17 datasets found
  1. a

    Languages and English Ability - Seattle Neighborhoods

    • data-seattlecitygis.opendata.arcgis.com
    • data.seattle.gov
    • +4more
    Updated Feb 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Seattle ArcGIS Online (2024). Languages and English Ability - Seattle Neighborhoods [Dataset]. https://data-seattlecitygis.opendata.arcgis.com/datasets/SeattleCityGIS::languages-and-english-ability-seattle-neighborhoods
    Explore at:
    Dataset updated
    Feb 22, 2024
    Dataset authored and provided by
    City of Seattle ArcGIS Online
    Area covered
    Seattle
    Description

    Table from the American Community Survey (ACS) 5-year series on languages spoken and English ability related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes B16004 Age by Language Spoken at Home by Ability to Speak English, C16002 Household Language by Household Limited English-Speaking Status. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.Table created for and used in the Neighborhood Profiles application.Vintages: 2023ACS Table(s): B16004, C16002Data downloaded from: Census Bureau's Explore Census Data The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  2. V

    Virginia Population by Language Spoken at Home by Ability to Speak English...

    • data.virginia.gov
    csv
    Updated Jan 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of INTERMODAL Planning and Investment (2025). Virginia Population by Language Spoken at Home by Ability to Speak English by Census Block Group (ACS 5-Year) [Dataset]. https://data.virginia.gov/dataset/virginia-population-by-language-spoken-at-home-by-ability-to-speak-english-by-census-block-group
    Explore at:
    csv(28410756)Available download formats
    Dataset updated
    Jan 3, 2025
    Dataset authored and provided by
    Office of INTERMODAL Planning and Investment
    License

    Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
    License information was derived automatically

    Description

    2013-2023 Virginia Population by Age by Language Spoken at Home by Ability to Speak English for the Population 5 years and over by Census Block Group. Contains estimates and margins of error.

    U.S. Census Bureau; American Community Survey, American Community Survey 5-Year Estimates, Table B16004 Data accessed from: Census Bureau's API for American Community Survey (https://www.census.gov/data/developers/data-sets.html)

    The United States Census Bureau's American Community Survey (ACS): -What is the American Community Survey? (https://www.census.gov/programs-surveys/acs/about.html) -Geography & ACS (https://www.census.gov/programs-surveys/acs/geography-acs.html) -Technical Documentation (https://www.census.gov/programs-surveys/acs/technical-documentation.html)

    Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section. (https://www.census.gov/programs-surveys/acs/technical-documentation/code-lists.html)

    Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section. (https://www.census.gov/acs/www/methodology/sample_size_and_data_quality/)

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties.

    Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation https://www.census.gov/programs-surveys/acs/technical-documentation.html). The effect of nonsampling error is not represented in these tables.

  3. Percent of Population with Limited Ability to Speak English

    • dallas-census-datahub-dallasgis.hub.arcgis.com
    • coronavirus-resources.esri.com
    • +1more
    Updated Jul 3, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2019). Percent of Population with Limited Ability to Speak English [Dataset]. https://dallas-census-datahub-dallasgis.hub.arcgis.com/items/78a668915cbc4bf983330608f3d687aa
    Explore at:
    Dataset updated
    Jul 3, 2019
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    This map shows the percent of population with a limited ability to speak English by census tract. Search to your community and investigate the top language needs in nearby census tracts.*DATA AS OF 2011-2015*Data Source: U.S. Census Bureau's American Community Survey 5-year estimates, 2011-2015, Table B16001.Complete list of all languages available in this data set (29):Spanish or Spanish Creole; French (including Patois, Cajun); French Creole; Italian; Portuguese; German; Yiddish; Greek; Russian; Polish; Serbo-Croatian; Armenian; Persian; Gujarati; Hindi; Urdu; Chinese; Japanese; Korean; Mon-Khmer, Cambodian; Hmong; Thai; Laotian; Vietnamese; Tagalog; Navajo; Hungarian; Arabic; Hebrew. Those who have limited English ability and speak other languages are included in the percentage depicted in the map, but other languages will not appear in the ranked list or in the table.Accompanying feature layer and viewing app are also available.

