14 datasets found
  1. Educational attainment in the U.S. 1960-2022

    • statista.com
    Updated May 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Educational attainment in the U.S. 1960-2022 [Dataset]. https://www.statista.com/statistics/184260/educational-attainment-in-the-us/
    Explore at:
    Dataset updated
    May 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2022, about 37.7 percent of the U.S. population who were aged 25 and above had graduated from college or another higher education institution, a slight decline from 37.9 the previous year. However, this is a significant increase from 1960, when only 7.7 percent of the U.S. population had graduated from college. Demographics Educational attainment varies by gender, location, race, and age throughout the United States. Asian-American and Pacific Islanders had the highest level of education, on average, while Massachusetts and the District of Colombia are areas home to the highest rates of residents with a bachelor’s degree or higher. However, education levels are correlated with wealth. While public education is free up until the 12th grade, the cost of university is out of reach for many Americans, making social mobility increasingly difficult. Earnings White Americans with a professional degree earned the most money on average, compared to other educational levels and races. However, regardless of educational attainment, males typically earned far more on average compared to females. Despite the decreasing wage gap over the years in the country, it remains an issue to this day. Not only is there a large wage gap between males and females, but there is also a large income gap linked to race as well.

  2. C

    Educational Attainment

    • data.ccrpc.org
    csv
    Updated Oct 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2024). Educational Attainment [Dataset]. https://data.ccrpc.org/dataset/educational-attainment
    Explore at:
    csvAvailable download formats
    Dataset updated
    Oct 16, 2024
    Dataset authored and provided by
    Champaign County Regional Planning Commission
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    Overall educational attainment measures the highest level of education attained by a given individual: for example, an individual counted in the percentage of the measured population with a master’s or professional degree can be assumed to also have a bachelor’s degree and a high school diploma, but they are not counted in the population percentages for those two categories. Overall educational attainment is the broadest education indicator available, providing information about the measured county population as a whole.

    Only members of the population aged 25 and older are included in these educational attainment estimates, sourced from the U.S. Census Bureau American Community Survey (ACS).

    Champaign County has high educational attainment: over 48 percent of the county's population aged 25 or older has a bachelor's degree or graduate or professional degree as their highest level of education. In comparison, the percentage of the population aged 25 or older in the United States and Illinois with a bachelor's degree in 2023 was 21.8% (+/-0.1) and 22.8% (+/-0.2), respectively. The population aged 25 or older in the U.S. and Illinois with a graduate or professional degree in 2022, respectively, was 14.3% (+/-0.1) and 15.5% (+/-0.2).

    Educational attainment data was sourced from the U.S. Census Bureau’s American Community Survey 1-Year Estimates, which are released annually.

    As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

    Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

    For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Educational Attainment for the Population 25 Years and Over.

    Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using data.census.gov; (16 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using data.census.gov; (29 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using data.census.gov; (6 October 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using data.census.gov; (4 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using data.census.gov; (4 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (13 September 2018). U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).

  3. 👨‍👩‍👧 US Country Demographics

    • kaggle.com
    zip
    Updated Aug 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    mexwell (2023). 👨‍👩‍👧 US Country Demographics [Dataset]. https://www.kaggle.com/datasets/mexwell/us-country-demographics
    Explore at:
    zip(343499 bytes)Available download formats
    Dataset updated
    Aug 14, 2023
    Authors
    mexwell
    License

    http://www.gnu.org/licenses/old-licenses/gpl-2.0.en.htmlhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

    Area covered
    United States
    Description

    The following data set is information obtained about counties in the United States from 2010 through 2019 through the United States Census Bureau. Information described in the data includes the age distributions, the education levels, employment statistics, ethnicity percents, houseold information, income, and other miscellneous statistics. (Values are denoted as -1, if the data is not available)

    Data Dictionary

    <...

