Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
By Health [source]
This dataset provides insight into the prevalence and trends in tobacco use across the United States. By breaking down this data by state, you can see how tobacco has been used and changed over time. Smoking is a major contributor to premature deaths and health complications, so understanding historic usage rates can help us analyze and hopefully reduce those negative impacts. Drawing from the Behavioral Risk Factor Surveillance System, this dataset gives us an unparalleled look at both current and historical smoking habits in each of our states. With this data, we can identify high risk areas and track changes throughout the years for better health outcomes overall
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset contains information on the prevalence and trends of tobacco use in the United States. The data is broken down by state, and includes percentages of smokers, former smokers, and those who have never smoked. With this dataset you can explore how smoking habits have changed over time as well as what regions of the country have seen more or less consistent smoking trends.
To begin using this dataset, you will first want to familiarize yourself with the columns included within it and their associated values. There is a “State” column that provides the US state for which each row refers to; there are also columns detailing percentages for those who smoke every day (Smoke Everyday), some days (Smoke Some Days), previously smoked (Former Smoker) and those who have never smoked (Never Smoked). The “Location 1” column indicates each geographic region that falls into one of either four US census divisions or eight regions based upon where each state lies in relation to one another.
Once you understand the data presented within these columns, there are a few different ways to begin exploring how tobacco use has changed throughout time including plotting prevalence data over different periods such as decades or specific years; compiling descriptive statistics such as percentiles or mean values; contrasting between states based on any relevant factors such as urban/rural population size or economic/political standing; and lastly looking at patterns developing throughout multiple years via various visualisations like box-and-whisker plots amongst other alternatives.
This wide set of possibilities makes this dataset interesting enough regardless if you are looking at regional differences across single points in time or long-term changes regarding national strategies around reducing nicotine consumption. With all its nuances uncovered hopefully your results can lead towards further research uncovering any aspect about smoking culture you may find fascinating!
- Comparing regional and state-level smoking rates and trends over time.
- Analyzing how different demographics are affected by state-level smoking trends, such as comparing gender or age-based differences in prevalence and/or decreasing or increasing rates of tobacco use at the regional level over time.
- Developing visualization maps that show changes in tobacco consumption prevalence (and related health risk factors) by location on an interactive website or tool for public consumption of data insights from this dataset
If you use this dataset in your research, please credit the original authors. Data Source
License: Open Database License (ODbL) v1.0 - You are free to: - Share - copy and redistribute the material in any medium or format. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices. - No Derivatives - If you remix, transform, or build upon the material, you may not distribute the modified material. - No additional restrictions - You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
File: BRFSS_Prevalence_and_Trends_Data_Tobacco_Use_-_Four_Level_Smoking_Data_for_1995-2010.csv | Column name | ...
Facebook
TwitterThe global smoking prevalence in was forecast to continuously decrease between 2024 and 2029 by in total *** percentage points. After the ****** consecutive decreasing year, the smoking prevalence is estimated to reach ***** percent and therefore a new minimum in 2029. Shown is the estimated share of the adult population (15 years or older) in a given region or country, that smoke on a daily basis. According to the WHO and World bank, smoking refers to the use of cigarettes, pipes or other types of tobacco.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to *** countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the smoking prevalence in countries like North America and Caribbean.
Facebook
TwitterBy Throwback Thursday [source]
This dataset contains comprehensive information on tobacco use in the United States from 2011 to 2016. The data is sourced from the CDC Behavioral Risk Factor Survey, a reliable and extensive survey that captures important data about tobacco use behaviors across different states in the United States.
The dataset includes various key variables such as the year of data collection, state abbreviation indicating where the data was collected, and specific tobacco types explored in the survey. It also provides valuable insight into the prevalence of tobacco use through quantitative measures represented by numeric values. The unit of measurement for these values, such as percentages or numbers, is included as well.
Moreover, this dataset offers an understanding of how different age groups are affected by tobacco use, with age being categorized into distinct groups. This ensures that researchers and analysts can assess variations in tobacco consumption and its associated health implications across different age demographics.