  4. a

    American and Alaska Native population that speaks English and Native...

    • catalog.epscor.alaska.edu
    Updated Dec 17, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). American and Alaska Native population that speaks English and Native language 2010-2014 [Dataset]. https://catalog.epscor.alaska.edu/dataset/american-and-alaska-native-population-that-speaks-english-and-native-language-2010-2014
    Explore at:
    Dataset updated
    Dec 17, 2019
    Area covered
    Alaska
    Description

    This data was made as part of the Alaska Experimental Program to Stimulate Competitive Research (EPSCoR) Northern Test Case. The data can be used to look at language skills and retention over time. This data is the percent of the American and Alaska Native population that speaks only Other. Other languages include: Navajo, Other Native American languages, Hungarian, Arabic, Hebrew, African languages, All other languages. We chose only Natives because our interest is Alaska Natives. However, data for places like Anchorage might have a large other Native presence which should be examined. Source: American Community Survey (ACS) Extent: Data is for all communities in Alaska. Notes: We chose only Natives because our interest is Alaska Natives. However, data for places like Anchorage might have a large other Native presence which should be examined.

  5. n

    Data from: Language Spoken at Home

    • linc.osbm.nc.gov
    • ncosbm.opendatasoft.com
    csv, excel, geojson +1
    Updated Oct 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Language Spoken at Home [Dataset]. https://linc.osbm.nc.gov/explore/dataset/language-spoken-at-home/
    Explore at:
    geojson, csv, json, excelAvailable download formats
    Dataset updated
    Oct 3, 2024
    Description

    Language spoken at home and the ability to speak English for the population age 5 and over as reported by the US Census Bureau's, American Community Survey (ACS) 5-year estimates table C16001.

  6. Language Spoken at Home 2018-2022 - COUNTIES

    • hub.arcgis.com
    • covid19-uscensus.hub.arcgis.com
    Updated Feb 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau (2024). Language Spoken at Home 2018-2022 - COUNTIES [Dataset]. https://hub.arcgis.com/maps/5413d242f5ad4855a9b2e8fbe431cbd9
    Explore at:
    Dataset updated
    Feb 5, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    US Census Bureau
    Area covered
    Description

    This layer shows Language Spoken at Home. This is shown by state and county boundaries. This service contains the 2018-2022 release of data from the American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of households with Limited English Speaking Status. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2018-2022ACS Table(s): B16004, DP02, S1601, S1602Data downloaded from: CensusBureau's API for American Community Survey Date of API call: January 18, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the Cartographic Boundaries via US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates, and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico. The Counties (and equivalent) layer contains 3221 records - all counties and equivalent, Washington D.C., and Puerto Rico municipios. See Areas Published. Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes. All of these are rendered in this dataset as null (blank) values.

  7. LANGUAGE SPOKEN AT HOME FOR THE POPULATION 5 YEARS AND OVER IN LIMITED...

    • hub.arcgis.com
    • data.seattle.gov
    • +1more
    Updated Sep 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Seattle ArcGIS Online (2023). LANGUAGE SPOKEN AT HOME FOR THE POPULATION 5 YEARS AND OVER IN LIMITED ENGLISH SPEAKING HOUSEHOLDS (B16003) [Dataset]. https://hub.arcgis.com/datasets/SeattleCityGIS::language-spoken-at-home-for-the-population-5-years-and-over-in-limited-english-speaking-households-b16003/about
    Explore at:
    Dataset updated
    Sep 3, 2023
    Dataset provided by
    https://arcgis.com/
    Authors
    City of Seattle ArcGIS Online
    Description