    KeyList of...CommentExample Value
    CountyStringCounty name"Abbeville County"
    StateStringState name"SC"
    Age.Percent 65 and OlderFloatEstimated percentage of population whose ages are equal or greater than 65 years old are produced for the United States states and counties as well as for the Commonwealth of Puerto Rico and its municipios (county-equivalents for Puerto Rico).22.4
    Age.Percent Under 18 YearsFloatEstimated percentage of population whose ages are under 18 years old are produced for the United States states and counties as well as for the Commonwealth of Puerto Rico and its municipios (county-equivalents for Puerto Rico).19.8
    Age.Percent Under 5 YearsFloatEstimated percentage of population whose ages are under 5 years old are produced for the United States states and counties as well as for the Commonwealth of Puerto Rico and its municipios (county-equivalents for Puerto Rico).4.7
    Education.Bachelor's Degree or HigherFloatPercentage for the people who attended college but did not receive a degree and people who received an associate's bachelor's master's or professional or doctorate degree. These data include only persons 25 years old and over. The percentages are obtained by dividing the counts of graduates by the total number of persons 25 years old and over. Tha data is collected from 2015 to 2019.15.6
    Education.High School or HigherFloatPercentage of people whose highest degree was a high school diploma or its equivalent people who attended college but did not receive a degree and people who received an associate's bachelor's master's or professional or doctorate degree. These data include only persons 25 years old and over. The percentages are obtained by dividing the counts of graduates by the total number of persons 25 years old and over. Tha data is collected from 2015 to 201981.7
    Employment.Nonemployer EstablishmentsIntegerAn establishment is a single physical location at which business is conducted or where services or industrial operations are performed. It is not necessarily identical with a company or enterprise which may consist of one establishment or more. The data was collected from 2018.1416
    Ethnicities.American Indian and Alaska Native AloneFloatEstimated percentage of population having origins in any of the original peoples of North and South America (including Central America) and who maintains tribal affiliation or community attachment. This category includes people who indicate their race as "American Indian or Alaska Native" or report entries such as Navajo Blackfeet Inupiat Yup'ik or Central American Indian groups or South American Indian groups.0.3
    Ethnicities.Asian AloneFloatEstimated percentage of population having origins in any of the original peoples of the Far East Southeast Asia or the Indian subcontinent including for example Cambodia China India Japan Korea Malaysia Pakistan the Philippine Islands Thailand and Vietnam. This includes people who reported detailed Asian responses such as: "Asian Indian " "Chinese " "Filipino " "Korean " "Japanese " "Vietnamese " and "Other Asian" or provide other detailed Asian responses.0.4
    Ethnicities.Black AloneFloatEstimated percentage of population having origins in any of the Black racial groups of Africa. It includes people who indicate their race as "Black or African American " or report entries such as African American Kenyan Nigerian or Haitian.27.6
    Ethnicities.Hispanic or LatinoFloat
  4. A

    Broadband Adoption and Computer Use by year, state, demographic...

    • data.amerigeoss.org
    • data.wu.ac.at
    csv, json, rdf, xml
    Updated Jul 27, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States[old] (2019). Broadband Adoption and Computer Use by year, state, demographic characteristics [Dataset]. https://data.amerigeoss.org/zh_CN/dataset/broadband-adoption-and-computer-use-by-year-state-demographic-characteristics
    Explore at:
    xml, json, rdf, csvAvailable download formats
    Dataset updated
    Jul 27, 2019
    Dataset provided by
    United States[old]
    Description

    This dataset is imported from the US Department of Commerce, National Telecommunications and Information Administration (NTIA) and its "Data Explorer" site. The underlying data comes from the US Census

    1. dataset: Specifies the month and year of the survey as a string, in "Mon YYYY" format. The CPS is a monthly survey, and NTIA periodically sponsors Supplements to that survey.

    2. variable: Contains the standardized name of the variable being measured. NTIA identified the availability of similar data across Supplements, and assigned variable names to ease time-series comparisons.

    3. description: Provides a concise description of the variable.

    4. universe: Specifies the variable representing the universe of persons or households included in the variable's statistics. The specified variable is always included in the file. The only variables lacking universes are isPerson and isHouseholder, as they are themselves the broadest universes measured in the CPS.

    5. A large number of *Prop, *PropSE, *Count, and *CountSE columns comprise the remainder of the columns. For each demographic being measured (see below), four statistics are produced, including the estimated proportion of the group for which the variable is true (*Prop), the standard error of that proportion (*PropSE), the estimated number of persons or households in that group for which the variable is true (*Count), and the standard error of that count (*CountSE).

    DEMOGRAPHIC CATEGORIES

    1. us: The usProp, usPropSE, usCount, and usCountSE columns contain statistics about all persons and households in the universe (which represents the population of the fifty states and the District and Columbia). For example, to see how the prevelance of Internet use by Americans has changed over time, look at the usProp column for each survey's internetUser variable.

    2. age: The age category is divided into five ranges: ages 3-14, 15-24, 25-44, 45-64, and 65+. The CPS only includes data on Americans ages 3 and older. Also note that household reference persons must be at least 15 years old, so the age314* columns are blank for household-based variables. Those columns are also blank for person-based variables where the universe is "isAdult" (or a sub-universe of "isAdult"), as the CPS defines adults as persons ages 15 or older. Finally, note that some variables where children are technically in the univese will show zero values for the age314* columns. This occurs in cases where a variable simply cannot be true of a child (e.g. the workInternetUser variable, as the CPS presumes children under 15 are not eligible to work), but the topic of interest is relevant to children (e.g. locations of Internet use).

    3. work: Employment status is divided into "Employed," "Unemployed," and "NILF" (Not in the Labor Force). These three categories reflect the official BLS definitions used in official labor force statistics. Note that employment status is only recorded in the CPS for individuals ages 15 and older. As a result, children are excluded from the universe when calculating statistics by work status, even if they are otherwise considered part of the universe for the variable of interest.

