Facebook
Twitterhttps://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
Facebook
TwitterAs part of an ongoing partnership with the Census Bureau, the National Center for Health Statistics (NCHS) recently added questions to assess the prevalence of post-COVID-19 conditions (long COVID), on the experimental Household Pulse Survey. This 20-minute online survey was designed to complement the ability of the federal statistical system to rapidly respond and provide relevant information about the impact of the coronavirus pandemic in the U.S. Data collection began on April 23, 2020. Beginning in Phase 3.5 (on June 1, 2022), NCHS included questions about the presence of symptoms of COVID that lasted three months or longer. Phase 3.5 will continue with a two-weeks on, two-weeks off collection and dissemination approach. Estimates on this page are derived from the Household Pulse Survey and show the percentage of adults aged 18 and over who a) as a proportion of the U.S. population, the percentage of adults who EVER experienced post-COVID conditions (long COVID). These adults had COVID and had some symptoms that lasted three months or longer; b) as a proportion of adults who said they ever had COVID, the percentage who EVER experienced post-COVID conditions; c) as a proportion of the U.S. population, the percentage of adults who are CURRENTLY experiencing post-COVID conditions. These adults had COVID, had long-term symptoms, and are still experiencing symptoms; d) as a proportion of adults who said they ever had COVID, the percentage who are CURRENTLY experiencing post-COVID conditions; and e) as a proportion of the U.S. population, the percentage of adults who said they ever had COVID.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.This archived public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties.The COVID-19 community levels were developed using a combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days. The COVID-19 community level was determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.Using these data, the COVID-19 community level was classified as low, medium, or high.COVID-19 Community Levels were used to help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.Archived Data Notes:This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022.March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released.March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate.March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset.March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases.March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average).March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior.April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.April 21, 2022: COVID-19 Community Level (CCL) data released for counties in Nebraska for the week of April 21, 2022 have 3 counties identified in the high category and 37 in the medium category. CDC has been working with state officials to verify the data submitted, as other data systems are not providing alerts for substantial increases in disease transmission or severity in the state.May 26, 2022: COVID-19 Community Level (CCL) data released for McCracken County, KY for the week of May 5, 2022 have been updated to correct a data processing error. McCracken County, KY should have appeared in the low community level category during the week of May 5, 2022. This correction is reflect
Facebook
TwitterAnnouncement Beginning October 20, 2022, CDC will report and publish aggregate case and death data from jurisdictional and state partners on a weekly basis rather than daily. As a result, community transmission levels data reported on data.cdc.gov will be updated weekly on Thursdays, typically by 8 PM ET, instead of daily. This public use dataset has 7 data elements reflecting community transmission levels for all available counties. This dataset contains reported daily transmission level at the county level and contains the same values used to display transmission maps on the COVID Data Tracker. Each day, the dataset is appended to contain the most recent day's data. Transmission level is set to low, moderate, substantial, or high using the calculation rules below. Currently, CDC provides the public with two versions of COVID-19 county-level community transmission level data: this dataset with the levels as originally posted (Originally Posted dataset), updated daily with the most recent day’s data, and an historical dataset with the county-level transmission data from January 1, 2021 (Historical Changes dataset). Methods for calculating county level of community transmission indicator The County Level of Community Transmission indicator uses two metrics: (1) total new COVID-19 cases per 100,000 persons in the last 7 days and (2) percentage of positive SARS-CoV-2 diagnostic nucleic acid amplification tests (NAAT) in the last 7 days. For each of these metrics, CDC classifies transmission values as low, moderate, substantial, or high (below and here). If the values for each of these two metrics differ (e.g., one indicates moderate and the other low), then the higher of the two should be used for decision-making. CDC core metrics of and thresholds for community transmission levels of SARS-CoV-2 Total New Case Rate Metric: "New cases per 100,000 persons in the past 7 days" is calculated by adding the number of