well-being questions below on the Annual Population Survey (APS), the largest of their household surveys.
This dataset presents results from the last of these questions, "Overall, how anxious did you feel yesterday?" Respondents answer these questions on an 11 point scale from 0 to 10 where 0 is ‘not at all’ and 10 is ‘completely’. The well-being questions were asked of adults aged 16 and older.
Well-being estimates for each unitary authority or county are derived using data from those respondents who live in that place. Responses are weighted to the estimated population of adults (aged 16 and older) as at end of September 2011.
The data cabinet also makes available the proportion of people in each county and unitary authority that answer with ‘low wellbeing’ values. For the ‘anxious yesterday’ question answers in the range 4-10 are taken to be low wellbeing. Unlike the other questions, in this case a high value of the response corresponds to low wellbeing.
This dataset contains the percentage of responses in the range 4-10. It also contains the standard error, the sample size and lower and upper confidence limits at the 95% level.
The ONS survey covers the whole of the UK, but this dataset only includes results for counties and unitary authorities in England, for consistency with other statistics available at this website.
At this stage the estimates are considered ‘experimental statistics’, published at an early stage to involve users in their development and to allow feedback. Feedback can be provided to the ONS via this email address.
The APS is a continuous household survey administered by the Office for National Statistics. It covers the UK, with the chief aim of providing between-census estimates of key social and labour market variables at a local area level. Apart from employment and unemployment, the topics covered in the survey include housing, ethnicity, religion, health and education. When a household is surveyed all adults (aged 16+) are asked the four subjective well-being questions.
The 12 month Subjective Well-being APS dataset is a sub-set of the general APS as the well-being questions are only asked of persons aged 16 and above, who gave a personal interview and proxy answers are not accepted. This reduces the size of the achieved sample to approximately 120,000 adult respondents in England.
The original data is available from the ONS website.
Detailed information on the APS and the Subjective Wellbeing dataset is available here.
As well as collecting data on well-being, the Office for National Statistics has published widely on the topic of wellbeing. Papers and further information can be found here.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Moldova's first Demographic and Health Survey (2005 MDHS) is a nationally representative sample survey of 7,440 women age 15-49 and 2,508 men age 15-59 selected from 400 sample points (clusters) throughout Moldova (excluding the Transnistria region). It is designed to provide data to monitor the population and health situation in Moldova; it includes several indicators which follow up on those from the 1997 Moldova Reproductive Health Survey (1997 MRHS) and the 2000 Multiple Indicator Cluster Survey (2000 MICS). The 2005 MDHS used a two-stage sample based on the 2004 Population and Housing Census and was designed to produce separate estimates for key indicators for each of the major regions in Moldova, including the North, Center, and South regions and Chisinau Municipality. Unlike the 1997 MRHS and the 2000 MICS surveys, the 2005 MDHS did not cover the region of Transnistria. Data collection took place over a two-month period, from June 13 to August 18, 2005. The survey obtained detailed information on fertility levels, abortion levels, marriage, sexual activity, fertility preferences, awareness and use of family planning methods, breastfeeding practices, nutritional status of women and young children, childhood mortality, maternal and child health, adult health, and awareness and behavior regarding HIV infection and other sexually transmitted diseases. Hemoglobin testing was conducted on women and children to detect the presence of anemia. Additional features of the 2005 MDHS include the collection of information on international emigration, language preference for reading printed media, and domestic violence. The 2005 MDHS was carried out by the National Scientific and Applied Center for Preventive Medicine, hereafter called the National Center for Preventive Medicine (NCPM), of the Ministry of Health and Social Protection. ORC Macro provided technical assistance for the MDHS through the USAID-funded MEASURE DHS project. Local costs of the survey were also supported by USAID, with additional funds from the United Nations Children's Fund (UNICEF), the United Nations Population Fund (UNFPA), and in-kind contributions from the NCPM. MAIN RESULTS CHARACTERISTICS OF RESPONDENTS Ethnicity and Religion. Most women and men in Moldova are of Moldovan ethnicity (77 percent and 76 percent, respectively), followed by Ukrainian (8-9 percent of women and men), Russian (6 percent of women and men), and Gagauzan (4-5 percent of women and men). Romanian and Bulgarian ethnicities account for 2 to 3 percent of women and men. The overwhelming majority of Moldovans, about 95 percent, report Orthodox Christianity as their religion. Residence and Age. The majority of respondents, about 58 