    4. income: The income category represents annual family income, rather than just an individual person's income. It is divided into five ranges: below $25K, $25K-49,999, $50K-74,999, $75K-99,999, and $100K or more. Statistics by income group are only available in this file for Supplements beginning in 2010; prior to 2010, family income range is available in public use datasets, but is not directly comparable to newer datasets due to the 2010 introduction of the practice of allocating "don't know," "refused," and other responses that result in missing data. Prior to 2010, family income is unkown for approximately 20 percent of persons, while in 2010 the Census Bureau began imputing likely income ranges to replace missing data.

    5. education: Educational attainment is divided into "No Diploma," "High School Grad," "Some College," and "College Grad." High school graduates are considered to include GED completers, and those with some college include community college attendees (and graduates) and those who have attended certain postsecondary vocational or technical schools--in other words, it signifies additional education beyond high school, but short of attaining a bachelor's degree or equivilent. Note that educational attainment is only recorded in the CPS for individuals ages 15 and older. As a result, children are excluded from the universe when calculating statistics by education, even if they are otherwise considered part of the universe for the variable of interest.

    6. sex: "Male" and "Female" are the two groups in this category. The CPS does not currently provide response options for intersex individuals.

    7. race: This category includes "White," "Black," "Hispanic," "Asian," "Am Indian," and "Other" groups. The CPS asks about Hispanic origin separately from racial identification; as a result, all persons identifying as Hispanic are in the Hispanic group, regardless of how else they identify. Furthermore, all non-Hispanic persons identifying with two or more races are tallied in the "Other" group (along with other less-prevelant responses). The Am Indian group includes both American Indians and Alaska Natives.

    8. disability: Disability status is divided into "No" and "Yes" groups, indicating whether the person was identified as having a disability. Disabilities screened for in the CPS include hearing impairment, vision impairment (not sufficiently correctable by glasses), cognitive difficulties arising from physical, mental, or emotional conditions, serious difficulty walking or climbing stairs, difficulty dressing or bathing, and difficulties performing errands due to physical, mental, or emotional conditions. The Census Bureau began collecting data on disability status in June 2008; accordingly, this category is unavailable in Supplements prior to that date. Note that disability status is only recorded in the CPS for individuals ages 15 and older. As a result, children are excluded from the universe when calculating statistics by disability status, even if they are otherwise considered part of the universe for the variable of interest.

    9. metro: Metropolitan status is divided into "No," "Yes," and "Unkown," reflecting information in the dataset about the household's location. A household located within a metropolitan statistical area is assigned to the Yes group, and those outside such areas are assigned to No. However, due to the risk of de-anonymization, the metropolitan area status of certain households is unidentified in public use datasets. In those cases, the Census Bureau has determined that revealing this geographic information poses a disclosure risk. Such households are tallied in the Unknown group.

    10. scChldHome:

  5. Educational Attainment

    • data.ca.gov
    • data.chhs.ca.gov
    • +2more
    csv, html, pdf, xlsx +1
    Updated Nov 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Educational Attainment [Dataset]. https://data.ca.gov/dataset/educational-attainment
    Explore at:
    xlsx, pdf, html, csv, zipAvailable download formats
    Dataset updated
    Nov 7, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This table contains data on the percent of population age 25 and up with a four-year college degree or higher for California, its regions, counties, county subdivisions, cities, towns, and census tracts. Greater educational attainment has been associated with health-promoting behaviors including consumption of fruits and vegetables and other aspects of healthy eating, engaging in regular physical activity, and refraining from excessive consumption of alcohol and from smoking. Completion of formal education (e.g., high school) is a key pathway to employment and access to healthier and higher paying jobs that can provide food, housing, transportation, health insurance, and other basic necessities for a healthy life. Education is linked with social and psychological factors, including sense of control, social standing and social support. These factors can improve health through reducing stress, influencing health-related behaviors and providing practical and emotional support. More information on the data table and a data dictionary can be found in the Data and Resources section. The educational attainment table is part of a series of indicators in the Healthy Communities Data and Indicators Project (HCI) of the Office of Health Equity. The goal of HCI is to enhance public health by providing data, a standardized set of statistical measures, and tools that a broad array of sectors can use for planning healthy communities and evaluating the impact of plans, projects, policy, and environmental changes on community health. The creation of healthy social, economic, and physical environments that promote healthy behaviors and healthy outcomes requires coordination and collaboration across multiple sectors, including transportation, housing, education, agriculture and others. Statistical metrics, or indicators, are needed to help local, regional, and state public health and partner agencies assess community environments and plan for healthy communities that optimize public health. More information on HCI can be found here: https://www.cdph.ca.gov/Programs/OHE/CDPH%20Document%20Library/Accessible%202%20CDPH_Healthy_Community_Indicators1pager5-16-12.pdf

    The format of the educational attainment table is based on the standardized data format for all HCI indicators. As a result, this data table contains certain variables used in the HCI project (e.g., indicator ID, and indicator definition). Some of these variables may contain the same value for all observations.