new cases in the county (or other administrative level) in the last 7 days divided by the population in the county (or other administrative level) and multiplying by 100,000. "New cases per 100,000 persons in the past 7 days" is considered to have a transmission level of Low (0-9.99); Moderate (10.00-49.99); Substantial (50.00-99.99); and High (greater than or equal to 100.00). Test Percent Positivity Metric: "Percentage of positive NAAT in the past 7 days" is calculated by dividing the number of positive tests in the county (or other administrative level) during the last 7 days by the total number of tests conducted over the last 7 days. "Percentage of positive NAAT in the past 7 days" is considered to have a transmission level of Low (less than 5.00); Moderate (5.00-7.99); Substantial (8.00-9.99); and High (greater than or equal to 10.00). If the two metrics suggest different transmission levels, the higher level is selected. Transmission categories include: Low Transmission Threshold: Counties with fewer than 10 total cases per 100,000 population in the past 7 days, and a NAAT percent test positivity in the past 7 days below 5%; Moderate Transmission Threshold: Counties with 10-49 total cases per 100,000 population in the past 7 days or a NAAT test percent positivity in the past 7 days of 5.0-7.99%; Substantial Transmission Threshold: Counties with 50-99 total cases per 100,000 population in the past 7 days or a NAAT test percent positivity in the past 7 days of 8.0-9.99%; High Transmission Threshold: Counties with 100 or more total cases per 100,000
Facebook
Twitterhttps://www.usa.gov/government-workshttps://www.usa.gov/government-works
Note: After May 3, 2024, this dataset will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, hospital capacity, or occupancy data to HHS through CDC’s National Healthcare Safety Network (NHSN). The related CDC COVID Data Tracker site was revised or retired on May 10, 2023.
This dataset represents weekly COVID-19 hospitalization data and metrics aggregated to national, state/territory, and regional levels. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.
Reporting information:
Metric details:
Note: October 27, 2023: Due to a data processing error, reported values for avg_percent_inpatient_beds_occupied_covid_confirmed will appear lower than previously reported values by an average difference of less than 1%. Therefore, previously reported values for avg_percent_inpatient_beds_occupied_covid_confirmed may have been overestimated and should be interpreted with caution.
October 27, 2023: Due to a data processing error, reported values for abs_chg_avg_percent_inpatient_beds_occupied_covid_confirmed will differ from previously reported values by an average absolute difference of less than 1%. Therefore, previously reported values for abs_chg_avg_percent_inpatient_beds_occupied_covid_confirmed should be interpreted with caution.
December 29, 2023: Hospitalization data reported to CDC’s National Healthcare Safety Network (NHSN) through December 23, 2023, should be interpreted with caution due to potential reporting delays that are impacted by Christmas and New Years holidays. As a result, metrics including new hospital admissions for COVID-19 and influenza and hospital occupancy may be underestimated for the week ending December 23, 2023.
January 5, 2024: Hospitalization data reported to CDC’s National Healthcare Safety Network (NHSN) through December 30, 2023 should be interpreted with caution due to potential reporting delays that are impacted by Christmas and New Years holidays. As a result, metrics including new hospital admissions for COVID-19 and influenza and hospital occupancy may be underestimated for the week ending December 30, 2023.
Facebook
TwitterData for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes
Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.
Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases
Facebook
TwitterThis public use dataset has 11 data elements reflecting COVID-19 community levels for all available counties. This dataset contains the same values used to display information available at https://www.cdc.gov/coronavirus/2019-ncov/science/community-levels-county-map.html. CDC looks at the combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days — to determine the COVID-19 community level. The COVID-19 community level is determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge. Using these data, the COVID-19 community level is classified as low, medium , or high. COVID-19 Community Levels can help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals. See https://www.cdc.gov/coronavirus/2019-ncov/science/community-levels.html for more information. Visit CDC’s COVID Data Tracker County View* to learn more about the individual metrics used for CDC’s COVID-19 community level in your county. Please note that county-level data are not available for territories. Go to https://covid.cdc.gov/covid-data-tracker/#county-view. For the most accurate and up-to-date data for any county or state, visit the relevant health department website. *COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.
Facebook
TwitterNOTE: This dataset has been retired and marked as historical-only. The recommended dataset to use in its place is https://data.cityofchicago.org/Health-Human-Services/COVID-19-Vaccination-Coverage-Region-HCEZ-/5sc6-ey97.