percent, live in rural areas. For both sexes, there are proportionally more respondents in age groups 15-19 and 45-49 (and also 45-54 for men), whereas the proportion of respondents in age groups 25-44 is relatively lower. This U-shaped age distribution reflects the aging baby boom cohort following World War II (the youngest of the baby boomers are now in their mid-40s), and their children who are now mostly in their teens and 20s. The smaller proportion of men and women in the middle age groups reflects the smaller cohorts following the baby boom generation and those preceding the generation of baby boomers' children. To some degree, it also reflects the disproportionately higher emigration of the working-age population. Education. Women and men in Moldova are universally well educated, with virtually 100 percent having at least some secondary or higher education; 79 percent of women and 83 percent of men have only a secondary or secondary special education, and the remainder pursues a higher education. More women (21 percent) than men (16 percent) pursue higher education. Language Preference. Among women, preferences for language of reading material are about equal for Moldovan (37 percent) and Russian (35 percent) languages. Among men, preference for Russian (39 percent) is higher than for Moldovan (25 percent). A substantial percentage of women and men prefer Moldovan and Russian equally (27 percent of women and 32 percent of men). Living Conditions. Access to electricity is almost universal for households in Moldova. Ninety percent of the population has access to safe drinking water, with 86 percent in rural areas and 96 percent in urban areas. Seventy-seven percent of households in Moldova have adequate means of sanitary disposal, with 91 percent of households in urban areas and only 67 percent in rural areas. Children's Living Arrangements. Compared with other countries in the region, Moldova has the highest proportion of children who do not live with their mother and/or father. Only about two-thirds (69 percent) of children under age 15 live with both parents. Fifteen percent live with just their mother although their father is alive, 5 percent live with just their father although their mother is alive, and 7 percent live with neither parent although they are both alive. Compared with living arrangements of children in 2000, the situation appears to have worsened. FERTILITY Fertility Levels and Trends. The total fertility rate (TFR) in Moldova is 1.7 births. This means that, on average, a woman in Moldova will give birth to 1.7 children by the end of her reproductive period. Overall, fertility rates have declined since independence in 1991. However, data indicate that fertility rates may have increased in recent years. For example, women of childbearing age have given birth to, on average, 1.4 children at the end of their childbearing years. This is slightly less than the total fertility rate (1.7), with the difference indicating that fertility in the past three years is slightly higher than the accumulation of births over the past 30 years. Fertility Differentials. The TFR for rural areas (1.8 births) is higher than that for urban areas (1.5 births). Results show that this urban-rural difference in childbearing rates can be attributed almost exclusively to younger age groups. CONTRACEPTION Knowledge of Contraception. Knowledge of family planning is nearly universal, with 99 percent of all women age 15-49 knowing at least one modern method of family planning. Among all women, the male condom, IUD, pills, and withdrawal are the most widely known methods of family planning, with over 80 percent of all women saying they have heard of these methods. Female sterilization is known by two-thirds of women, while periodic abstinence (rhythm method) is recognized by almost six in ten women. Just over half of women have heard of the lactational amenorrhea method (LAM), while 40-50 percent of all women have heard of injectables, male sterilization, and foam/jelly. The least widely known methods are emergency contraception, diaphragm, and implants. Use of Contraception. Sixty-eight percent of currently married women are using a family planning method to delay or stop childbearing. Most are using a modern method (44 percent of married women), while 24 percent use a traditional method of contraception. The IUD is the most widely used of the modern methods, being used by 25 percent of married women. The next most widely used method is withdrawal, used by 20 percent of married women. Male condoms are used by about 7 percent of women, especially younger women. Five percent of married women have been sterilized and 4 percent each are using the pill and periodic abstinence (rhythm method). The results show that Moldovan women are adopting family planning at lower parities (i.e., when they have fewer children) than in the past. Among younger women (age 20-24), almost half (49 percent) used contraception before having any children, compared with only 12 percent of women age 45-49. MATERNAL HEALTH Antenatal Care and Delivery Care. Among women with a birth in the five years preceding the survey, almost all reported seeing a health professional at least once for antenatal care during their last pregnancy; nine in ten reported 4 or more antenatal care visits. Seven in ten women had their first antenatal care visit in the first trimester. In addition, virtually all