  6. d

    Demographics for US Census Tracts - 2012 (American Community Survey...

    • catalog.data.gov
    • data.wu.ac.at
    Updated Jul 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Environmental Protection Agency, Office of Research and Development-Sustainable and Healthy Communities Research Program, EnviroAtlas (Point of Contact) (2024). Demographics for US Census Tracts - 2012 (American Community Survey 2008-2012 Derived Summary Tables) [Dataset]. https://catalog.data.gov/dataset/demographics-for-us-census-tracts-2012-american-community-survey-2008-2012-derived-summary-tabl8
    Explore at:
    Dataset updated
    Jul 15, 2024
    Dataset provided by
    U.S. Environmental Protection Agency, Office of Research and Development-Sustainable and Healthy Communities Research Program, EnviroAtlas (Point of Contact)
    Area covered
    United States
    Description

    This map service displays data derived from the 2008-2012 American Community Survey (ACS). Values derived from the ACS and used for this map service include: Total Population, Population Density (per square mile), Percent Minority, Percent Below Poverty Level, Percent Age (less than 5, less than 18, and greater than 64), Percent Housing Units Built Before 1950, Percent (population) 25 years and over (with less than a High School Degree and with a High School Degree), Percent Linguistically Isolated Households, Population of American Indians and Alaskan Natives, Population of American Indians and Alaskan Natives Below Poverty Level, and Percent Low Income Population (Less Than 2X Poverty Level). This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States.

  7. Health Outcomes and Socioeconomic Factors

    • kaggle.com
    zip
    Updated Dec 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). Health Outcomes and Socioeconomic Factors [Dataset]. https://www.kaggle.com/datasets/thedevastator/uncovering-trends-in-health-outcomes-and-socioec/code
    Explore at:
    zip(355475 bytes)Available download formats
    Dataset updated
    Dec 3, 2022
    Authors
    The Devastator
    Description

    Health Outcomes and Socioeconomic Factors

    A Study of US County Data

    By Data Exercises [source]

    About this dataset

    This dataset contains a wealth of health-related information and socio-economic data aggregated from multiple sources such as the American Community Survey, clinicaltrials.gov, and cancer.gov, covering a variety of US counties. Your task is to use this collection of data to build an Ordinary Least Squares (OLS) regression model that predicts the target death rate in each county. The model should incorporate variables related to population size, health insurance coverage, educational attainment levels, median incomes and poverty rates. Additionally you will need to assess linearity between your model parameters; measure serial independence among errors; test for heteroskedasticity; evaluate normality in the residual distribution; identify any outliers or missing values and determine how categories variables are handled; compare models through implementation with k=10 cross validation within linear regressions as well as assessing multicollinearity among model parameters. Examine your results by utilizing statistical agreements such as R-squared values and Root Mean Square Error (RMSE) while also interpreting implications uncovered by your analysis based on health outcomes compared to correlates among demographics surrounding those effected most closely by land structure along geographic boundaries throughout the United States

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset provides data on health outcomes, demographics, and socio-economic factors for various US counties from 2010-2016. It can be used to uncover trends in health outcomes and socioeconomic factors across different counties in the US over a six year period.

    The dataset contains a variety of information including statefips (a two digit code that identifies the state), countyfips (a three digit code that identifies the county), avg household size, avg annual count of cancer cases, average deaths per year, target death rate, median household income, population estimate for 2015, poverty percent study per capita binned income as well as demographic information such as median age of male and female population percent married households adults with no high school diploma adults with high school diploma percentage with some college education bachelor's degree holders among adults over 25 years old employed persons 16 and over unemployed persons 16 and over private coverage available private coverage available alone temporary private coverage available public coverage available public coverage available alone percentages of white black Asian other race married households and birth rate.

    Using this dataset you can build a multivariate ordinary least squares regression model to predict “target_deathrate”. You will also need to implement k-fold (k=10) cross validation to best select your model parameters. Model diagnostics should be performed in order to assess linearity serial independence heteroskedasticity normality multicollinearity etc., while outliers missing values or categorical variables will also have an effect your model selection process. Finally it is important to interpret the resulting models within their context based upon all given factors associated with it such as outliers missing values demographic changes etc., before arriving at a meaningful conclusion which may explain trends in health outcomes and socioeconomic factors found within this dataset

    Research Ideas

    • Analysis of factors influencing target deathrates in different US counties.
    • Prediction of the effects of varying poverty levels on health outcomes in different US counties.
    • In-depth analysis of how various socio-economic factors (e.g., median income, educational attainment, etc.) contribute to overall public health outcomes in US counties

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. -...