COVID-19 vaccinations administered to Chicago residents by Healthy Chicago Equity Zones (HCEZ) based on the reported address, race-ethnicity, and age group of the person vaccinated, as provided by the medical provider in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE).
Healthy Chicago Equity Zones is an initiative of the Chicago Department of Public Health to organize and support hyperlocal, community-led efforts that promote health and racial equity. Chicago is divided into six HCEZs. Combinations of Chicago’s 77 community areas make up each HCEZ, based on geography. For more information about HCEZs including which community areas are in each zone see: https://data.cityofchicago.org/Health-Human-Services/Healthy-Chicago-Equity-Zones/nk2j-663f
Vaccination Status Definitions:
·People with at least one vaccine dose: Number of people who have received at least one dose of any COVID-19 vaccine, including the single-dose Johnson & Johnson COVID-19 vaccine.
·People with a completed vaccine series: Number of people who have completed a primary COVID-19 vaccine series. Requirements vary depending on age and type of primary vaccine series received.
·People with a bivalent dose: Number of people who received a bivalent (updated) dose of vaccine. Updated, bivalent doses became available in Fall 2022 and were created with the original strain of COVID-19 and newer Omicron variant strains.
Weekly cumulative totals by vaccination status are shown for each combination of race-ethnicity and age group within an HCEZ. Note that each HCEZ has a row where HCEZ is “Citywide” and each HCEZ has a row where age is "All" so care should be taken when summing rows.
Vaccinations are counted based on the date on which they were administered. Weekly cumulative totals are reported from the week ending Saturday, December 19, 2020 onward (after December 15, when vaccines were first administered in Chicago) through the Saturday prior to the dataset being updated.
Population counts are from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-year estimates.
Coverage percentages are calculated based on the cumulative number of people in each population subgroup (age group by race-ethnicity within an HCEZ) who have each vaccination status as of the date, divided by the estimated number of people in that subgroup.
Actual counts may exceed population estimates and lead to >100% coverage, especially in small race-ethnicity subgroups of each age group within an HCEZ. All coverage percentages are capped at 99%.
All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. At any given time, this dataset reflects data currently known to CDPH.
Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined.
CDPH uses the most complete data available to estimate COVID-19 vaccination coverage among Chicagoans, but there are several limitations that impact its estimates. Data reported in I-CARE only includes doses administered in Illinois and some doses administered outside of Illinois reported historically by Illinois providers. Doses administered by the federal Bureau of Prisons and Department of Defense are also not currently reported in I-CARE. The Veterans Health Administration began reporting doses in I-CARE beginning September 2022. Due to people receiving vaccinations that are not recorded in I-CARE that can be linked to their record, such as someone receiving a vaccine dose in another state, the number of people with a completed series or a booster dose is underesti
Facebook
TwitterThis file contains COVID-19 death counts, death rates, and percent of total deaths by jurisdiction of residence. The data is grouped by different time periods including 3-month period, weekly, and total (cumulative since January 1, 2020). United States death counts and rates include the 50 states, plus the District of Columbia and New York City. New York state estimates exclude New York City. Puerto Rico is included in HHS Region 2 estimates. Deaths with confirmed or presumed COVID-19, coded to ICD–10 code U07.1. Number of deaths reported in this file are the total number of COVID-19 deaths received and coded as of the date of analysis and may not represent all deaths that occurred in that period. Counts of deaths occurring before or after the reporting period are not included in the file. Data during recent periods are incomplete because of the lag in time between when the death occurred and when the death certificate is completed, submitted to NCHS and processed for reporting purposes. This delay can range from 1 week to 8 weeks or more, depending on the jurisdiction and cause of death. Death counts should not be compared across states. Data timeliness varies by state. Some states report deaths on a daily basis, while other states report deaths weekly or monthly. The ten (10) United States Department of Health and Human Services (HHS) regions include the following jurisdictions. Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont; Region 2: New Jersey, New York, New York City, Puerto Rico; Region 3: Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, West Virginia; Region 4: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee; Region 5: Illinois, Indiana, Michigan, Minnesota, Ohio, Wisconsin; Region 6: Arkansas, Louisiana, New Mexico, Oklahoma, Texas; Region 7: Iowa, Kansas, Missouri, Nebraska; Region 8: Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming; Region 9: Arizona, California, Hawaii, Nevada; Region 10: Alaska, Idaho, Oregon, Washington. Rates were calculated using the population estimates for 2021, which are estimated as of July 1, 2021 based on the Blended Base produced by the US Census Bureau in lieu of the April 1, 2020 decennial population count. The Blended Base consists of the blend of Vintage 2020 postcensal population estimates, 2020 Demographic Analysis Estimates, and 2020 Census PL 94-171 Redistricting File (see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/2020-2021/methods-statement-v2021.pdf). Rates are based on deaths occurring in the specified week/month and are age-adjusted to the 2000 standard population using the direct method (see https://www.cdc.gov/nchs/data/nvsr/nvsr70/nvsr70-08-508.pdf). These rates differ from annual age-adjusted rates, typically presented in NCHS publications based on a full year of data and annualized weekly/monthly age-adjusted rates which have been adjusted to allow comparison with annual rates. Annualization rates presents deaths per year per 100,000 population that would be expected in a year if the observed period specific (weekly/monthly) rate prevailed for a full year. Sub-national death counts between 1-9 are suppressed in accordance with NCHS data confidentiality standards. Rates based on death counts less than 20 are suppressed in accordance with NCHS standards of reliability as specified in NCHS Data Presentation Standards for Proportions (available from: https://www.cdc.gov/nchs/data/series/sr_02/sr02_175.pdf.).
Facebook
Twitterhttps://www.usa.gov/government-workshttps://www.usa.gov/government-works
After October 13, 2022, this dataset will no longer be updated as the related CDC COVID Data Tracker site was retired on October 13, 2022.
This dataset contains historical trends in vaccinations and cases by age group, at the US national level. Data is stratified by at least one dose and fully vaccinated. Data also represents all vaccine partners including jurisdictional partner clinics, retail pharmacies, long-term care facilities, dialysis centers, Federal Emergency Management Agency and Health Resources and Services Administration partner sites, and federal entity facilities.
Facebook
TwitterNOTE: This dataset has been retired and marked as historical-only. Weekly rates of COVID-19 cases, hospitalizations, and deaths among people living in Chicago by vaccination status and age. Rates for fully vaccinated and unvaccinated begin the week ending April 3, 2021 when COVID-19 vaccines became widely available in Chicago. Rates for boosted begin the week ending October 23, 2021 after booster shots were recommended by the Centers for Disease Control and Prevention (CDC) for adults 65+ years old and adults in certain populations and high risk occupational and institutional settings who received Pfizer or Moderna for their primary series or anyone who received the Johnson & Johnson vaccine. Chicago residency is based on home address, as reported in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE) and Illinois National Electronic Disease Surveillance System (I-NEDSS). Outcomes: • Cases: People with a positive molecular (PCR) or antigen COVID-19 test result from an FDA-authorized COVID-19 test that was reported into I-NEDSS. A person can become re-infected with SARS-CoV-2 over time and so may be counted more than once in this dataset. Cases are counted by week the test specimen was collected. • Hospitalizations: COVID-19 cases who are hospitalized due to a documented COVID-19 related illness or who are admitted for any reason within 14 days of a positive SARS-CoV-2 test. Hospitalizations are counted by week of hospital admission. • Deaths: COVID-19 cases who died from COVID-19-related health complications as determined by vital records or a public health investigation. Deaths are counted by week of death. Vaccination status: • Fully vaccinated: Completion of primary series of a U.S. Food and Drug Administration (FDA)-authorized or approved COVID-19 vaccine at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Boosted: Fully vaccinated with an additional or booster dose of any FDA-authorized or approved COVID-19 vaccine received at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Unvaccinated: No evidence of having received a dose of an FDA-authorized or approved vaccine prior to a positive test. CLARIFYING NOTE: Those who started but did not complete all recommended doses of an FDA-authorized or approved vaccine prior to a positive test (i.e., partially vaccinated) are excluded from this dataset. Incidence rates for fully vaccinated but not boosted people (Vaccinated columns) are calculated as total fully vaccinated but not boosted with outcome divided by cumulative fully vaccinated but not boosted at the end of each week. Incidence rates for boosted (Boosted columns) are calculated as total boosted with outcome divided by cumulative boosted at the end of each week. Incidence rates for unvaccinated (Unvaccinated columns) are calculated as total unvaccinated with outcome divided by total population minus cumulative boosted, fully, and partially vaccinated at the end of each week. All rates are multiplied by 100,000. Incidence rate ratios (IRRs) are calculated by dividing the weekly incidence rates among unvaccinated people by those among fully vaccinated but not boosted and boosted people. Overall age-adjusted incidence rates and IRRs are standardized using the 2000 U.S. Census standard population. Population totals are from U.S. Census Bureau American Community Survey 1-year estimates for 2019. All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. This dataset reflects data known to CDPH at the time when the dataset is updated each week. Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined. For all datasets related to COVID-19, see https://data.cityofchic
Facebook
TwitterReporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.