births were delivered by a health professional, in a health facility. Results also show that the vast majority of women have timely checkups after delivering; 89 percent of all women received a medical checkup within two days of the birth, and another 6 percent within six weeks. CHILD HEALTH Childhood Mortality. The infant mortality rate for the 5-year period preceding the survey is 13 deaths per 1,000 live births, meaning that about 1 in 76 infants dies before the first birthday. The under-five mortality rate is almost the same with 14 deaths per 1,000 births. The near parity of these rates indicates that most all early childhood deaths take place during the first year of life. Comparison with official estimates of IMRs suggests that this rate has been improving over the past decade. NUTRITION Breastfeeding Practices. Breastfeeding is nearly universal in Moldova: 97 percent of children are breastfed. However the duration of breast-feeding is not long, exclusive breastfeeding is not widely practiced, and bottle-feeding is not uncommon. In terms of the duration of breastfeeding, data show that by age 12-15 months, well over half of children (59 percent) are no longer being breastfed. By age 20-23 months, almost all children have been weaned. Exclusive breastfeeding is not widely practiced and supplementary feeding begins early: 57 percent of breastfed children less than 4 months are exclusively breastfed, and 46 percent under six months are exclusively breastfeed. The remaining breastfed children also consume plain water, water-based liquids or juice, other milk in addition to breast milk, and complimentary foods. Bottle-feeding is fairly widespread in Moldova; almost one-third (29 percent) of infants under 4 months old are fed with a bottle with
Estimated number of persons on July 1, by 5-year age groups and gender, and median age, for Canada, provinces and territories.
The Census Bureau released revised delineations for urban areas on December 29, 2022. The new criteria (contained in this Federal Register Notice) is based primarily on housing unit density measured at the census block level. The minimum qualifying threshold for inclusion as an urban area is an area that contains at least 2,000 housing units or has a population of at least 5,000 persons. It also eliminates the classification of areas as “urban clusters/urbanized areas”. This represents a change from 2010, where urban areas were defined as areas consisting of 50,000 people or more and urban clusters consisted of at least 2,500 people but less than 50,000 people with at least 1,500 people living outside of group quarters. Due to the new population thresholds for urban areas, 36 urban clusters in California are no longer considered urban areas, leaving California with 193 urban areas after the new criteria was implemented.
The State of California experienced an increase of 1,885,884 in the total urban population, or 5.3%. However, the total urban area population as a percentage of the California total population went down from 95% to 94.2%. For more information about the mapped data, download the Excel spreadsheet here.
Please note that some of the 2020 urban areas have different names or additional place names as a result of the inclusion of housing unit counts as secondary naming criteria.
Please note there are four urban areas that cross state boundaries in Arizona and Nevada. For 2010, only the parts within California are displayed on the map; however, the population and housing estimates represent the entirety of the urban areas. For 2020, the population and housing unit estimates pertains to the areas within California only.
Data for this web application was derived from the 2010 and 2020 Censuses (2010 and 2020 Census Blocks, 2020 Urban Areas, and Counties) and the 2016-2020 American Community Survey (2010 -Urban Areas) and can be found at data.census.gov.
For more information about the urban area delineations, visit the Census Bureau's Urban and Rural webpage and FAQ.
To view more data from the State of California Department of Finance, visit the Demographic Research Unit Data Hub.
The Afrobarometer is a comparative series of public attitude surveys that assess African citizen's attitudes to democracy and governance, markets, and civil society, among other topics. The surveys have been undertaken at periodic intervals since 1999. The Afrobarometer's coverage has increased over time. Round 1 (1999-2001) initially covered 7 countries and was later extended to 12 countries. Round 2 (2002-2004) surveyed citizens in 16 countries. Round 3 (2005-2006) 18 countries, Round 4 (2008) 20 countries, Round 5 (2011-2013) 34 countries, Round 6 (2014-2015) 36 countries, and Round 7 (2016-2018) 34 countries. The survey covered 34 countries in Round 8 (2019-2021).
National coverage
Individual
Citizens of Zambia who are 18 years and older
Sample survey data [ssd]
Afrobarometer uses national probability samples designed to meet the following criteria. Samples are designed to generate a sample that is a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of being selected for an interview. They achieve this by:
• using random selection methods at every stage of sampling; • sampling at all stages with probability proportionate to population size wherever possible to ensure that larger (i.e., more populated) geographic units have a proportionally greater probability of being chosen into the sample.