  8. Labor Force and Earnings by Educational attainment

    • kaggle.com
    zip
    Updated Nov 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hridesh Kedia (2021). Labor Force and Earnings by Educational attainment [Dataset]. https://www.kaggle.com/hrideshkedia/labor-force-and-earnings-by-educational-attainment
    Explore at:
    zip(3561 bytes)Available download formats
    Dataset updated
    Nov 1, 2021
    Authors
    Hridesh Kedia
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    A striking graph from the Social Security Administration (https://www.ssa.gov/policy/docs/factsheets/at-a-glance/earnings-men-1988-2018.html) shows that median annual earnings for all men above the age of 20 have decreased since 1988: https://www.ssa.gov/policy/docs/factsheets/at-a-glance/earnings-men-1988-2018.svg" alt="">

    I wanted to better understand how educational attainment has played a role in the above trend, and to come up with a model to forecast the future trend for earnings by educational attainment.

    As I began looking at the data from the Bureau of Labor Statistics website, there was a striking trend: the median weekly earnings for all groups of people who did not have a bachelors degree or higher had decreased from 1979 levels, in constant 2020 dollars.

    Content

    I collated data from the US Bureau of Labor Statistics (https://www.bls.gov/webapps/legacy/cpsatab4.htm) and (https://www.bls.gov/cps/cpswktabs.htm) and the US Census Bureau (https://www.census.gov/data/tables/time-series/demo/income-poverty/historical-income-people.html) to create this dataset.

    I have omitted details of gender and race, to solely look at the correlation between educational attainment and median weekly earnings over the years. All of the data is for ages 25 and higher unless otherwise stated in the column header.

    An important note is that all the earnings data are in constant base 2020 dollars. This removes the effects of inflation and makes it possible to compare the numbers over the years.

    The data starts at the year 1960, but unfortunately only overall labor force data, and population percentages of persons with a high school graduation (HSG) and persons with a Bachelors or Higher Degree are available. Median weekly earnings data categorized by educational attainment is available from 1979 onwards, while labor force data i.e., labor force level, labor force participation rate and the employment level by educational attainment is available only from 1992 onwards.

    The only columns that have data from 1960 onwards are: (i) overall labor force level, (ii) civilian non-institutional population level, (iii) overall labor force participation rate, (iv) overall employment level, (v) overall percentage of high school graduates, and (vi) overall percentage of persons with a bachelors degree or higher.

    Some of the columns can be calculated from other columns, for instance the civilian non-institutional population level can be calculated from the labor force participation rate.

    Acknowledgements

    All of this data is from the Bureau of Labor Statistics, and the Census Bureau: https://www.bls.gov/webapps/legacy/cpsatab4.htm , https://www.bls.gov/cps/cpswktabs.htm and https://www.census.gov/data/tables/time-series/demo/income-poverty/historical-income-people.html .

    A big thank you to all those who worked so hard to collect and organize this data.

    Inspiration

    The main question is: what is the best way to generate forecasts for median weekly earnings for each educational attainment level?

  9. t

    3.09 Census ACS Post Secondary Education (detail)

    • open.tempe.gov
    • covid19.tempe.gov
    Updated Dec 12, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2019). 3.09 Census ACS Post Secondary Education (detail) [Dataset]. https://open.tempe.gov/datasets/tempegov::3-09-census-acs-post-secondary-education-detail/about
    Explore at:
    Dataset updated
    Dec 12, 2019
    Dataset authored and provided by
    City of Tempe
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Dataset contains information on Tempeans receiving post-secondary education, licenses, certificates. Data supports City's Achieve65Tempe goal that 65 percent of Tempe’s adult population access post-secondary education, resulting in a certification to an advanced degree by 2030.This page provides data for the Post-Secondary School Achievement Rate performance measure. Information on Tempe residents post-secondary attainment including 2 year degrees, 4 year degrees, and graduate degrees. Data supports City's Achieve65Tempe goal that 65 percent of Tempe’s adult population access post-secondary education, resulting in a certification to an advanced degree by 2030.The performance measure dashboard is available at 3.09 Post-Secondary School Achievement Rate.Additional InformationSource: US Census, Arizona Board of RegentsContact: Marie RaymondContact E-Mail: Marie_Raymond@tempe.govData Source Type: Excel / CSVPreparation Method: Numbers retrieved from US Census and Arizona Board of Regents, then combined into a summary spreadsheet. The supporting data sources are also provided.Publish Frequency: annuallyPublish Method: manualData Dictionary

  10. People without internet

    • kaggle.com
    zip
    Updated Jan 11, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GL_Li (2018). People without internet [Dataset]. https://www.kaggle.com/madaha/people-without-internet
    Explore at:
    zip(61176 bytes)Available download formats
    Dataset updated
    Jan 11, 2018
    Authors
    GL_Li
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    Every Kaggler uses internet. Internet is a necessity in our daily life and many people consider it as a utility like water, electricity and gas. But do you know how many households in the US do not have internet, who are these people, and why they do not have internet?