    Table from the American Community Survey (ACS) B16003 of age by language spoken at home for the population 5 years and over in limited English-speaking households. These are multiple, nonoverlapping vintages of the 5-year ACS estimates of population and housing attributes starting in 2010 shown by the corresponding census tract vintage. Also includes the most recent release annually.King County, Washington census tracts with nonoverlapping vintages of the 5-year American Community Survey (ACS) estimates starting in 2010. Vintage identified in the "ACS Vintage" field.The census tract boundaries match the vintage of the ACS data (currently 2010 and 2020) so please note the geographic changes between the decades. Tracts have been coded as being within the City of Seattle as well as assigned to neighborhood groups called "Community Reporting Areas". These areas were created after the 2000 census to provide geographically consistent neighborhoods through time for reporting U.S. Census Bureau data. This is not an attempt to identify neighborhood boundaries as defined by neighborhoods themselves.Vintages: 2010, 2015, 2020, 2021, 2022, 2023ACS Table(s): B16003Data downloaded from: Census Bureau's Explore Census Data The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  8. a

    Language Spoken at Home - Counties 2015-2019

    • covid19-uscensus.hub.arcgis.com
    • covid19.census.gov
    Updated Mar 20, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau (2021). Language Spoken at Home - Counties 2015-2019 [Dataset]. https://covid19-uscensus.hub.arcgis.com/maps/USCensus::language-spoken-at-home-counties-2015-2019
    Explore at:
    Dataset updated
    Mar 20, 2021
    Dataset authored and provided by
    US Census Bureau
    Area covered
    Description

    This layer shows Language Spoken at Home. This is shown by county boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.
    This layer is symbolized to show the percentage of households with Limited English Speaking Status. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2015-2019ACS Table(s): B16004, DP02, S1601, S1602Data downloaded from: Census Bureau's API for American Community Survey Date of API call: February 10, 2021National Figures: data.census.gov The United States Census Bureau's American Community Survey (ACS): About the SurveyGeography & ACSTechnical Documentation News & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes.
    All of these are rendered in this dataset as null (blank) values.

  9. a

    People Speaking English Less Than "Very Well" GIS

    • hub.arcgis.com
    • data-sccphd.opendata.arcgis.com
    Updated Aug 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Santa Clara County Public Health (2022). People Speaking English Less Than "Very Well" GIS [Dataset]. https://hub.arcgis.com/maps/sccphd::people-speaking-english-less-than-very-well-gis
    Explore at:
    Dataset updated
    Aug 24, 2022
    Dataset authored and provided by
    Santa Clara County Public Health
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Table contains count and percentage of county residents ages 5 years and older who speak English less than "very well". Data are presented at county, city, zip code and census tract level. Data are presented for zip codes (ZCTAs) fully within the county. Source: U.S. Census Bureau, 2016-2020 American Community Survey 5-year estimates, Table S1601; data accessed on August 23, 2022 from https://api.census.gov. The 2020 Decennial geographies are used for data summarization.METADATA:notes (String): Lists table title, notes, sourcesgeolevel (String): Level of geographyGEOID (Numeric): Geography IDNAME (String): Name of geographypop_5plus (Numeric): Population ages 5 years and olderspeak_Eng_lt_very_well (Numeric): Number of people ages 5 and older who speak English less than "very well"pct_speak_Eng_lt_very_well (Numeric): Percent of people ages 5 and older who speak English less than "very well"

  10. d

    Demographics

    • catalog.data.gov
    • datasets.ai
    • +3more
    Updated Nov 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lake County Illinois GIS (2024). Demographics [Dataset]. https://catalog.data.gov/dataset/demographics-0be32
    Explore at:
    Dataset updated
    Nov 22, 2024
    Dataset provided by
    Lake County Illinois GIS
    Description