The sampling universe normally includes all citizens age 18 and older. As a standard practice, we exclude people living in institutionalized settings, such as students in dormitories, patients in hospitals, and persons in prisons or nursing homes. Occasionally, we must also exclude people living in areas determined to be inaccessible due to conflict or insecurity. Any such exclusion is noted in the technical information report (TIR) that accompanies each data set.
Sample size and design Samples usually include either 1,200 or 2,400 cases. A randomly selected sample of n=1200 cases allows inferences to national adult populations with a margin of sampling error of no more than +/-2.8% with a confidence level of 95 percent. With a sample size of n=2400, the margin of error decreases to +/-2.0% at 95 percent confidence level.
The sample design is a clustered, stratified, multi-stage, area probability sample. Specifically, we first stratify the sample according to the main sub-national unit of government (state, province, region, etc.) and by urban or rural location.
Area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. Afrobarometer occasionally purposely oversamples certain populations that are politically significant within a country to ensure that the size of the sub-sample is large enough to be analysed. Any oversamples is noted in the TIR.
Sample stages Samples are drawn in either four or five stages:
Stage 1: In rural areas only, the first stage is to draw secondary sampling units (SSUs). SSUs are not used in urban areas, and in some countries they are not used in rural areas. See the TIR that accompanies each data set for specific details on the sample in any given country. Stage 2: We randomly select primary sampling units (PSU). Stage 3: We then randomly select sampling start points. Stage 4: Interviewers then randomly select households. Stage 5: Within the household, the interviewer randomly selects an individual respondent. Each interviewer alternates in each household between interviewing a man and interviewing a woman to ensure gender balance in the sample.
To keep the costs and logistics of fieldwork within manageable limits, eight interviews are clustered within each selected PSU.
Zambia - Sample size: 1,200 - Sampling Frame: 2020 population projections based on the 2016 Bureau of Statistics Population Census - Sample design: Nationally representative, random, clustered, stratified, multi-stage area probability sample - Stratification: District and urban/peri-urban/rural location - Stages: PSUs (from strata), start points, households, respondents - PSU selection: Probability Proportionate to Population Size (PPPS) - Cluster size: 8 households per PSU - Household selection: Randomly selected start points, followed by walk pattern using 5/10 interval - Respondent selection: Gender quota filled by alternating interviews between men and women; respondents of appropriate gender listed, after which computer randomly selects individual
Face-to-face [f2f]
The Round 8 questionnaire has been developed by the Questionnaire Committee after reviewing the findings and feedback obtained in previous Rounds, and securing input on preferred new topics from a host of donors, analysts, and users of the data.
The questionnaire consists of three parts: 1. Part 1 captures the steps for selecting households and respondents, and includes the introduction to the respondent and (pp.1-4). This section should be filled in by the Fieldworker. 2. Part 2 covers the core attitudinal and demographic questions that are asked by the Fieldworker and answered by the Respondent (Q1 – Q100). 3. Part 3 includes contextual questions about the setting and atmosphere of the interview, and collects information on the Fieldworker. This section is completed by the Fieldworker (Q101 – Q123).