    The U.S. Census Bureau began asking internet use in American Community Survey (ACS) in 2013, as part of the 2008 Broadband Data Improvement Act, and has published 1-year estimate each year since 2013. The recent 2016 data shows that in many counties, over a quarter of household still do not have internet access.

    Content

    This dataset contains data for counties with population over 65000, compiled from the 2016 ACS 1-year estimate. ACS 1-year estimates only summarize data for large geographic areas over 65000 population. The 2013-2017 ACS 5-year estimate is expected to be published at the end of 2018, which has data of all geographic areas down to block group level. Before that we will use the latest 2016 1-year estimate. It provides sufficient data for us to gain insight into internet use.

    This dataset is created with totalcensus package for R programming. Here are the list of columns:

    • county: name of the county
    • state: abbreviation of the state where the county is in
    • CEOID: geographic identifier for the county
    • lon: longitude of a point inside the county
    • lat: latitude of the point
    • P_total: total population
    • P_white: population of white, single race
    • P_black: population of black, single race
    • P_asian: population of asian, single race
    • P_native: population of native Indians and Alaska natives, single race
    • P_Hawaiian: population of Hawaiian and Pacific Islanders, single race
    • P_other: population of other people, single race
    • P_below_middle_school: population with education at or below 8th grade
    • P_some_high_school: population having some years in high school but without a diploma
    • P_high_school_equivalent: population with high school diploma or equivalent
    • P_some_college: Population having associate degree or some years in college without bachelor degree
    • P_bachelor_and_above: population with bachelor, master, professional, or doctor degrees
    • P_below_poverty: population living below poverty line
    • median_age: median age of population
    • gini_index: gini index
    • median_household_income: median household income
    • median_rent_per_income: median percent of income spent on rent
    • percent_no_internet: percent of household without internet connection

    Acknowledgements

    All data come from 2016 ACS 1-year estimate.

    Inspiration

    The U.S. Census Bureau has published tons of data that are available to public. We can create datasets from these public data to address questions we are interested in.

  11. State Data

    • kaggle.com
    zip
    Updated Dec 27, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    piAI (2019). State Data [Dataset]. https://www.kaggle.com/econdata/state-data
    Explore at:
    zip(2647 bytes)Available download formats
    Dataset updated
    Dec 27, 2019
    Authors
    piAI
    Description

    Context

    In this problem, we will be examining the "state" dataset, which has data from the 1970s on all fifty US states. For each state, the dataset includes the population, per capita income, illiteracy rate, murder rate, high school graduation rate, average number of frost days, area, latitude and longitude, division the state belongs to, region the state belongs to, and two-letter abbreviation.

    Content

    This dataset has 50 observations (one for each US state) and the following 15 variables:

    Population - the population estimate of the state in 1975 Income - per capita income in 1974 Illiteracy - illiteracy rates in 1970, as a percent of the population Life.Exp - the life expectancy in years of residents of the state in 1970 Murder - the murder and non-negligent manslaughter rate per 100,000 population in 1976 HS.Grad - percent of high-school graduates in 1970 Frost - the mean number of days with minimum temperature below freezing from 1931–1960 in the capital or a large city of the state Area - the land area (in square miles) of the state state.abb - a 2-letter abreviation for each state state.area - the area of each state, in square miles x - the longitude of the center of the state y - the latitude of the center of the state state.division - the division each state belongs to (New England, Middle Atlantic, South Atlantic, East South Central, West South Central, East North Central, West North Central, Mountain, or Pacific) state.name - the full names of each state state.region - the region each state belong to (Northeast, South, North Central, or West)

    Acknowledgements

    MITx ANALYTIX

  12. ACS Internet Access by Education Variables - Centroids

    • covid-hub.gio.georgia.gov
    • hub.arcgis.com
    • +1more
    Updated Dec 7, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Internet Access by Education Variables - Centroids [Dataset]. https://covid-hub.gio.georgia.gov/maps/54f6b9d2e9b34d4aa9edefadc6d7f0ae
    Explore at:
    Dataset updated
    Dec 7, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows computer ownership and internet access by education. This is shown by tract, county, and state centroids. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the count of people age 25+ in households with no computer and the percent of the population age 25+ who are high school graduates (includes equivalency) and have some college or associate's degree in households that have no computer. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B28006 Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  13. Insightful & Vast USA Statistics

    • kaggle.com
    zip
    Updated May 19, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Golden Oak Research Group (2018). Insightful & Vast USA Statistics [Dataset]. https://www.kaggle.com/forums/f/6032/insightful-vast-usa-statistics
    Explore at:
    zip(10587625 bytes)Available download formats
    Dataset updated
    May 19, 2018
    Dataset authored and provided by
    Golden Oak Research Group
    Area covered
    United States
    Description

    Very Important

    • Check out the new must-see kernel for this dataset Click Here
    • Make Sure to upvote for more datasets and kernel :D

    Overview:

    Explore the dataset and potentially gain valuable insight into your data science project through interesting features. The dataset was developed for a portfolio optimization graduate project I was working on. The goal was to the monetize risk of company deleveraging by associated with changes in economic data. Applications of the dataset may include. To see the data in action visit my analytics page. Analytics Page & Dashboard and to access all 295,000+ records click here.