Weekly COVID-19 Community Levels (CCLs) have been replaced with levels of COVID-19 hospital admission rates (low, medium, or high) which demonstrate >99% concordance by county during February 2022–March 2023. For more information on the latest COVID-19 status levels in your area and hospital admission rates, visit United States COVID-19 Hospitalizations, Deaths, and Emergency Visits by Geographic Area.
This archived public use dataset contains historical case and percent positivity data updated weekly for all available counties and jurisdictions. Each week, the dataset was refreshed to capture any historical updates. Please note, percent positivity data may be incomplete for the most recent time period.
This archived public use dataset contains weekly community transmission levels data for all available counties and jurisdictions since October 20, 2022. The dataset was appended to contain the most recent week's data as originally posted on COVID Data Tracker. Historical corrections are not made to these data if new case or testing information become available. A separate archived file is made available here (: Weekly COVID-19 County Level of Community Transmission Historical Changes) if historically updated data are desired.
Related data CDC provides the public with two active versions of COVID-19 county-level community transmission level data: this dataset with the levels as originally posted (Weekly Originally Posted dataset), updated weekly with the most recent week’s data since October 20, 2022, and a historical dataset with the county-level transmission data from January 22, 2020 (Weekly Historical Changes dataset).
Methods for calculating county level of community transmission indicator The County Level of Community Transmission indicator uses two metrics: (1) total new COVID-19 cases per 100,000 persons in the last 7 days and (2) percentage of positive SARS-CoV-2 diagnostic nucleic acid amplification tests (NAAT) in the last 7 days. For each of these metrics, CDC classifies transmission values as low, moderate, substantial, or high (below and here). If the values for each of these two metrics differ (e.g., one indicates moderate and the other low), then the higher of the two should be used for decision-making.
CDC core metrics of and thresholds for community transmission levels of SARS-CoV-2 Total New Case Rate Metric: "New cases per 100,000 persons in the past 7 days" is calculated by adding the number of new cases in the county (or other administrative level) in the last 7 days divided by the population in the county (or other administrative level) and multiplying by 100,000. "New cases per 100,000 persons in the past 7 days" is considered to have a transmission level of Low (0-9.99); Moderate (10.00-49.99); Substantial (50.00-99.99); and High (greater than or equal to 100.00).
Test Percent Positivity Metric: "Percentage of positive NAAT in the past 7 days" is calculated by dividing the number of positive tests in the county (or other administrative level) during the last 7 days by the total number of tests conducted
Facebook
Twitterhttps://www.usa.gov/government-workshttps://www.usa.gov/government-works
After over two years of public reporting, the State Profile Report will no longer be produced and distributed after February 2023. The final release was on February 23, 2023. We want to thank everyone who contributed to the design, production, and review of this report and we hope that it provided insight into the data trends throughout the COVID-19 pandemic. Data about COVID-19 will continue to be updated at CDC’s COVID Data Tracker.