Outcome rates: - Contact rate: 93% - Cooperation rate: 74% - Refusal rate: 9% - Response rate: 69%
The sample size yields country-level results with a margin of error of +/-3 percentage points at a 95% confidence level.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The 1993 Turkish Demographic and Health Survey (TDHS) is a nationally representative survey of ever-married women less than 50 years old. The survey was designed to provide information on fertility levels and trends, infant and child mortality, family planning, and maternal and child health. The TDHS was conducted by the Hacettepe University Institute of Population Studies under a subcontract through an agreement between the General Directorate of Mother and Child Health and Family Planning, Ministry of Health and Macro International Inc. of Calverton, Maryland. Fieldwork was conducted from August to October 1993. Interviews were carried out in 8,619 households and with 6,519 women. The Turkish Demographic and Health Survey (TDHS) is a national sample survey of ever-married women of reproductive ages, designed to collect data on fertility, marriage patterns, family planning, early age mortality, socioeconomic characteristics, breastfeeding, immunisation of children, treatment of children during episodes of illness, and nutritional status of women and children. The TDHS, as part of the international DHS project, is also the latest survey in a series of national-level population and health surveys in Turkey, which have been conducted by the Institute of Population Studies, Haeettepe University (HIPS). More specifically, the objectives of the TDHS are to: Collect data at the national level that will allow the calculation of demographic rates, particularly fertility and childhood mortality rates; Analyse the direct and indirect factors that determine levels and trends in fertility and childhood mortality; Measure the level of contraceptive knowledge and practice by method, region, and urban- rural residence; Collect data on mother and child health, including immunisations, prevalence and treatment of diarrhoea, acute respiratory infections among children under five, antenatal care, assistance at delivery, and breastfeeding; Measure the nutritional status of children under five and of their mothers using anthropometric measurements. The TDHS information is intended to assist policy makers and administrators in evaluating existing programs and in designing new strategies for improving family planning and health services in Turkey. MAIN RESULTS Fertility in Turkey is continuing to decline. If Turkish women maintain current fertility rates during their reproductive years, they can expect to have all average of 2.7 children by the end of their reproductive years. The highest fertility rate is observed for the age group 20-24. There are marked regional differences in fertility rates, ranging from 4.4 children per woman in the East to 2.0 children per woman in the West. Fertility also varies widely by urban-rural residence and by education level. A woman living in rural areas will have almost one child more than a woman living in an urban area. Women who have no education have almost one child more than women who have a primary-level education and 2.5 children more than women with secondary-level education. The first requirement of success ill family planning is the knowledge of family planning methods. Knowledge of any method is almost universal among Turkish women and almost all those who know a method also know the source of the method. Eighty percent of currently married women have used a method sometime in their life. One third of currently married women report ever using the IUD. Overall, 63 percent of currently married women are currently using a method. The majority of these women are modern method users (35 percent), but a very substantial proportion use traditional methods (28 percent). the IUD is the most commonly used modern method (I 9 percent), allowed by the condom (7 percent) and the pill (5 percent). Regional differences are substantial. The level of current use is 42 percent in tile East, 72 percent in tile West and more than 60 percent in tile other three regions. "File common complaints about tile methods are side effects and health concerns; these are especially prevalent for the pill and IUD. One of the major child health indicators is immunisation coverage. Among children age 12-23 months, the coverage rates for BCG and the first two doses of DPT and polio were about 90 percent, with most of the children receiving those vaccines before age one. The results indicate that 65 percent of the children had received all vaccinations at some time before the survey. On a regional basis, coverage is significantly lower in the Eastern region (41 percent), followed by the Northern and Central regions (61 percent and 65 percent, respectively). Acute respiratory infections (ARI) and diarrhea are the two most prevalent diseases of children under age five in Turkey. In the two weeks preceding the survey, the prevalence of ARI was 12 percent and the prevalence of diarrhea was 25 percent for children under age five. Among children with diarrhea 56 percent were given more fluids than usual. Breastfeeding in Turkey is widespread. Almost all Turkish children (95 percent) are breastfed for some period of time. The median duration of breastfeeding is 12 months, but supplementary foods and liquids are introduced at an early age. One-third of children are being given supplementary food as early as one month of age and by the age of 2-3 months, half of the children are already being given supplementary foods or liquids. By age five, almost one-filth of children arc stunted (short for their age), compared to an international reference population. Stunting is more prevalent in rural areas, in the East, among children of mothers with little or no education, among children who are of higher birth order, and among those born less than 24 months after a prior birth. Overall, wasting is not a problem. Two percent of children are wasted (thin for their height), and I I percent of children under five are underweight for their age. The survey results show that obesity is d problem among mothers. According to Body Mass Index (BMI) calculations, 51 percent of mothers are overweight, of which 19 percent are obese.
Distribution of the population aged 25 to 64 with total Aboriginal identity, by highest certificate, diploma or degree and age group, Canada. This table focuses on total aboriginal identity only. This table is included in Section D: Postsecondary education: Educational attainment of the population aged 25 to 64 of the Pan Canadian Education Indicators Program (PCEIP). PCEIP draws from a wide variety of data sources to provide information on the school-age population, elementary, secondary and postsecondary education, transitions, and labour market outcomes. The program presents indicators for all of Canada, the provinces, the territories, as well as selected international comparisons and comparisons over time. PCEIP is an ongoing initiative of the Canadian Education Statistics Council, a partnership between Statistics Canada and the Council of Ministers of Education, Canada that provides a set of statistical measures on education systems in Canada.