    • Mortgage-Backed Securities
    • Geographic Business Investment
    • Real Estate Analysis

    For any questions, you may reach us at research_development@goldenoakresearch.com. For immediate assistance, you may reach me on at 585-626-2965. Please Note: the number is my personal number and email is preferred

    Statistical Themes:

    Note: in total there are 75 fields the following are just themes the fields fall under Home Owner Costs: Sum of utilities, property taxes.

    • Second Mortgage: Households with a second mortgage statistics.
    • Home Equity Loan: Households with a Home equity Loan statistics.
    • Debt: Households with any type of debt statistics.
    • Mortgage Costs: Statistics regarding mortgage payments, home equity loans, utilities and property taxes
    • Home Owner Costs: Sum of utilities, property taxes statistics
    • Gross Rent: Contract rent plus the estimated average monthly cost of utility features
    • Gross Rent as Percent of Income Gross rent as the percent of income very interesting
    • High school Graduation: High school graduation statistics.
    • Population Demographics: Population demographic statistics.
    • Age Demographics: Age demographic statistics.
    • Household Income: Total income of people residing in the household.
    • Family Income: Total income of people related to the householder.

    Sources, if you wish to get the data your self :)

    2012-2016 ACS 5-Year Documentation was provided by the U.S. Census Reports. Retrieved May 2, 2018, from

    Access All 325,258 Location of Our Most Complete Database Ever:

    Providing you the potential to monetize risk and optimize your investment portfolio through quality economic features at unbeatable price. Access all 295,000+ records on an incredibly small scale, see links below for more details:

  14. a

    2018 ACS Demographic & Socio-Economic Data Of USA At Census Tract Level

    • one-health-data-hub-osu-geog.hub.arcgis.com
    Updated May 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    snakka_OSU_GEOG (2024). 2018 ACS Demographic & Socio-Economic Data Of USA At Census Tract Level [Dataset]. https://one-health-data-hub-osu-geog.hub.arcgis.com/datasets/5b67f243e6584ef1986f815932020034
    Explore at:
    Dataset updated
    May 22, 2024
    Dataset authored and provided by
    snakka_OSU_GEOG
    Area covered
    Description

