Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By Jonathan Ortiz [source]
This College Completion dataset provides an invaluable insight into the success and progress of college students in the United States. It contains graduation rates, race and other data to offer a comprehensive view of college completion in America. The data is sourced from two primary sources – the National Center for Education Statistics (NCES)’ Integrated Postsecondary Education System (IPEDS) and Voluntary System of Accountability’s Student Success and Progress rate.
At four-year institutions, the graduation figures come from IPEDS for first-time, full-time degree seeking students at the undergraduate level, who entered college six years earlier at four-year institutions or three years earlier at two-year institutions. Furthermore, colleges report how many students completed their program within 100 percent and 150 percent of normal time which corresponds with graduation within four years or six year respectively. Students reported as being of two or more races are included in totals but not shown separately
When analyzing race and ethnicity data NCES have classified student demographics since 2009 into seven categories; White non-Hispanic; Black non Hispanic; American Indian/ Alaskan native ; Asian/ Pacific Islander ; Unknown race or ethnicity ; Non resident with two new categorize Native Hawaiian or Other Pacific Islander combined with Asian plus students belonging to several races. Also worth noting is that different classifications for graduate data stemming from 2008 could be due to variations in time frame examined & groupings used by particular colleges – those who can’t be identified from National Student Clearinghouse records won’t be subjected to penalty by these locations .
When it comes down to efficiency measures parameters like “Awards per 100 Full Time Undergraduate Students which includes all undergraduate completions reported by a particular institution including associate degrees & certificates less than 4 year programme will assist us here while we also take into consideration measures like expenditure categories , Pell grant percentage , endowment values , average student aid amounts & full time faculty members contributing outstandingly towards instructional research / public service initiatives .
When trying to quantify outcomes back up Median Estimated SAT score metric helps us when it is derived either on 25th percentile basis / 75th percentile basis with all these factors further qualified by identifying required criteria meeting 90% threshold when incoming students are considered for relevance . Last but not least , Average Student Aid equalizes amount granted by institution dividing same over total sum received against what was allotted that particular year .
All this analysis gives an opportunity get a holistic overview about performance , potential deficits &
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset contains data on student success, graduation rates, race and gender demographics, an efficiency measure to compare colleges across states and more. It is a great source of information to help you better understand college completion and student success in the United States.
In this guide we’ll explain how to use the data so that you can find out the best colleges for students with certain characteristics or focus on your target completion rate. We’ll also provide some useful tips for getting the most out of this dataset when seeking guidance on which institutions offer the highest graduation rates or have a good reputation for success in terms of completing programs within normal timeframes.
Before getting into specifics about interpreting this dataset, it is important that you understand that each row represents information about a particular institution – such as its state affiliation, level (two-year vs four-year), control (public vs private), name and website. Each column contains various demographic information such as rate of awarding degrees compared to other institutions in its sector; race/ethnicity Makeup; full-time faculty percentage; median SAT score among first-time students; awards/grants comparison versus national average/state average - all applicable depending on institution location — and more!
When using this dataset, our suggestion is that you begin by forming a hypothesis or research question concerning student completion at a given school based upon observable characteristics like financ...
Facebook
TwitterThere were approximately 18.58 million college students in the U.S. in 2022, with around 13.49 million enrolled in public colleges and a further 5.09 million students enrolled in private colleges. The figures are projected to remain relatively constant over the next few years.
What is the most expensive college in the U.S.? The overall number of higher education institutions in the U.S. totals around 4,000, and California is the state with the most. One important factor that students – and their parents – must consider before choosing a college is cost. With annual expenses totaling almost 78,000 U.S. dollars, Harvey Mudd College in California was the most expensive college for the 2021-2022 academic year. There are three major costs of college: tuition, room, and board. The difference in on-campus and off-campus accommodation costs is often negligible, but they can change greatly depending on the college town.