Round 1 of the Afrobarometer survey was conducted from July 1999 through June 2001 in 12 African countries, to solicit public opinion on democracy, governance, markets, and national identity. The full 12 country dataset released was pieced together out of different projects, Round 1 of the Afrobarometer survey,the old Southern African Democracy Barometer, and similar surveys done in West and East Africa.
The 7 country dataset is a subset of the Round 1 survey dataset, and consists of a combined dataset for the 7 Southern African countries surveyed with other African countries in Round 1, 1999-2000 (Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia and Zimbabwe). It is a useful dataset because, in contrast to the full 12 country Round 1 dataset, all countries in this dataset were surveyed with the identical questionnaire
Botswana Lesotho Malawi Namibia South Africa Zambia Zimbabwe
Basic units of analysis that the study investigates include: individuals and groups
Sample survey data [ssd]
A new sample has to be drawn for each round of Afrobarometer surveys. Whereas the standard sample size for Round 3 surveys will be 1200 cases, a larger sample size will be required in societies that are extremely heterogeneous (such as South Africa and Nigeria), where the sample size will be increased to 2400. Other adaptations may be necessary within some countries to account for the varying quality of the census data or the availability of census maps.
The sample is designed as a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of selection for interview. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible. A randomly selected sample of 1200 cases allows inferences to national adult populations with a margin of sampling error of no more than plus or minus 2.5 percent with a confidence level of 95 percent. If the sample size is increased to 2400, the confidence interval shrinks to plus or minus 2 percent.
Sample Universe
The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.
What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.
Sample Design
The sample design is a clustered, stratified, multi-stage, area probability sample.
To repeat the main sampling principle, the objective of the design is to give every sample element (i.e. adult citizen) an equal and known chance of being chosen for inclusion in the sample. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible.
In a series of stages, geographically defined sampling units of decreasing size are selected. To ensure that the sample is representative, the probability of selection at various stages is adjusted as follows:
The sample is stratified by key social characteristics in the population such as sub-national area (e.g. region/province) and residential locality (urban or rural). The area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. And the urban/rural stratification is a means to make sure that these localities are represented in their correct proportions. Wherever possible, and always in the first stage of sampling, random sampling is conducted with probability proportionate to population size (PPPS). The purpose is to guarantee that larger (i.e., more populated) geographical units have a proportionally greater probability of being chosen into the sample. The sampling design has four stages
A first-stage to stratify and randomly select primary sampling units;
A second-stage to randomly select sampling start-points;
A third stage to randomly choose households;
A final-stage involving the random selection of individual respondents
We shall deal with each of these stages in turn.
STAGE ONE: Selection of Primary Sampling Units (PSUs)
The primary sampling units (PSU's) are the smallest, well-defined geographic units for which reliable population data are available. In most countries, these will be Census Enumeration Areas (or EAs). Most national census data and maps are broken down to the EA level. In the text that follows we will use the acronyms PSU and EA interchangeably because, when census data are employed, they refer to the same unit.
We strongly recommend that NIs use official national census data as the sampling frame for Afrobarometer surveys. Where recent or reliable census data are not available, NIs are asked to inform the relevant Core Partner before they substitute any other demographic data. Where the census is out of date, NIs should consult a demographer to obtain the best possible estimates of population growth rates. These should be applied to the outdated census data in order to make projections of population figures for the year of the survey. It is important to bear in mind that population growth rates vary by area (region) and (especially) between rural and urban localities. Therefore, any projected census data should include adjustments to take such variations into account.
Indeed, we urge NIs to establish collegial working relationships within professionals in the national census bureau, not only to obtain the most recent census data, projections, and maps, but to gain access to sampling expertise. NIs may even commission a census statistician to draw the sample to Afrobarometer specifications, provided that provision for this service has been made in the survey budget.
Regardless of who draws the sample, the NIs should thoroughly acquaint themselves with the strengths and weaknesses of the available census data and the availability and quality of EA maps. The country and methodology reports should cite the exact census data used, its known shortcomings, if any, and any projections made from the data. At minimum, the NI must know the size of the population and the urban/rural population divide in each region in order to specify how to distribute population and PSU's in the first stage of sampling. National investigators should obtain this written data before they attempt to stratify the sample.