    Lake County, Illinois Demographic Data. Explanation of field attributes: Total Population – The entire population of Lake County. White – Individuals who are of Caucasian race. This is a percent.African American – Individuals who are of African American race. This is a percent.Asian – Individuals who are of Asian race. This is a percent. Hispanic – Individuals who are of Hispanic ethnicity. This is a percent. Does not Speak English- Individuals who speak a language other than English in their household. This is a percent. Under 5 years of age – Individuals who are under 5 years of age. This is a percent. Under 18 years of age – Individuals who are under 18 years of age. This is a percent. 18-64 years of age – Individuals who are between 18 and 64 years of age. This is a percent. 65 years of age and older – Individuals who are 65 years old or older. This is a percent. Male – Individuals who are male in gender. This is a percent. Female – Individuals who are female in gender. This is a percent. High School Degree – Individuals who have obtained a high school degree. This is a percent. Associate Degree – Individuals who have obtained an associate degree. This is a percent. Bachelor’s Degree or Higher – Individuals who have obtained a bachelor’s degree or higher. This is a percent. Utilizes Food Stamps – Households receiving food stamps/ part of SNAP (Supplemental Nutrition Assistance Program). This is a percent. Median Household Income - A median household income refers to the income level earned by a given household where half of the homes in the area earn more and half earn less. This is a dollar amount. No High School – Individuals who have not obtained a high school degree. This is a percent. Poverty – Poverty refers to families and people whose income in the past 12 months is below the poverty level. This is a percent.

  11. ACS English Ability and Linguistic Isolation Variables - Boundaries

    • covid-gagio.hub.arcgis.com
    • covid-hub.gio.georgia.gov
    • +3more
    Updated Nov 14, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). ACS English Ability and Linguistic Isolation Variables - Boundaries [Dataset]. https://covid-gagio.hub.arcgis.com/maps/0c4d1027de6b4d6eb896d95f1240e1aa
    Explore at:
    Dataset updated
    Nov 14, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows English ability and linguistic isolation by age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Linguistically isolated households are households in which no one 14 and over speak English only or speaks a language other than English at home and speaks English very well. This layer is symbolized to show the percent of adult (18+) population who have limited English ability. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B16003, B16004 (Not all lines of ACS table B16004 are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  12. Symbolic Institutional Traps: Language Regimes, Legal Legacy, and...

    • zenodo.org
    bin
    Updated Apr 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Scott Brown; Scott Brown (2025). Symbolic Institutional Traps: Language Regimes, Legal Legacy, and Organizational Constraint in Postcolonial Economies [Dataset]. http://doi.org/10.5281/zenodo.15285179
    Explore at:
    binAvailable download formats
    Dataset updated
    Apr 26, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Scott Brown; Scott Brown
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    README: Symbolic Institutional Traps and the Liability of Foreignness

    Scott M. Brown (University of Puerto Rico)
    Email: scott.brown@upr.edu
    Data DOI: 10.5281/zenodo.15050209

    Overview

    This project empirically tests how language regimes embedded in legal and administrative systems create institutional traps that constrain multinational enterprise (MNE) operations and economic integration.
    The study combines national and subnational data across four key datasets to measure how symbolic misalignment (such as monolingualism in non-commercial languages) affects regulatory quality, business formation, and workforce access.

    📂 Datasets

    You must upload the following four files into your Google Colab session before running the code:

    Uploaded FileDescription
    /content/2020_Rankings.xlsxWorld Bank Ease of Doing Business (EODB) — Global regulatory efficiency indicators (2020 Edition)
    /content/DBNA 2022 Rank and Scores.xlsxDoing Business North America (DBNA 2022) — City-level institutional performance across 83 U.S. cities
    /content/Spanish_Speakers_All_States.xlsxU.S. Census American Community Survey (ACS) — State-level Spanish-speaking and English proficiency data
    /content/wgidataset.xlsxWorld Governance Indicators (WGI) — Governance quality measures (Regulatory Quality, Government Effectiveness, etc.)