The differences between public and private colleges Public colleges, also called state colleges, are mostly funded by state governments. Private colleges, on the other hand, are not funded by the government but by private donors and endowments. Typically, private institutions are much more expensive. Public colleges tend to offer different tuition fees for students based on whether they live in-state or out-of-state, while private colleges have the same tuition cost for every student.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By [source]
This dataset provides a comprehensive view of students enrolled in various undergraduate degrees offered at a higher education institution. It includes demographic data, social-economic factors and academic performance information that can be used to analyze the possible predictors of student dropout and academic success. This dataset contains multiple disjoint databases consisting of relevant information available at the time of enrollment, such as application mode, marital status, course chosen and more. Additionally, this data can be used to estimate overall student performance at the end of each semester by assessing curricular units credited/enrolled/evaluated/approved as well as their respective grades. Finally, we have unemployment rate, inflation rate and GDP from the region which can help us further understand how economic factors play into student dropout rates or academic success outcomes. This powerful analysis tool will provide valuable insight into what motivates students to stay in school or abandon their studies for a wide range of disciplines such as agronomy, design, education nursing journalism management social service or technologies
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset can be used to understand and predict student dropouts and academic outcomes. The data includes a variety of demographic, social-economic and academic performance factors related to the students enrolled in higher education institutions. The dataset provides valuable insights into the factors that affect student success and could be used to guide interventions and policies related to student retention.
Using this dataset, researchers can investigate two key questions: - which specific predictive factors are linked with student dropout or completion? - how do different features interact with each other? For example, researchers could explore if there any demographic characteristics (e.g., gender, age at enrollment etc.) or immersion conditions (e.g., unemployment rate in region) are associated with higher student success rates, as well as understand what implications poverty has for educational outcomes. By answering these questions, research insight is generated which can provide critical information for administrators on formulating strategies that promote successful degree completion among students from diverse backgrounds in their institutions.
In order to use this dataset effectively it is important that scientists familiarize themselves with all variables provided in the dataset including categorical (qualitative) variables such as gender or application mode; numerical variables such as number of curricular units at the beginning of semesters or age at enrollment; ordinal data measurement type variables such as marital status; studied trends over time such as inflation rate or GDP; frequency measurements variables like percentage of scholarship holders; etc.. Additionally scientists should make sure they aware off all potential bias included in the data prior running analysis–for example understanding if one population is underrepresented compared another -as this phenomenon could lead unexpected results if not taken into consideration while conducting research undertaken using this data set.. Finally it would be important for practitioners realize that this current Kaggle Dataset contains only one semester-worth information on each admission intake whereas additional studies conducted for a longer time period might be able provide more accurate results related selected topic area due further deterioration retention achievement coefficients obtained from those gradually accurate experiments unfolding different year-long admissions seasons
- Prediction of Student Retention: This dataset can be used to develop predictive models that can identify student risk factors for dropout and take early interventions to improve student retention rate.
- Improved Academic Performance: By using this data, higher education institutions could better understand their students' academic progress and identify areas of improvement from both an individual and institutional perspective. This will enable them to develop targeted courses, activities, or initiatives that enhance academic performance more effectively and efficiently.
- Accessibility Assistance: Using the demographic information included in the dataset, institutions could develop s...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of College Springs by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of College Springs across both sexes and to determine which sex constitutes the majority.
Key observations
There is a majority of male population, with 56.68% of total population being male. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for College Springs Population by Race & Ethnicity. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the College Place population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for College Place. The dataset can be utilized to understand the population distribution of College Place by age. For example, using this dataset, we can identify the largest age group in College Place.