Once this data is obtained, the sample population (either 1200 or 2400) should be stratified, first by area (region/province) and then by residential locality (urban or rural). In each case, the proportion of the sample in each locality in each region should be the same as its proportion in the national population as indicated by the updated census figures.
Having stratified the sample, it is then possible to determine how many PSU's should be selected for the country as a whole, for each region, and for each urban or rural locality.
The total number of PSU's to be selected for the whole country is determined by calculating the maximum degree of clustering of interviews one can accept in any PSU. Because PSUs (which are usually geographically small EAs) tend to be socially homogenous we do not want to select too many people in any one place. Thus, the Afrobarometer has established a standard of no more than 8 interviews per PSU. For a sample size of 1200, the sample must therefore contain 150 PSUs/EAs (1200 divided by 8). For a sample size of 2400, there must be 300 PSUs/EAs.
These PSUs should then be allocated proportionally to the urban and rural localities within each regional stratum of the sample. Let's take a couple of examples from a country with a sample size of 1200. If the urban locality of Region X in this country constitutes 10 percent of the current national population, then the sample for this stratum should be 15 PSUs (calculated as 10 percent of 150 PSUs). If the rural population of Region Y constitutes 4 percent of the current national population, then the sample for this stratum should be 6 PSU's.
The next step is to select particular PSUs/EAs using random methods. Using the above example of the rural localities in Region Y, let us say that you need to pick 6 sample EAs out of a census list that contains a total of 240 rural EAs in Region Y. But which 6? If the EAs created by the national census bureau are of equal or roughly equal population size, then selection is relatively straightforward. Just number all EAs consecutively, then make six selections using a table of random numbers. This procedure, known as simple random sampling (SRS), will
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The 2006 Uganda Demographic and Health Survey (UDHS) is a nationally representative survey of 8,531 women age 15-49 and 2,503 men age 15-54. The UDHS is the fourth comprehensive survey conducted in Uganda as part of the worldwide Demographic and Health Surveys (DHS) project. The primary purpose of the UDHS is to furnish policymakers and planners with detailed information on fertility; family planning; infant, child, adult, and maternal mortality; maternal and child health; nutrition; and knowledge of HIV/AIDS and other sexually transmitted infections. In addition, in one in three households selected for the survey, women age 15-49, men age 15-54, and children under age 5 years were weighed and their height was measured. Women, men, and children age 6-59 months in this subset of households were tested for anaemia, and women and children were tested for vitamin A deficiency. The 2006 UDHS is the first DHS survey in Uganda to cover the entire country. The 2006 Uganda Demographic and Health Survey (UDHS) was designed to provide information on demographic, health, and family planning status and trends in the country. Specifically, the UDHS collected information on fertility levels, marriage, sexual activity, fertility preferences, awareness and use of family planning methods, and breastfeeding practices. In addition, data were collected on the nutritional status of mothers and young children; infant, child, adult, and maternal mortality; maternal and child health; awareness and behaviour regarding HIV/AIDS and other sexually transmitted infections; and levels of anaemia and vitamin A deficiency. The 2006 UDHS is a follow-up to the 1988-1989, 1995, and 2000-2001 UDHS surveys, which were also implemented by the Uganda Bureau of Statistics (UBOS). The specific objectives of the 2006 UDHS are as follows: To collect data at the national level that will allow the calculation of demographic rates, particularly the fertility and infant mortality rates To analyse the direct and indirect factors that determine the level and trends in fertility and mortality To measure the level of contraceptive knowledge and practice of women and men by method, by urban-rural residence, and by region To collect data on knowledge and attitudes of women and men about sexually transmitted infections and HIV/AIDS, and to evaluate patterns of recent behaviour regarding condom use To assess the nutritional status of children under age five and women by means of anthropometric measurements (weight and height), and to assess child feeding practices To collect data on family health, including immunizations, prevalence and treatment of diarrhoea and other diseases among children under five, antenatal visits, assistance at delivery, and breastfeeding To measure vitamin A deficiency in women and children, and to measure anaemia in women, men, and children To measure key education indicators including school attendance ratios and primary school grade repetition and dropout rates To collect information on the extent