With all these informative attributes arranged in a convenient tabular format, this dataset serves as a valuable resource for investigating patterns and trends related to tobacco use within varying contexts over a six-year period
Introduction:
Step 1: Familiarize Yourself with the Columns
Before diving into any analysis, it is important to understand the structure of the dataset by familiarizing yourself with its columns. Here are the key columns in this dataset:
- Year: The year in which the data was collected (Numeric)
- State Abbreviation: The abbreviation of the state where the data was collected (String)
- Tobacco Type: The type of tobacco product used (String)
- Data Value: The percentage or number representing prevalence of tobacco use (Numeric)
- Data Value Unit: The unit of measurement for data value (e.g., percentage, number) (String)
- Age: The age group to which the data value corresponds (String)
Step 2: Determine Your Research Questions or Objectives
To make effective use of this dataset, it is essential to clearly define your research questions or objectives. Some potential research questions related to this dataset could be:
- How has tobacco use prevalence changed over time?
- Which states have the highest and lowest rates of tobacco use?
- What are the most commonly used types of tobacco products?
- Is there a correlation between age group and tobacco use?
By defining your research questions or objectives upfront, you can focus your analysis accordingly.
Step 3: Analyzing Trends Over Time
To analyze trends over time using this dataset: - Group and aggregate relevant columns such as Year and Data Value. - Plot the data using line graphs or bar charts to visualize the changes in tobacco use prevalence over time. - Interpret the trends and draw conclusions from your analysis.
Step 4: Comparing States
To compare states and their tobacco use prevalence: - Group and aggregate relevant columns such as State Abbreviation and Data Value. - Sort the data based on prevalence rates to identify states with the highest and lowest rates of tobacco use. - Visualize this comparison using bar charts or maps for a clearer understanding.
Step 5: Understanding Tobacco Types
To gain insights into different types of tobacco products used: - Analyze the Tobacco
- Analyzing trends in tobacco use: This dataset can be used to analyze the prevalence of tobacco use over time and across different states. It can help identify patterns and trends in tobacco consumption, which can be valuable for public health research and policy-making.
- Assessing the impact of anti-smoking campaigns: Researchers or organizations working on anti-smoking campaigns can use this dataset to evaluate the effectiveness of their interventions. By comparing the data before and after a campaign, they can determine whether there has been a decrease in tobacco use and if specific groups or regions have responded better to the campaign.
- Understanding demographic factors related to tobacco use: The dataset includes information on age groups, allowing for analysis of how different age demographics are affected by tobacco use. By examining data value variations across age groups, researchers can gain insights into which populations are most vulnerable to smoking-related issues and design targeted prevention programs an...
Facebook
TwitterComparing the *** selected regions regarding the smoking prevalence , Myanmar is leading the ranking (***** percent) and is followed by Serbia with ***** percent. At the other end of the spectrum is Ghana with **** percent, indicating a difference of ***** percentage points to Myanmar. Shown is the estimated share of the adult population (15 years or older) in a given region or country, that smoke on a daily basis. According to the WHO and World bank, smoking refers to the use of cigarettes, pipes or other types of tobacco.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to *** countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
Facebook
Twitterhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.htmlhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
Smoking trends broken down by gender and country since 1980
| Key | List of... | Comment | Example Value |
|---|---|---|---|
| Country | String | Country | "Afghanistan" |
| Year | Integer | Year | 1980 |
| Data.Daily cigarettes | Float | Average amount of cigarettes smoked per day by smokers | 5.6999998 |
| Data.Percentage.Male | Float | Percentage of the male population who are smokers | 10.4 |
| Data.Percentage.Female | Float | Percentage of the female population who are smokers | 18.4 |
| Data.Percentage.Total | Float | Percentage of the total population who are smokers | 2.4000001 |
| Data.Smokers.Total | Integer | Total number smokers | 733520 |
| Data.Smokers.Female | Integer | Total number of female smokers | 81707 |
| Data.Smokers.Male | Integer | Total number of male smokers | 651813 |
Foto von Andres Siimon auf Unsplash
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Prevalence of Current Tobacco Use: % of Adults data was reported at 24.300 % in 2022. This records a decrease from the previous number of 24.700 % for 2021. United States US: Prevalence of Current Tobacco Use: % of Adults data is updated yearly, averaging 27.100 % from Dec 2000 (Median) to 2022, with 8 observations. The data reached an all-time high of 31.500 % in 2000 and a record low of 24.300 % in 2022. United States US: Prevalence of Current Tobacco Use: % of Adults data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Social: Health Statistics. The percentage of the population ages 15 years and over who currently use any tobacco product (smoked and/or smokeless tobacco) on a daily or non-daily basis. Tobacco products include cigarettes, pipes, cigars, cigarillos, waterpipes (hookah, shisha), bidis, kretek, heated tobacco products, and all forms of smokeless (oral and nasal) tobacco. Tobacco products exclude e-cigarettes (which do not contain tobacco), “e-cigars”, “e-hookahs”, JUUL and “e-pipes”. The rates are age-standardized to the WHO Standard Population.;World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).;Weighted average;This is the Sustainable Development Goal indicator 3.a.1 [https://unstats.un.org/sdgs/metadata/]. Previous indicator name: Smoking prevalence, total (ages 15+) The previous indicator excluded smokeless tobacco use, while the current indicator includes. The indicator name and definition were updated in December, 2020.