Key observations
The largest age group in College Place, WA was for the group of age 20-24 years with a population of 1,429 (14.67%), according to the 2021 American Community Survey. At the same time, the smallest age group in College Place, WA was the 80-84 years with a population of 130 (1.33%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for College Place Population by Age. You can refer the same here
Facebook
TwitterThe dataset contains information collected from 122 K-12 public school food service directors in Mississippi, USA, who completed an online survey designed for Mississippi school food service directors. The survey was created using Snap Surveys Desktop software. Information includes school size (number of enrolled students), percent of students participating in free or reduced-price lunch, foods sourced locally (defined as grown or produced in Mississippi), desire to purchase more or start purchasing locally sourced foods, fresh fruit and vegetable purchasing practices, experience purchasing fruits and vegetables from farmers, challenges purchasing from farmers, and interest in other farm to school (F2S) activities. School food service directors' demographic characteristics collected include gender, age, ethnicity/race, marital status, and education level. The data were collected from October 2021 to January 2022 using an online mobile and secure survey management system called Snap Online. The data were collected to obtain updated demographic and school purchasing characteristics from school food service directors in Mississippi and to determine their current abilities, experiences, and desires to engage in F2S activities. The dataset can be used to learn about K-12 public school food service directors in Mississippi but results should not be generalized to all school food service directors in Mississippi or elsewhere in the USA. Resources in this dataset:Resource Title: Mississippi Farm to School Food Service Director Dataset. File Name: MS F2S School Data Public.csvResource Description: The dataset contains information collected from 122 K-12 public school food service directors in Mississippi regarding their experience with and interest in farm to school, including purchasing local foods. It also contains demographic characteristics of the school food service directors and their fresh fruit and vegetable purchasing practices.Resource Software Recommended: Microsoft Excel,url: https://www.microsoft.com/en-us/microsoft-365/excel Resource Title: Mississippi Farm to School Food Service Director Data Dictionary. File Name: MS F2S School Data Dictionary Public.csvResource Description: The file contains information for variables contained in the associated dataset including names, brief descriptions, types, lengths, and values.Resource Software Recommended: Microsoft Excel,url: https://www.microsoft.com/en-us/microsoft-365/excel
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the College Corner population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for College Corner. The dataset can be utilized to understand the population distribution of College Corner by age. For example, using this dataset, we can identify the largest age group in College Corner.
Key observations
The largest age group in College Corner, OH was for the group of age 25-29 years with a population of 40 (15.44%), according to the 2021 American Community Survey. At the same time, the smallest age group in College Corner, OH was the 20-24 years with a population of 1 (0.39%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for College Corner Population by Age. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We analyze the most comprehensive dataset on U.S. school board elections. We find that nearly half of races go uncontested and that incumbents are reelected more than 80 percent of the time when they run. Because many incumbents retire instead of running for another term, however, turnover is high (with 53 percent of incumbents replaced in a typical election cycle). School board turnover is also only weakly related to student learning rates. These dynamics--high turnover disconnected from school performance challenges--occur across both urban and non-urban districts, regardless of student demographics and local media environments. Together, these results suggest that local democracy produces high leadership churn and minimal incentives to improve student learning, two findings that can inform debates regarding the benefits and costs of local democratic governance.
Facebook
TwitterRatio: Percent of public high school students surveyed who exercised or participated in physical activity.
Definition: The percentage of public high school students who participated in physical activities that increased their heart rate and made them breathe hard some of the time for a total of at least 60 minutes per day on five or more of the past seven days.
Data Sources:
(1) Student Health Survey, Office of Student Support Services, New Jersey Department of Education;
(2) Youth Risk Behavior Surveillance System, Division of Adolescent and School Health, Centers for Disease Control and Prevention
Facebook
TwitterThis dataset shows the percentage of students who graduated from Massachusetts public schools with a regular high school diploma within 4 or 5 years. It is a long file that contains multiple rows for each school and district, with rows for different years and different student groups.
Note: Data is currently available at the school level only, as well as the state overall. For district-level graduation rates, please see the High School Graduation Rates dataset, or the High School Graduation Rates report on our DESE Profiles site.
Economically Disadvantaged was used 2015-2021. Low Income was used prior to 2015, and a different version of Low Income has been used since 2022. Please see the DESE Researcher's Guide for more information.