    📋 How to Run the Study

    1. Open Google Colab.

    2. Upload the four Excel files listed above.

    3. Copy and paste the Python code provided below into a Colab notebook cell.

    4. Run the code to automatically load the datasets, clean the data, and estimate key regression models.

    🚀 Required Python Code

    python
    # --- 0. Imports ---
    import pandas as pd
    import statsmodels.api as sm
    import statsmodels.formula.api as smf


    # --- 1. Load Clean Datasets ---
    dbna = pd.read_excel('/content/DBNA 2022 Rank and Scores.xlsx')
    acs = pd.read_excel('/content/Spanish_Speakers_All_States.xlsx')
    wgi = pd.read_excel('/content/wgidataset.xlsx') # Optional: Governance analysis

    # --- 2. Standardize Column Names ---
    dbna.columns = dbna.columns.str.strip().str.replace(' ', '_')
    acs.columns = acs.columns.str.strip().str.replace(' ', '_')
    wgi.columns = wgi.columns.str.strip().str.replace(' ', '_')

    # --- 3. Merge Datasets ---
    # Merge DBNA and ACS on 'State'
    merged_dbna = dbna.merge(acs, on='State', how='left')

    # --- 4. Regressions: Language vs Institutional Outcomes ---

    # H1: Language (% Spanish) and Starting a Business Score
    model1 = smf.ols('Starting_a_Business_Score ~ Percent_Spanish_Speakers', data=merged_dbna).fit()
    print(" Regression: Starting a Business Score ~ Percent Spanish Speakers")
    print(model1.summary())

    # H3: Language (% Spanish) and Land and Space Use Score
    model2 = smf.ols('Land_and_Space_Use_Score ~ Percent_Spanish_Speakers', data=merged_dbna).fit()
    print(" Regression: Land and Space Use Score ~ Percent Spanish Speakers")
    print(model2.summary())

    # H3: Language (% Spanish) and Getting Electricity Score
    model3 = smf.ols('Getting_Electricity_Score ~ Percent_Spanish_Speakers', data=merged_dbna).fit()
    print(" Regression: Getting Electricity Score ~ Percent Spanish Speakers")
    print(model3.summary())

    # H4: Language (% Spanish) and Employing Workers Score
    model4 = smf.ols('Employing_Workers_Score ~ Percent_Spanish_Speakers', data=merged_dbna).fit()
    print(" Regression: Employing Workers Score ~ Percent Spanish Speakers")
    print(model4.summary())

    # --- 5. (Optional) Governance Analysis: Percent Spanish vs. WGI Regulatory Quality ---
    # If WGI includes 'State' or 'Country' to merge, otherwise skip
    # Example assuming WGI has 'Country' to match 'State'

    #wgi_merged = wgi.merge(acs, left_on='Country', right_on='State', how='left')
    #model5 = smf.ols('Regulatory_Quality ~ Percent_Spanish_Speakers', data=wgi_merged).fit()
    #print(" Regression: Regulatory Quality ~ Percent Spanish Speakers")
    #print(model5.summary())

    # --- 6. End ---
    print(" All regressions completed.")

    🧠 Key Concepts

    • Symbolic Institutional Traps: Language regimes act as hidden barriers, complicating regulatory navigation and labor market integration.

    • Symbolic Misalignment: Misfit between administrative languages and global commercial norms raises onboarding costs for MNEs.

    • Institutional Friction: Language encapsulation isolates economies and reduces foreign direct investment (FDI) attractiveness.

    📜 Data Documentation

    Each dataset has been:

    • Cleaned for consistent formatting.

    • Harmonized for cross-dataset integration.

    • Standardized to facilitate reproducible econometric analysis.

    • Full codebooks and metadata are available in the appendix of the research paper.

    ⚡ Notes

    • The EF EPI (English Proficiency) dataset was not uploaded here. If available, further regressions on symbolic distance can be run.

    • If any columns do not match exactly (e.g., different spellings), modify the variable names slightly based on print(dbna.columns).

    📈 Planned Outputs

    The code generates:

    • Regression outputs on how Spanish-speaking prevalence correlates with:

      • Starting a business

      • Ease of Doing Business

      • Regulatory quality

    • Subnational institutional performance differences (Puerto Rico vs. U.S. states).