Facebook
TwitterComprehensive demographic dataset for Smoking Oaks, Conway, AR, US including population statistics, household income, housing units, education levels, employment data, and transportation with year-over-year changes.
Facebook
TwitterComprehensive demographic dataset for Smoke Ranch, Las Vegas, NV, US including population statistics, household income, housing units, education levels, employment data, and transportation with year-over-year changes.
Facebook
TwitterOn 1 April 2025 responsibility for fire and rescue transferred from the Home Office to the Ministry of Housing, Communities and Local Government.
This information covers fires, false alarms and other incidents attended by fire crews, and the statistics include the numbers of incidents, fires, fatalities and casualties as well as information on response times to fires. The Ministry of Housing, Communities and Local Government (MHCLG) also collect information on the workforce, fire prevention work, health and safety and firefighter pensions. All data tables on fire statistics are below.
MHCLG has responsibility for fire services in England. The vast majority of data tables produced by the Ministry of Housing, Communities and Local Government are for England but some (0101, 0103, 0201, 0501, 1401) tables are for Great Britain split by nation. In the past the Department for Communities and Local Government (who previously had responsibility for fire services in England) produced data tables for Great Britain and at times the UK. Similar information for devolved administrations are available at https://www.firescotland.gov.uk/about/statistics/">Scotland: Fire and Rescue Statistics, https://statswales.gov.wales/Catalogue/Community-Safety-and-Social-Inclusion/Community-Safety">Wales: Community safety and https://www.nifrs.org/home/about-us/publications/">Northern Ireland: Fire and Rescue Statistics.
If you use assistive technology (for example, a screen reader) and need a version of any of these documents in a more accessible format, please email alternativeformats@communities.gov.uk. Please tell us what format you need. It will help us if you say what assistive technology you use.
Fire statistics guidance
Fire statistics incident level datasets
https://assets.publishing.service.gov.uk/media/68f0f810e8e4040c38a3cf96/FIRE0101.xlsx">FIRE0101: Incidents attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 143 KB) Previous FIRE0101 tables
https://assets.publishing.service.gov.uk/media/68f0ffd528f6872f1663ef77/FIRE0102.xlsx">FIRE0102: Incidents attended by fire and rescue services in England, by incident type and fire and rescue authority (MS Excel Spreadsheet, 2.12 MB) Previous FIRE0102 tables
https://assets.publishing.service.gov.uk/media/68f20a3e06e6515f7914c71c/FIRE0103.xlsx">FIRE0103: Fires attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 197 KB) Previous FIRE0103 tables
https://assets.publishing.service.gov.uk/media/68f20a552f0fc56403a3cfef/FIRE0104.xlsx">FIRE0104: Fire false alarms by reason for false alarm, England (MS Excel Spreadsheet, 443 KB) Previous FIRE0104 tables
https://assets.publishing.service.gov.uk/media/68f100492f0fc56403a3cf94/FIRE0201.xlsx">FIRE0201: Dwelling fires attended by fire and rescue services by motive, population and nation (MS Excel Spreadsheet, 192 KB) Previous FIRE0201 tables
<span class="gem
Facebook
TwitterComprehensive demographic dataset for Smoke Rise, Stone Mountain, GA, US including population statistics, household income, housing units, education levels, employment data, and transportation with year-over-year changes.
Facebook
TwitterThe number of smokers in Mexico was forecast to continuously increase between 2024 and 2029 by in total *** million individuals (**** percent). After the ninth consecutive increasing year, the number of smokers is estimated to reach ***** million individuals and therefore a new peak in 2029. Shown is the estimated share of the adult population (15 years or older) in a given region or country, that smoke. According to the WHO and World bank, smoking refers to the use of cigarettes, pipes or other types of tobacco, be it on a daily or non-daily basis.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to *** countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smokers in countries like Canada and United States.