For more data about student experiences and outcomes in high school and beyond, please see the main DART: Success After High School dataset and dashboard.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical Dataset of U S Grant School District is provided by PublicSchoolReview and contain statistics on metrics:Comparison of Diversity Score Trends,Total Revenues Trends,Total Expenditure Trends,Average Revenue Per Student Trends,Average Expenditure Per Student Trends,Asian Student Percentage Comparison Over Years (2022-2023),Hispanic Student Percentage Comparison Over Years (2001-2023),Black Student Percentage Comparison Over Years (2000-2023),White Student Percentage Comparison Over Years (1990-2023),Two or More Races Student Percentage Comparison Over Years (2022-2023),Comparison of Students By Grade Trends
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual two or more races student percentage from 2017 to 2023 for U. S. Grant High School vs. Oklahoma and Oklahoma City School District
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual white student percentage from 1990 to 2023 for U S Grant School District vs. Ohio
Facebook
Twitter"Enrollment counts are based on the October 31 Audited Register for the 2017-18 to 2019-20 school years. To account for the delay in the start of the school year, enrollment counts are based on the November 13 Audited Register for 2020-21 and the November 12 Audited Register for 2021-22. * Please note that October 31 (and November 12-13) enrollment is not audited for charter schools or Pre-K Early Education Centers (NYCEECs). Charter schools are required to submit enrollment as of BEDS Day, the first Wednesday in October, to the New York State Department of Education." Enrollment counts in the Demographic Snapshot will likely exceed operational enrollment counts due to the fact that long-term absence (LTA) students are excluded for funding purposes. Data on students with disabilities, English Language Learners, students' povery status, and students' Economic Need Value are as of the June 30 for each school year except in 2021-22. Data on SWDs, ELLs, Poverty, and ENI in the 2021-22 school year are as of March 7, 2022. 3-K and Pre-K enrollment totals include students in both full-day and half-day programs. Four-year-old students enrolled in Family Childcare Centers are categorized as 3K students for the purposes of this report. All schools listed are as of the 2021-22 school year. Schools closed before 2021-22 are not included in the school level tab but are included in the data for citywide, borough, and district. Programs and Pre-K NYC Early Education Centers (NYCEECs) are not included on the school-level tab. Due to missing demographic information in rare cases at the time of the enrollment snapshot, demographic categories do not always add up to citywide totals. Students with disabilities are defined as any child receiving an Individualized Education Program (IEP) as of the end of the school year (or March 7 for 2021-22). NYC DOE "Poverty" counts are based on the number of students with families who have qualified for free or reduced price lunch, or are eligible for Human Resources Administration (HRA) benefits. In previous years, the poverty indicator also included students enrolled in a Universal Meal School (USM), where all students automatically qualified, with the exception of middle schools, D75 schools and Pre-K centers. In 2017-18, all students in NYC schools became eligible for free lunch. In order to better reflect free and reduced price lunch status, the poverty indicator does not include student USM status, and retroactively applies this rule to previous years. "The school’s Economic Need Index is the average of its students’ Economic Need Values. The Economic Need Index (ENI) estimates the percentage of students facing economic hardship. The 2014-15 school year is the first year we provide ENI estimates. The metric is calculated as follows: * The student’s Economic Need Value is 1.0 if: o The student is eligible for public assistance from the NYC Human Resources Administration (HRA); o The student lived in temporary housing in the past four years; or o The student is in high school, has a home language other than English, and entered the NYC DOE for the first time within the last four years. * Otherwise, the student’s Economic Need Value is based on the percentage of families (with school-age children) in the student’s census tract whose income is below the poverty level, as estimated by the American Community Survey 5-Year estimate (2020 ACS estimates were used in calculations for 2021-22 ENI). The student’s Economic Need Value equals this percentage divided by 100. Due to differences in the timing of when student demographic, address and census data were pulled, ENI values may vary, slightly, from the ENI values reported in the School Quality Reports. In previous years, student census tract data was based on students’ addresses at the time of ENI calculation. Beginning in 2018-19, census tract data is based on students’ addresses as of the Audited Register date of the g
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual two or more races student percentage from 2022 to 2023 for U S Grant School District vs. Ohio
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
College students are back on campus in the US, so we're exploring economic diversity and student outcomes! The dataset this week comes from Opportunity Insights via an article and associated interactive visualization from the Upshot at the New York Times. Thank you to Havisha Khurana for suggesting this dataset!