    🌍 License and Reuse

    • Open Data: CC BY 4.0 License

    • Citation Requested:
      Brown, S.M. (2025). Symbolic Institutional Traps and the Liability of Foreignness: Language Regimes as Hidden Barriers to Multinational Entry. University of Puerto Rico. DOI: 10.5281/zenodo.15050209

  13. g

    Statistics Canada, Population by Language Spoken at Home by Census Division,...

    • geocommons.com
    Updated Jul 3, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brendan (2008). Statistics Canada, Population by Language Spoken at Home by Census Division, Alberta-Canada, 2006 [Dataset]. http://geocommons.com/search.html
    Explore at:
    Dataset updated
    Jul 3, 2008
    Dataset provided by
    Statistics Canada
    Brendan
    Description

    This dataset displays information regarding the language spoken most often at home. This data is available on the Census Division level, and is available from the 2006 Canadian Census. This data was obtained through: Statistics Canada. This data refers to the language spoken most often at home by the individual at the time of the census. Other languages spoken at home on a regular basis were also collected. Included are population figures for the following attributes: Total Population, English, French, Non-Official, English and French, English and Non-Official Language, French and Non-Official Language, and English French and Non-Official Speaking. This data is also broken down by Age Group.

  14. Census of Population and Housing, 1980: Summary Tape File 3B

    • archive.ciser.cornell.edu
    Updated Feb 13, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of the Census (2020). Census of Population and Housing, 1980: Summary Tape File 3B [Dataset]. http://doi.org/10.6077/j5/gwagmn
    Explore at:
    Dataset updated
    Feb 13, 2020
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    Bureau of the Census
    Variables measured
    Individual, HousingUnit
    Description

    This data collection is a component of Summary Tape File (STF) 3, which consists of four sets of data files containing detailed tabulations of the nation's population and housing characteristics produced from the 1980 Census. The STF 3 files contain sample data inflated to represent the total United States population. The files also contain 100-percent counts and unweighted sample counts of persons and housing units. All files in the STF 3 series are identical, containing 321 substantive data variables organized in the form of 150 "tables," as well as standard geographic identification variables. Population items tabulated for each person include demographic data and information on schooling, Spanish origin, language spoken at home and ability to speak English, labor force status in 1979, residency in 1975, number of children ever born, means of transportation to work, current occupation, industry, and 1979 details on occupation, hours worked, and income. Housing items include size and condition of the housing unit as well as information on value, age, water, sewage and heating, number of vehicles, and monthly owner costs (e.g., sum of payments for real estate taxes, property insurance, utilities, and regular mortgage payments). Selected aggregates and medians are also provided. Each dataset in STF 3 provides different geographic coverage. Summary Tape File 3B provides summaries for each 5-digit ZIP-code area within a state, and for 5-digit ZIP-code areas within states that were contained within Standard Metropolitan Statistical Areas (SMSAs), portions of SMSAs, or within counties, county portions, or county equivalents. All persons and housing units in the United States were sampled. Population and housing items include household relationship, sex, race, age, marital status, Hispanic origin, number of units at address, complete plumbing facilities, number of rooms, whether owned or rented, vacancy status, and value for noncondominiums. The Census Bureau's machine-readable data dictionary for STF 3 is also available through CENSUS OF POPULATION AND HOUSING, 1980 [UNITED STATES]: CENSUS SOFTWARE PACKAGE (CENSPAC) VERSION 3.2 WITH STF4 DATA DICTIONARIES (ICPSR 7789), the software package designed specifically by the Census Bureau for use with the 1980 Census data files. (Source: downloaded from ICPSR 7/13/10)

    Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at ICPSR -- https://doi.org/10.3886/ICPSR08318.v1. We highly recommend using the ICPSR version as they made this dataset available in multiple data formats.