Facebook
TwitterThe Colorado Department of Public Health and Environment has developed community-level estimates for adults in a set of 14 important health condition and risk behavior indicators. The dataset includes indicators on adult asthma prevalence, cigarette smoking prevalence, coronary heart disease prevalence, percent of adults who delayed medical care due to cost, diabetes prevalence, binge drinking and heavy alcohol consumption, percent of adults with fair or poor health status, mental distress, percent of adults with no routine medical checkup in the past 12 month, obesity and overweight prevalence, percent of adults that did not report doing physical activity or exercise, and percent of adults with frequent physical distress. These four-year estimates (2013-2016) have been produced for each census tract in the State of Colorado based on modeled survey data collected in the Colorado Behavioral Risk Factor Surveillance System (BRFSS) and incorporating population, race, gender, and age estimates for each census tract from the American Community Survey. CDPHE's Community Level Estimates are output from statistical models used to generate health condition and risk behavior estimates for smaller geographies than traditional surveillance systems report. The estimates are produced using a multilevel model that incorporates individual Colorado Behavioral Risk Factor Surveillance System (BRFSS) survey responses in addition to socio-demographic and contextual information about each census tract from the U.S. Census (American Community Survey). The individual survey responses related to a health condition or risk behavior from the Colorado BRFSS are nested within geographic boundaries (counties) where both individual characteristics (demographic) as well as sociodemographic characteristics can be used to model the probability of having a health condition or risk behavior at the census tract geography.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Notes: a. Bootstrapping means and standard errors in parentheses are presented; –: no observations in the sample.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
By Health [source]
This dataset provides insight into the prevalence and trends in tobacco use across the United States. By breaking down this data by state, you can see how tobacco has been used and changed over time. Smoking is a major contributor to premature deaths and health complications, so understanding historic usage rates can help us analyze and hopefully reduce those negative impacts. Drawing from the Behavioral Risk Factor Surveillance System, this dataset gives us an unparalleled look at both current and historical smoking habits in each of our states. With this data, we can identify high risk areas and track changes throughout the years for better health outcomes overall
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset contains information on the prevalence and trends of tobacco use in the United States. The data is broken down by state, and includes percentages of smokers, former smokers, and those who have never smoked. With this dataset you can explore how smoking habits have changed over time as well as what regions of the country have seen more or less consistent smoking trends.
To begin using this dataset, you will first want to familiarize yourself with the columns included within it and their associated values. There is a “State” column that provides the US state for which each row refers to; there are also columns detailing percentages for those who smoke every day (Smoke Everyday), some days (Smoke Some Days), previously smoked (Former Smoker) and those who have never smoked (Never Smoked). The “Location 1” column indicates each geographic region that falls into one of either four US census divisions or eight regions based upon where each state lies in relation to one another.
Once you understand the data presented within these columns, there are a few different ways to begin exploring how tobacco use has changed throughout time including plotting prevalence data over different periods such as decades or specific years; compiling descriptive statistics such as percentiles or mean values; contrasting between states based on any relevant factors such as urban/rural population size or economic/political standing; and lastly looking at patterns developing throughout multiple years via various visualisations like box-and-whisker plots amongst other alternatives.
This wide set of possibilities makes this dataset interesting enough regardless if you are looking at regional differences across single points in time or long-term changes regarding national strategies around reducing nicotine consumption. With all its nuances uncovered hopefully your results can lead towards further research uncovering any aspect about smoking culture you may find fascinating!
- Comparing regional and state-level smoking rates and trends over time.
- Analyzing how different demographics are affected by state-level smoking trends, such as comparing gender or age-based differences in prevalence and/or decreasing or increasing rates of tobacco use at the regional level over time.
- Developing visualization maps that show changes in tobacco consumption prevalence (and related health risk factors) by location on an interactive website or tool for public consumption of data insights from this dataset
If you use this dataset in your research, please credit the original authors. Data Source
License: Open Database License (ODbL) v1.0 - You are free to: - Share - copy and redistribute the material in any medium or format. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices. - No Derivatives - If you remix, transform, or build upon the material, you may not distribute the modified material. - No additional restrictions - You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
File: BRFSS_Prevalence_and_Trends_Data_Tobacco_Use_-_Four_Level_Smoking_Data_for_1995-2010.csv | Column name | ...