A new study, based on millions of anonymous tax records, shows that some colleges are even more economically segregated than previously understood, while others are associated with income mobility.
Geography: USA
Time period: 2024
Unit of analysis: Economic Diversity and Student Outcomes Data
| Variable | Description |
|---|---|
| super_opeid | Institution OPEID / Cluster ID when combining multiple OPEIDs. |
| name | Name of college (or college group). |
| par_income_bin | Parent household income group based on percentile in the income distribution. |
| par_income_lab | Parent household income label. |
| attend | Test-score-reweighted absolute attendance rate: Calculated as the fraction of students attending that college among all test-takers within a parent income bin in the Pipeline Analysis Sample. |
| stderr_attend | Standard error on the attend variable. |
| attend_level | The school average estimates reweighting on test score. Divide the test-score-reweighted absolute variables by this average to calculate the test-score-reweighted relative variables. |
| attend_sat | Absolute attendance rate for specific test score band based on school tier/category. |
| stderr_attend_sat | Standard error on the attend_sat variable. |
| attend_level_sat | The school average estimates reweighting on test score. Divide the test-score-reweighted absolute variables by this average to calculate the test-score-reweighted relative variables. |
| rel_apply | Test-score-reweighted relative application rate: Calculated using adjusted score-sending rates, the relative fraction of all standardized test takers who send test scores to a given college. |
| stderr_rel_apply | Standard error on the rel_apply variable. |
| rel_attend | Test-score-reweighted relative attendance rate: Calculated as the fraction of students attending that college among all test-takers within a parent income bin in the Pipeline Analysis Sample. Relative attendance rates are reported as a proportion of the mean attendance rate across all parent income bins for each college. |
| stderr_rel_attend | Standard error on the rel_attend variable. |
| rel_att_cond_app | Calculated as the ratio of rel_attend to rel_apply. |
| rel_apply_sat | Relative application rate for specific test score band based on school tier/category. Selected test score band is the 50-point band that had the most attendees in each school tier/category. The selected range: Ivy Plus: SAT 1460-1510; Elite Public: SAT 1180-1230; Top Private: SAT 1410-1460; NESCAC: SAT 1370-1420; Tier 2 Private: SAT 1290-1340; Top 100 Private: SAT 1170-1220; Top 100 Public: SAT 1110-1160; Other Flagship: SAT 1070-1120. |
| stderr_rel_apply_sat | Standard error on the rel_apply_sat variable. |
| r... |
Facebook
TwitterWe know that students at elite universities tend to be from high-income families, and that graduates are more likely to end up in high-status or high-income jobs. But very little public data has been available on university admissions practices. This dataset, collected by Opportunity Insights, gives extensive detail on college application and admission rates for 139 colleges and universities across the United States, including data on the incomes of students. How do admissions practices vary by institution, and are wealthy students overrepresented?
Education equality is one of the most contested topics in society today. It can be defined and explored in many ways, from accessible education to disabled/low-income/rural students to the cross-generational influence of doctorate degrees and tenure track positions. One aspect of equality is the institutions students attend. Consider the “Ivy Plus” universities, which are all eight Ivy League schools plus MIT, Stanford, Duke, and Chicago. Although less than half of one percent of Americans attend Ivy-Plus colleges, they account for more than 10% of Fortune 500 CEOs, a quarter of U.S. Senators, half of all Rhodes scholars, and three-fourths of Supreme Court justices appointed in the last half-century.