  15. LIMITED ENGLISH SPEAKING HOUSEHOLDS (S1602)

    • hub.arcgis.com
    • data.seattle.gov
    • +1more
    Updated Aug 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Seattle ArcGIS Online (2023). LIMITED ENGLISH SPEAKING HOUSEHOLDS (S1602) [Dataset]. https://hub.arcgis.com/maps/SeattleCityGIS::limited-english-speaking-households-s1602
    Explore at:
    Dataset updated
    Aug 22, 2023
    Dataset provided by
    https://arcgis.com/
    Authors
    City of Seattle ArcGIS Online
    Description

    Table from the American Community Survey (ACS) S1602 limited English speaking households (households where no one age 14 and over speaks English "very well"). These are multiple, nonoverlapping vintages of the 5-year ACS estimates of population and housing attributes starting in 2010 shown by the corresponding census tract vintage. Also includes the most recent release annually.King County, Washington census tracts with nonoverlapping vintages of the 5-year American Community Survey (ACS) estimates starting in 2010. Vintage identified in the "ACS Vintage" field.The census tract boundaries match the vintage of the ACS data (currently 2010 and 2020) so please note the geographic changes between the decades. Tracts have been coded as being within the City of Seattle as well as assigned to neighborhood groups called "Community Reporting Areas". These areas were created after the 2000 census to provide geographically consistent neighborhoods through time for reporting U.S. Census Bureau data. This is not an attempt to identify neighborhood boundaries as defined by neighborhoods themselves.Vintages: 2010, 2015, 2020, 2021, 2022, 2023ACS Table(s): S1602Data downloaded from: Census Bureau's Explore Census Data The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  16. ACS Language Spoken at Home Variables - Boundaries

    • hub.arcgis.com
    • atlas-connecteddmv.hub.arcgis.com
    • +1more
    Updated Oct 20, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Language Spoken at Home Variables - Boundaries [Dataset]. https://hub.arcgis.com/maps/527ea2b5ba814c8ca1c34a2945e1b751
    Explore at:
    Dataset updated
    Oct 20, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows language group of language spoken at home by age. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of the population age 5+ who speak Spanish at home. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B16007Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  17. Language Spoken at Home 2017-2021 - STATES

    • mce-data-uscensus.hub.arcgis.com
    • covid19-uscensus.hub.arcgis.com
    • +1more
    Updated Mar 24, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau (2023). Language Spoken at Home 2017-2021 - STATES [Dataset]. https://mce-data-uscensus.hub.arcgis.com/items/06a4d3b8b7d848309afeca3b5d938dd9
    Explore at:
    Dataset updated
    Mar 24, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    US Census Bureau
    Area covered
    Description

    This layer shows Language Spoken at Home. This is shown by state and county boundaries. This service contains the 2017-2021 release of data from the American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of households with Limited English Speaking Status. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2017-2021ACS Table(s): B16004, DP02, S1601, S1602Data downloaded from: CensusBureau's API for American Community Survey Date of API call: February 16, 2023National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the Cartographic Boundaries via US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates, and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico. The Counties (and equivalent) layer contains 3221 records - all counties and equivalent, Washington D.C., and Puerto Rico municipios. See Areas Published. Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes. All of these are rendered in this dataset as null (blank) values.

  18. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
City of Seattle ArcGIS Online (2024). Languages and English Ability - Seattle Neighborhoods [Dataset]. https://data-seattlecitygis.opendata.arcgis.com/datasets/SeattleCityGIS::languages-and-english-ability-seattle-neighborhoods

Languages and English Ability - Seattle Neighborhoods

Explore at:
Dataset updated
Feb 22, 2024
Dataset authored and provided by
City of Seattle ArcGIS Online
Area covered
Seattle
Description

Table from the American Community Survey (ACS) 5-year series on languages spoken and English ability related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes B16004 Age by Language Spoken at Home by Ability to Speak English, C16002 Household Language by Household Limited English-Speaking Status. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.Table created for and used in the Neighborhood Profiles application.Vintages: 2023ACS Table(s): B16004, C16002Data downloaded from: Census Bureau's Explore Census Data The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

Search
Clear search
Close search
Google apps
Main menu