of disability To collect information on the extent of gender-based violence. MAIN RESULTS Fertility : Survey results indicate that the total fertility rate (TFR) for the country is 6.7 births per woman. The TFR in urban areas is much lower than in the rural areas (4.4 and 7.1 children, respectively). Kampala, whose TFR is 3.7, has the lowest fertility. Fertility rates in Central 1, Central 2, and Southwest regions are also lower than the national level. Removing four districts from the 2006 data that were not covered in the 20002001 UDHS, the 2006 TFR is 6.5 births per woman, compared with 6.9 from the 2000-2001 UDHS. Education and wealth have a marked effect on fertility, with uneducated mothers having about three more children on average than women with at least some secondary education and women in the lowest wealth quintile having almost twice as many children as women in the highest wealth quintile. Family planning : Overall, knowledge of family planning has remained consistently high in Uganda over the past five years, with 97 percent of all women and 98 percent of all men age 15-49 having heard of at least one method of contraception. Pills, injectables, and condoms are the most widely known modern methods among both women and men. Maternal health : Ninety-four percent of women who had a live birth in the five years preceding the survey received antenatal care from a skilled health professional for their last birth. These results are comparable to the 2000-2001 UDHS. Only 47 percent of women make four or more antenatal care visits during their entire pregnancy, an improvement from 42 percent in the 2000-2001 UDHS. The median duration of pregnancy for the first antenatal visit is 5.5 months, indicating that Ugandan women start antenatal care at a relatively late stage in pregnancy. Child health : Forty-six percent of children age 12-23 months have been fully vaccinated. Over nine in ten (91 percent) have received the BCG vaccination, and 68 percent have been vaccinated against measles. The coverage for the first doses of DPT and polio is relatively high (90 percent for each). However, only 64 percent go on to receive the third dose of DPT, and only 59 percent receive their third dose of polio vaccine. There are notable improvements in vaccination coverage since the 2000-2001 UDHS. The percentage of children age 12-23 months fully vaccinated at the time of the survey increased from 37 percent in 2000-2001 to 44 percent in 2006. The percentage who had received none of the six basic vaccinations decreased from 13 percent in 2000-2001 to 8 percent in 2006. Malaria : The 2006 UDHS gathered information on the use of mosquito nets, both treated and untreated. The data show that only 34 percent of households in Uganda own a mosquito net, with 16 percent of households owning an insecticide-treated net (ITN). Only 22 percent of children under five slept under a mosquito net on the night before the interview, while a mere 10 percent slept under an ITN. Breastfeeding and nutrition : In Uganda, almost all children are breastfed at some point. However, only six in ten children under the age of 6 months are exclusively breast-fed. HIV/AIDS AND stis : Knowledge of AIDS is very high and widespread in Uganda. In terms of HIV prevention strategies, women and men are most aware that the chances of getting the AIDS virus can be reduced by limiting sex to one uninfected partner who has no other partners (89 percent of women and 95 percent of men) or by abstaining from sexual intercourse (86 percent of women and 93 percent of men). Knowledge of condoms and the role they can play in preventing transmission of the AIDS virus is not quite as high (70 percent of women and 84 percent of men). Orphanhood and vulnerability : Almost one in seven children under age 18 is orphaned (15 percent), that is, one or both parents are dead. Only 3 percent of children under the age of 18 have lost both biological parents. Women's status and gender violence : Data for the 2006 UDHS show that women in Uganda are generally less educated than men. Although the gender gap has narrowed in recent years, 19 percent of women age 15-49 have never been to school, compared with only 5 percent of men in the same age group. Mortality : At current mortality levels, one in every 13 Ugandan children dies before reaching age one, while one in every seven does not survive to the fifth birthday. After removing districts not covered in the 2000-2001 UDHS from the 2006 data, findings show that infant mortality has declined from 89 deaths per 1,000 live births in the 2000-2001 UDHS to 75 in the 2006 UDHS. Under-five mortality has declined from 158 deaths per 1,000 live births to 137.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table contains 2394 series, with data for years 1991 - 1991 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Population group (19 items: Entire cohort; Income adequacy quintile 1 (lowest);Income adequacy quintile 2;Income adequacy quintile 3 ...), Age (14 items: At 25 years; At 30 years; At 40 years; At 35 years ...), Sex (3 items: Both sexes; Females; Males ...), Characteristics (3 items: Life expectancy; High 95% confidence interval; life expectancy; Low 95% confidence interval; life expectancy ...).