A 2023 study (Chetty et al, 2023) tried to understand how these elite institutions affect educational equality:
Do highly selective private colleges amplify the persistence of privilege across generations by taking students from high-income families and helping them obtain high-status, high-paying leadership positions? Conversely, to what extent could such colleges diversify the socioeconomic backgrounds of society’s leaders by changing their admissions policies?
To answer these questions, they assembled a dataset documenting the admission and attendance rate for 13 different income bins for 139 selective universities around the country. They were able to access and link not only student SAT/ACT scores and high school grades, but also parents’ income through their tax records, students’ post-college graduate school enrollment or employment (including earnings, employers, and occupations), and also for some selected colleges, their internal admission ratings for each student. This dataset covers students in the entering classes of 2010–2015, or roughly 2.4 million domestic students.
They found that children from families in the top 1% (by income) are more than twice as likely to attend an Ivy-Plus college as those from middle-class families with comparable SAT/ACT scores, and two-thirds of this gap can be attributed to higher admission rates with similar scores, with the remaining third due to the differences in rates of application and matriculation (enrollment conditional on admission). This is not a shocking conclusion, but we can further explore elite college admissions by socioeconomic status to understand the differences between elite private colleges and public flagships admission practices, and to reflect on the privilege we have here and to envision what a fairer higher education system could look like.
The data has been aggregated by university and by parental income level, grouped into 13 income brackets. The income brackets are grouped by percentile relative to the US national income distribution, so for instance the 75.0 bin represents parents whose incomes are between the 70th and 80th percentile. The top two bins overlap: the 99.4 bin represents parents between the 99 and 99.9th percentiles, while the 99.5 bin represents parents in the top 1%.
Each row represents students’ admission and matriculation outcomes from one income bracket at a given university. There are 139 colleges covered in this dataset.
The variables include an array of different college-level-income-binned estimates for things including attendance rate (both raw and reweighted by SAT/ACT scores), application rate, and relative attendance rate conditional on application, also with respect to specific test score bands for each college and in/out-of state. Colleges are categorized into six tiers: Ivy Plus, other elite schools (public and private), highly selective public/private, and selective public/private, with selectivity generally in descending order. It also notes whether a college is public and/or flagship, where “flagship” means public flagship universities. Furthermore, they also report the relative application rate for each income bin within specific test bands, which are 50-point bands that had the most attendees in each school tier/category.
Several values are reported in “test-score-reweighted” form. These values control for SAT score: they are calculated separately for each SAT score value, then averaged with weights based on the distribution of SAT scores at the institution.
Note that since private schools typically don’t differentiate between in-...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the College Park population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for College Park. The dataset can be utilized to understand the population distribution of College Park by age. For example, using this dataset, we can identify the largest age group in College Park.
Key observations
The largest age group in College Park, GA was for the group of age 25-29 years with a population of 1,526 (10.88%), according to the 2021 American Community Survey. At the same time, the smallest age group in College Park, GA was the 85+ years with a population of 60 (0.43%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for College Park Population by Age. You can refer the same here
Facebook
TwitterDESCRIPTION US News Universities Rankings 2017 edition SUMMARY National Universities Rankings In-the-News From 9/13/16 press release:
U.S. News & World Report today announced the 2017 Best Colleges rankings to help students worldwide compare the academic quality of more than 1,800 U.S.-based schools. Princeton University remains No. 1 in the Best National Universities category. For the 14th consecutive year, Williams College takes the top spot on the Best National Liberal Arts Colleges list.
Source: U.S. News Best College Rankings
Schools in the National Universities category, such as Columbia University and the University of Pennsylvania, offer a full range of undergraduate majors, plus master's and doctoral programs. These colleges also are committed to producing groundbreaking research.
About the data Name - institution name
Location - City, State where located
Rank Read methodology here. This dataset does not include unranked schools or any data that requires purchase / special access (i.e., exclusive to the U.S. News College Compass product).
Description Snippet of text overview from U.S. News
Tuition and fees Combined tuition and fees. For public universities with different tuition structure for in-state vs. out-of-state students, this number reflects out-of-state tutition.