The State Profile Report (SPR) is generated by the Data Strategy and Execution Workgroup in the Joint Coordination Cell, in collaboration with the White House. It is managed by an interagency team with representatives from multiple agencies and offices (including the United States Department of Health and Human Services (HHS), the Centers for Disease Control and Prevention, the HHS Assistant Secretary for Preparedness and Response, and the Indian Health Service). The SPR provides easily interpretable information on key indicators for each state, down to the county level.
It is a weekly snapshot in time that:
Facebook
Twitter"The U.S. has now passed the grim milestone of 150,000 coronavirus deaths with Califoria, Florida and Texas all recently setting single-day records for deaths from the pandemic. On July 29, one American was dying from Covid-19 every minute with the total number of infections approaching 4.4 million. Studies have found that men are dying at nearly twice the rate of women in the U.S. while the pandemic is proving especially devastating for black Americans who are dying at nearly three times the rate of white people." https://www.statista.com/chart/22430/coronavirus-deaths-by-race-in-the-us/
"That's according to The COVID Tracking Project who state that 30,648 black lives have been lost to the coronavirus to date, accounting for 23 percent of all U.S. deaths where race is known. The deaths were broken down by race or ethnicity with 74 black Americans dying per 100,000 people compared to 30 white Americans per 100,000 people as of July 30, 2020."
Niall McCarthy, Data Journalist https://www.statista.com/chart/22430/coronavirus-deaths-by-race-in-the-us/ Photo United Nations COVID-19 Response on Unsplash
Covid-19
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The World Health Organization reported 6932591 Coronavirus Deaths since the epidemic began. In addition, countries reported 766440796 Coronavirus Cases. This dataset provides - World Coronavirus Deaths- actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterThis data set includes the number and percent of visits for COVID-19 like illness (CLI) at emergency departments and urgent cares in Virginia by week end date and by health district. This data set was first published on July 20, 2020. The data set increases in size daily and as a result, the dataset may take longer to update; however, it is expected to be available by 12:00 noon weekly. When you download the data set, the dates will be sorted in ascending order, meaning that the earliest date will be at the top. To see data for the most recent date, please scroll down to the bottom of the data set.
Facebook
TwitterThe Research and Development Survey (RANDS) is a platform designed for conducting survey question evaluation and statistical research. RANDS is an ongoing series of surveys from probability-sampled commercial survey panels used for methodological research at the National Center for Health Statistics (NCHS). RANDS estimates are generated using an experimental approach that differs from the survey design approaches generally used by NCHS, including possible biases from different response patterns and sampling frames as well as increased variability from lower sample sizes. Use of the RANDS platform allows NCHS to produce more timely data than would be possible using traditional data collection methods. RANDS is not designed to replace NCHS’ higher quality, core data collections. Below are experimental estimates of telemedicine access and use for three rounds of RANDS during COVID-19. Data collection for the three rounds of RANDS during COVID-19 occurred between June 9, 2020 and July 6, 2020, August 3, 2020 and August 20, 2020, and May 17, 2021 and June 30, 2021. Information needed to interpret these estimates can be found in the Technical Notes. RANDS during COVID-19 included questions about whether providers offered telemedicine (including video and telephone appointments) in the last 2 months—both during and before the pandemic—and about the use of telemedicine in the last 2 months during the pandemic. As a result of the coronavirus pandemic, many local and state governments discouraged people from leaving their homes for nonessential reasons. Although health care is considered an essential activity, telemedicine offers an opportunity for care without the potential or perceived risks of leaving the home. The National Health Interview Survey, conducted by NCHS, added telemedicine questions to its sample adult questionnaire in July 2020. The Household Pulse Survey (https://www.cdc.gov/nchs/covid19/pulse/telemedicine-use.htm), an online survey conducted in response to the COVID-19 pandemic by the Census Bureau in partnership with other federal agencies including NCHS, also reports estimates of telemedicine use during the pandemic (beginning in Phase 3.1, which started on April 14, 2021). The Household Pulse Survey reports telemedicine use in the last 4 weeks among adults and among households with at least one child under age 18 years. The experimental estimates on this page are derived from RANDS during COVID-19 and show the percentage of U.S. adults who have a usual place of care and a provider that offered telemedicine in the past 2 months, who used telemedicine in the past 2 months, or who have a usual place of care and a provider that offered telemedicine prior to the coronavirus pandemic. Technical Notes: https://www.cdc.gov/nchs/covid19/rands/telemedicine.htm#limitations
Facebook
TwitterProvisional COVID-19 death counts, rates, and percent of total deaths, by jurisdiction of residence
Description
This file contains COVID-19 death counts, death rates, and percent of total deaths by jurisdiction of residence. The data is grouped by different time periods including 3-month period, weekly, and total (cumulative since January 1, 2020). United States death counts and rates include the 50 states, plus the District of Columbia and New York City. New York state… See the full description on the dataset page: https://huggingface.co/datasets/HHS-Official/provisional-covid-19-death-counts-rates-and-percen.