    Data SourcesAmerican Community Survey (ACS):Conducted by: U.S. Census BureauDescription: The ACS is an ongoing survey that provides detailed demographic and socio-economic data on the population and housing characteristics of the United States.Content: The survey collects information on various topics such as income, education, employment, health insurance coverage, and housing costs and conditions.Frequency: The ACS offers more frequent and up-to-date information compared to the decennial census, with annual estimates produced based on a rolling sample of households.Purpose: ACS data is essential for policymakers, researchers, and communities to make informed decisions and address the evolving needs of the population.CDC/ATSDR Social Vulnerability Index (SVI):Created by: ATSDR’s Geospatial Research, Analysis & Services Program (GRASP)Utilized by: CDCDescription: The SVI is designed to identify and map communities that are most likely to need support before, during, and after hazardous events.Content: SVI ranks U.S. Census tracts based on 15 social factors, including unemployment, minority status, and disability, and groups them into four related themes. Each tract receives rankings for each Census variable and for each theme, as well as an overall ranking, indicating its relative vulnerability.Purpose: SVI data provides insights into the social vulnerability of communities at the census tract level, helping public health officials and emergency response planners allocate resources effectively.Utilization and IntegrationBy integrating data from both the ACS and the SVI, this dataset enables an in-depth analysis and understanding of various socio-economic and demographic indicators at the census tract level. This integrated data is valuable for research, policymaking, and community planning purposes, allowing for a comprehensive understanding of social and economic dynamics across different geographical areas in the United States.ApplicationsLocalized Interventions: Facilitates the development of localized interventions to address the needs of vulnerable populations within specific census tracts.Resource Allocation: Assists emergency response planners in allocating resources more effectively based on community vulnerability at the census tract level.Research: Provides a detailed dataset for academic and applied research in socio-economic and demographic studies at a granular census tract level.Community Planning: Supports the planning and development of community programs and initiatives aimed at improving living conditions and reducing vulnerabilities within specific census tract areas.Note: Due to limitations in the data environment, variable names may be truncated. Refer to the provided table for a clear understanding of the variables.CSV Variable NameShapefile Variable NameDescriptionStateNameStateNameName of the stateStateFipsStateFipsState-level FIPS codeState nameStateNameName of the stateCountyNameCountyNameName of the countyCensusFipsCensusFipsCounty-level FIPS codeState abbreviationStateFipsState abbreviationCountyFipsCountyFipsCounty-level FIPS codeCensusFipsCensusFipsCounty-level FIPS codeCounty nameCountyNameName of the countyAREA_SQMIAREA_SQMITract area in square milesE_TOTPOPE_TOTPOPPopulation estimates, 2014-2018 ACSEP_POVEP_POVPercentage of persons below poverty estimateEP_UNEMPEP_UNEMPUnemployment Rate estimateEP_HBURDEP_HBURDHousing cost burdened occupied housing units with annual income less than $75,000EP_UNINSUREP_UNINSURUninsured in the total civilian noninstitutionalized population estimate, 2014-2018 ACSEP_PCIEP_PCIPer capita income estimate, 2014-2018 ACSEP_DISABLEP_DISABLPercentage of civilian noninstitutionalized population with a disability estimate, 2014-2018 ACSEP_SNGPNTEP_SNGPNTPercentage of single parent households with children under 18 estimate, 2014-2018 ACSEP_MINRTYEP_MINRTYPercentage minority (all persons except white, non-Hispanic) estimate, 2014-2018 ACSEP_LIMENGEP_LIMENGPercentage of persons (age 5+) who speak English "less than well" estimate, 2014-2018 ACSEP_MUNITEP_MUNITPercentage of housing in structures with 10 or more units estimateEP_MOBILEEP_MOBILEPercentage of mobile homes estimateEP_CROWDEP_CROWDPercentage of occupied housing units with more people than rooms estimateEP_NOVEHEP_NOVEHPercentage of households with no vehicle available estimateEP_GROUPQEP_GROUPQPercentage of persons in group quarters estimate, 2014-2018 ACSBelow_5_yrBelow_5_yrUnder 5 years: Percentage of Total populationBelow_18_yrBelow_18_yrUnder 18 years: Percentage of Total population18-39_yr18_39_yr18-39 years: Percentage of Total population40-64_yr40_64_yr40-64 years: Percentage of Total populationAbove_65_yrAbove_65_yrAbove 65 years: Percentage of Total populationPop_malePop_malePercentage of total population malePop_femalePop_femalePercentage of total population femaleWhitewhitePercentage population of white aloneBlackblackPercentage population of black or African American aloneAmerican_indianamerican_iPercentage population of American Indian and Alaska native aloneAsianasianPercentage population of Asian aloneHawaiian_pacific_islanderhawaiian_pPercentage population of Native Hawaiian and Other Pacific Islander aloneSome_othersome_otherPercentage population of some other race aloneMedian_tot_householdsmedian_totMedian household income in the past 12 months (in 2019 inflation-adjusted dollars) by household size – total householdsLess_than_high_schoolLess_than_Percentage of Educational attainment for the population less than 9th grades and 9th to 12th grade, no diploma estimateHigh_schoolHigh_schooPercentage of Educational attainment for the population of High school graduate (includes equivalency)Some_collegeSome_collePercentage of Educational attainment for the population of Some college, no degreeAssociates_degreeAssociatesPercentage of Educational attainment for the population of associate degreeBachelor’s_degreeBachelor_sPercentage of Educational attainment for the population of Bachelor’s degreeMaster’s_degreeMaster_s_dPercentage of Educational attainment for the population of Graduate or professional degreecomp_devicescomp_devicPercentage of Household having one or more types of computing devicesInternetInternetPercentage of Household with an Internet subscriptionBroadbandBroadbandPercentage of Household having Broadband of any typeSatelite_internetSatelite_iPercentage of Household having Satellite Internet serviceNo_internetNo_internePercentage of Household having No Internet accessNo_computerNo_computePercentage of Household having No computer

  15. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Educational attainment in the U.S. 1960-2022 [Dataset]. https://www.statista.com/statistics/184260/educational-attainment-in-the-us/
Organization logo

Educational attainment in the U.S. 1960-2022

Explore at:
57 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
May 30, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

In 2022, about 37.7 percent of the U.S. population who were aged 25 and above had graduated from college or another higher education institution, a slight decline from 37.9 the previous year. However, this is a significant increase from 1960, when only 7.7 percent of the U.S. population had graduated from college. Demographics Educational attainment varies by gender, location, race, and age throughout the United States. Asian-American and Pacific Islanders had the highest level of education, on average, while Massachusetts and the District of Colombia are areas home to the highest rates of residents with a bachelor’s degree or higher. However, education levels are correlated with wealth. While public education is free up until the 12th grade, the cost of university is out of reach for many Americans, making social mobility increasingly difficult. Earnings White Americans with a professional degree earned the most money on average, compared to other educational levels and races. However, regardless of educational attainment, males typically earned far more on average compared to females. Despite the decreasing wage gap over the years in the country, it remains an issue to this day. Not only is there a large wage gap between males and females, but there is also a large income gap linked to race as well.

Search
Clear search
Close search
Google apps
Main menu