In-stateFor public universities with different tuition structure for in-state vs. out-of-state students, this number reflects in-state tuition.
Undergrad Enrollment Number of enrolled undergratuate students
Read the Best Colleges Methodology
More from press release (quoted verbatim):
The average six-year graduation rate is 95 percent for the top 10 National Universities and 93.9 percent for the top 10 National Liberal Arts Colleges. The average freshman retention rate is 98.1 percent for the top 10 National Universities and 96.6 percent for the top 10 National Liberal Arts Colleges. For comparison, the average six-year graduation rate among all numerically ranked schools on the National Universities list is 71.3 percent, and the average freshman retention rate is 86.9 percent. For comparison, the average six-year graduation rate among all numerically ranked schools on the National Liberal Arts Colleges list is 75.2 percent, and the average freshman retention rate is 85.6 percent.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By Jonathan Ortiz [source]
This College Completion dataset provides an invaluable insight into the success and progress of college students in the United States. It contains graduation rates, race and other data to offer a comprehensive view of college completion in America. The data is sourced from two primary sources – the National Center for Education Statistics (NCES)’ Integrated Postsecondary Education System (IPEDS) and Voluntary System of Accountability’s Student Success and Progress rate.
At four-year institutions, the graduation figures come from IPEDS for first-time, full-time degree seeking students at the undergraduate level, who entered college six years earlier at four-year institutions or three years earlier at two-year institutions. Furthermore, colleges report how many students completed their program within 100 percent and 150 percent of normal time which corresponds with graduation within four years or six year respectively. Students reported as being of two or more races are included in totals but not shown separately
When analyzing race and ethnicity data NCES have classified student demographics since 2009 into seven categories; White non-Hispanic; Black non Hispanic; American Indian/ Alaskan native ; Asian/ Pacific Islander ; Unknown race or ethnicity ; Non resident with two new categorize Native Hawaiian or Other Pacific Islander combined with Asian plus students belonging to several races. Also worth noting is that different classifications for graduate data stemming from 2008 could be due to variations in time frame examined & groupings used by particular colleges – those who can’t be identified from National Student Clearinghouse records won’t be subjected to penalty by these locations .
When it comes down to efficiency measures parameters like “Awards per 100 Full Time Undergraduate Students which includes all undergraduate completions reported by a particular institution including associate degrees & certificates less than 4 year programme will assist us here while we also take into consideration measures like expenditure categories , Pell grant percentage , endowment values , average student aid amounts & full time faculty members contributing outstandingly towards instructional research / public service initiatives .
When trying to quantify outcomes back up Median Estimated SAT score metric helps us when it is derived either on 25th percentile basis / 75th percentile basis with all these factors further qualified by identifying required criteria meeting 90% threshold when incoming students are considered for relevance . Last but not least , Average Student Aid equalizes amount granted by institution dividing same over total sum received against what was allotted that particular year .
All this analysis gives an opportunity get a holistic overview about performance , potential deficits &
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset contains data on student success, graduation rates, race and gender demographics, an efficiency measure to compare colleges across states and more. It is a great source of information to help you better understand college completion and student success in the United States.
In this guide we’ll explain how to use the data so that you can find out the best colleges for students with certain characteristics or focus on your target completion rate. We’ll also provide some useful tips for getting the most out of this dataset when seeking guidance on which institutions offer the highest graduation rates or have a good reputation for success in terms of completing programs within normal timeframes.
Before getting into specifics about interpreting this dataset, it is important that you understand that each row represents information about a particular institution – such as its state affiliation, level (two-year vs four-year), control (public vs private), name and website. Each column contains various demographic information such as rate of awarding degrees compared to other institutions in its sector; race/ethnicity Makeup; full-time faculty percentage; median SAT score among first-time students; awards/grants comparison versus national average/state average - all applicable depending on institution location — and more!
When using this dataset, our suggestion is that you begin by forming a hypothesis or research question concerning student completion at a given school based upon observable characteristics like financ...