Facebook
TwitterWelcome to the Kaggle dataset on The Impact of COVID-19 on Veterans in the United States! This dataset contains data on confirmed cases of COVID-19 in counties across the United States, as well as information on the percentage of each county's population that are veterans. With this dataset, you can investigate how the pandemic has impacted veterans specifically, and compare veteran case rates to the general population. How do veteran cases differ across age groups? Are there any geographical patterns? What can we learn about risk factors for COVID-19 among veterans? Download the dataset and explore for yourself today!
This dataset includes information on the number of confirmed cases of COVID-19 by county, as well as the percentage of the population in each county that are veterans. This data can be used to examine the relationship between veteran cases and the proportion of population who are veterans.
To do this, simply look at the 'CASES' and 'VET_CASES' columns for each county. The 'CASES' column represents the total number of confirmed cases of COVID-19 in that county, while the 'VET_CASES' column represents the number of confirmed cases among veterans. To compare these two values, simply divide 'VET_CASES' by 'CASES'. This will give you a ratio of veteran cases to total cases for each county.
You can then use this ratio to compare counties and see which ones have a higher proportion of veteran cases. This data can be used to help understand where more outreach may be needed to support veterans during this pandemic
File: CountyVACOVID.csv | Column name | Description | |:---------------------------|:-----------------------------------------------------------------------------------------------------------------------| | FIPS | Federal Information Processing Standards code that uniquely identifies counties within the USA. (String) | | COUNTY | County name. (String) | | STATE | State name. (String) | | POP | County population. (Integer) | | VETS | Number of veterans in the county. (Integer) | | VET_PERCENT | Percentage of the population that are veterans. (Float) | | CASES | Number of confirmed cases of COVID-19 in the county. (Integer) | | YESTER_CASES | Number of confirmed cases of COVID-19 in the county from the previous day. (Integer) | | VET_CASES | Number of confirmed cases of COVID-19 in veterans in the county. (Integer) | | VET_YESTER | Number of confirmed cases of COVID-19 in veterans in the county from the previous day. (Integer) | | LOWER_Hospitalizations | Lower bound of the 95% confidence interval for the number of hospitalizations due to COVID-19 in the county. (Integer) | | UPPER_Hospitalizations | Upper bound of the 95% confidence interval for the number of hospitalizations due to COVID-19 in the county. (Integer) | | DATE | Date of data. (Date) |
File: VAChart.csv | Column name | Description | |:------------------------|:----------------------------------------------------------------------------------| | DATE | Date of data. (Date) | | US Cases | The number of confirmed cases of COVID-19 in the United States. (Integer) | | **New US ...
Facebook
Twitterhttps://www.usa.gov/government-workshttps://www.usa.gov/government-works
On October 20, 2022, CDC began retrieving aggregate case and death data from jurisdictional and state partners weekly instead of daily. This dataset contains archived historical community transmission and related data elements by county. Although these data will continue to be publicly available, this dataset has not been updated since October 20, 2022. An archived dataset containing weekly historical community transmission data by county can also be found here: Weekly COVID-19 County Level of Community Transmission Historical Changes | Data | Centers for Disease Control and Prevention (cdc.gov).
Related data CDC has been providing the public with two versions of COVID-19 county-level community transmission level data: this historical dataset with the daily county-level transmission data from January 22, 2020, and a dataset with the daily values as originally posted on the COVID Data Tracker. Similar to this dataset, the original dataset with daily data as posted is archived on 10/20/2022. It will continue to be publicly available but will no longer be updated. A new dataset containing community transmission data by county as originally posted is now published weekly and can be found at: Weekly COVID-19 County Level of Community Transmission as Originally Posted | Data | Centers for Disease Control and Prevention (cdc.gov).
This public use dataset has 7 data elements reflecting historical data for community transmission levels for all available counties and jurisdictions. It contains historical data for the county level of community transmission and includes updated data submitted by states and jurisdictions. Each day, the dataset was updated to include the most recent days’ data and incorporate any historical changes made by jurisdictions. This dataset includes data since January 22, 2020. Transmission level is set to low, moderate, substantial, or high using the calculation rules below.
Methods for calculating county level of community transmission indicator The County Level of Community Transmission indicator uses two metrics: (1) total new COVID-19 cases per 100,000 persons in the last 7 days and (2) percentage of positive SARS-CoV-2 diagnostic nucleic acid amplification tests (NAAT) in the last 7 days. For each of these metrics, CDC classifies transmission values as low, moderate, substantial, or high (below and here). If the values for each of these two metrics differ (e.g., one indicates moderate and the other low), then the higher of the two should be used for decision-making.
CDC core metrics of and thresholds for community transmission levels of SARS-CoV-2
Total New Case Rate Metric: "New cases per 100,000 persons in the past 7 days" is calculated by adding the number of new cases in the county (or other administrative level) in the last 7 days divided by the population in the county (or other administrative level) and multiplying by 100,000. "New cases per 100,000 persons in the past 7 days" is considered to have transmission level of Low (0-9.99); Moderate (10.00-49.99); Substantial (50.00-99.99); and High (greater than or equal to 100.00).
Test Percent Positivity Metric: "Percentage of positive NAAT in the past 7 days" is calculated by dividing the number of positive tests in the county (or other administrative level) during the last 7 days by the total number of tests resulted over the last 7 days. "Percentage of positive NAAT in the past 7 days" is considered to have transmission level of Low (less than 5.00); Moderate (5.00-7.99); Substantial (8.00-9.99); and High (greater than or equal to 10.00).
If the two metrics suggest different transmission levels, the higher level is selected. If one metric is missing, the other metric is used for the indicator.
The reported transmission categories include:
Low Transmission Threshold: Counties with fewer than 10 total cases per 100,000 population in the past 7 days, and a NAAT percent test positivity in the past 7 days below 5%;
Moderate Transmission Threshold: Counties with 10-49 total cases per 100,000 population in the past 7 days or a NAAT test percent positivity in the past 7 days of 5.0-7.99%;
Substantial Transmission Threshold: Counties with 50-99 total cases per 100,000 population in the past 7 days or a NAAT test percent positivity in the past 7 days of 8.0-9.99%;
High Transmission Threshold: Counties with 100 or more total cases per 100,000 population in the past 7 days or a NAAT test percent positivity in the past 7 days of 10.0% or greater.
Blank: total new cases in the past 7 days are not reported (county data known to be unavailable) and the percentage of positive NAATs tests during the past 7 days (blank) are not reported.
Data Suppression To prevent the release of data that could be used to identify people, data cells are suppressed for low frequency. When the case counts used to calculate the total new case rate metric ("cases_per_100K_7_day_count_change") is greater than zero and less than 10, this metric is set to "suppressed" to protect individual privacy. If the case count is 0, the total new case rate metric is still displayed.
The data in this dataset are considered provisional by CDC and are subject to change until the data are reconciled and verified with the state and territorial data providers. This datasets are created using CDC’s Policy on Public Health Research and Nonresearch Data Management and Access.
Duplicate Records Issue A bug was found on 12/28/2021 that caused many records in the dataset to be duplicated. This issue was resolved on 01/06/2022.
Facebook
Twitterhttps://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.