Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
🌍 Global GDP by Country — 2024 Edition
The Global GDP by Country (2024) dataset provides an up-to-date snapshot of worldwide economic performance, summarizing each country’s nominal GDP, growth rate, population, and global economic contribution.
This dataset is ideal for economic analysis, data visualization, policy modeling, and machine learning applications related to global development and financial forecasting.
🎯 Target Use-Cases:
- Economic growth trend analysis
- GDP-based country clustering
- Per capita wealth comparison
- Share of world economy visualization
| Feature Name | Description |
|---|---|
| Country | Official country name |
| GDP (nominal, 2023) | Total nominal GDP in USD |
| GDP (abbrev.) | Simplified GDP format (e.g., “$25.46 Trillion”) |
| GDP Growth | Annual GDP growth rate (%) |
| Population 2023 | Estimated population for 2023 |
| GDP per capita | Average income per person (USD) |
| Share of World GDP | Percentage contribution to global GDP |
💰 Top Economies (Nominal GDP):
United States, China, Japan, Germany, India
📈 Fastest Growing Economies:
India, Bangladesh, Vietnam, and Rwanda
🌐 Global Insights:
- The dataset covers 181 countries representing 100% of global GDP.
- Suitable for data visualization dashboards, AI-driven economic forecasting, and educational research.
Source: Worldometers — GDP by Country (2024)
Dataset compiled and cleaned by: Asadullah Shehbaz
For open research and data analysis.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Gross Domestic Product (GDP) in India was worth 3912.69 billion US dollars in 2024, according to official data from the World Bank. The GDP value of India represents 3.69 percent of the world economy. This dataset provides the latest reported value for - India GDP - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The figures are based on GDP (Nominal) and sector composition ratios provided by the CIA World Fact Book. Agriculture includes farming, fishing, and forestry. Industry includes mining, manufacturing, energy production, and construction. Services cover government activities, communications, transportation, finance, and all other private economic activities that do not produce material goods.
Agriculture Sector : Agriculture Sector contributes 6.4 percent of total world's economic production. Total production of sector is $5,084,800 million. China is the largest contributer followed by India. China and India accounts for 19.49 and 7.39 percent of total global agricultural output. World's largest economy United States is at third place. Next in line come Brazil and Indonesia
**Industry Sector : **With GDP of $23,835 billion, Industry Sector holds a share of 30% of total GDP nominal. China is the largest contributor followed by US. Japan is at 3rd and Germany is at 4th place. These four countries contributes 45.84 of total global industrial output.
Services Sector : Services sector is the largest sector of the world as 63 percent of total global wealth comes from services sector. United States is the largest producer of services sector with around 15.53 trillion USD. Services sector is the leading sector in 201 countries/economies. 30 countries receive more than 80 percent of their GDP from services sector. Chad has lowest 27% contribution by services sector in its economy.
Facebook
TwitterTThe ERS International Macroeconomic Data Set provides historical and projected data for 181 countries that account for more than 99 percent of the world economy. These data and projections are assembled explicitly to serve as underlying assumptions for the annual USDA agricultural supply and demand projections, which provide a 10-year outlook on U.S. and global agriculture. The macroeconomic projections describe the long-term, 10-year scenario that is used as a benchmark for analyzing the impacts of alternative scenarios and macroeconomic shocks.
Explore the International Macroeconomic Data Set 2015 for annual growth rates, consumer price indices, real GDP per capita, exchange rates, and more. Get detailed projections and forecasts for countries worldwide.
Annual growth rates, Consumer price indices (CPI), Real GDP per capita, Real exchange rates, Population, GDP deflator, Real gross domestic product (GDP), Real GDP shares, GDP, projections, Forecast, Real Estate, Per capita, Deflator, share, Exchange Rates, CPI
Afghanistan, Albania, Algeria, Angola, Antigua and Barbuda, Argentina, Armenia, Australia, Austria, Azerbaijan, Bahamas, Bahrain, Bangladesh, Barbados, Belarus, Belgium, Belize, Benin, Bhutan, Bolivia, Bosnia and Herzegovina, Botswana, Brazil, Brunei, Bulgaria, Burkina Faso, Burundi, Côte d'Ivoire, Cabo Verde, Cambodia, Cameroon, Canada, Central African Republic, Chad, Chile, China, Colombia, Congo, Costa Rica, Croatia, Cuba, Cyprus, Denmark, Djibouti, Dominica, Dominican Republic, Ecuador, Egypt, El Salvador, Equatorial Guinea, Eritrea, Estonia, Eswatini, Ethiopia, Fiji, Finland, France, Gabon, Gambia, Georgia, Germany, Ghana, Greece, Grenada, Guatemala, Guinea, Guinea-Bissau, Guyana, Haiti, Honduras, Hungary, Iceland, India, Indonesia, Iran, Iraq, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kazakhstan, Kenya, Kuwait, Kyrgyzstan, Laos, Latvia, Lebanon, Lesotho, Liberia, Libya, Lithuania, Luxembourg, Madagascar, Malawi, Malaysia, Maldives, Mali, Malta, Mauritania, Mauritius, Mexico, Moldova, Mongolia, Morocco, Mozambique, Myanmar, Namibia, Nepal, Netherlands, New Zealand, Nicaragua, Niger, Nigeria, Norway, Oman, Pakistan, Panama, Papua New Guinea, Paraguay, Peru, Philippines, Poland, Portugal, Qatar, Romania, Russia, Rwanda, Samoa, Saudi Arabia, Senegal, Serbia, Seychelles, Sierra Leone, Singapore, Slovakia, Slovenia, Solomon Islands, South Africa, Spain, Sri Lanka, Sudan, Suriname, Sweden, Switzerland, Syria, Tajikistan, Tanzania, Thailand, Togo, Tonga, Trinidad and Tobago, Tunisia, Turkey, Turkmenistan, Uganda, Ukraine, United Arab Emirates, United Kingdom, Uruguay, Uzbekistan, Vanuatu, Venezuela, Vietnam, Yemen, Zambia, Zimbabwe, WORLD Follow data.kapsarc.org for timely data to advance energy economics research. Notes:
Developed countries/1 Australia, New Zealand, Japan, Other Western Europe, European Union 27, North America
Developed countries less USA/2 Australia, New Zealand, Japan, Other Western Europe, European Union 27, Canada
Developing countries/3 Africa, Middle East, Other Oceania, Asia less Japan, Latin America;
Low-income developing countries/4 Haiti, Afghanistan, Nepal, Benin, Burkina Faso, Burundi, Central African Republic, Chad, Democratic Republic of Congo, Eritrea, Ethiopia, Gambia, Guinea, Guinea-Bissau, Liberia, Madagascar, Malawi, Mali, Mozambique, Niger, Rwanda, Senegal, Sierra Leone, Somalia, Tanzania, Togo, Uganda, Zimbabwe;
Emerging markets/5 Mexico, Brazil, Chile, Czech Republic, Hungary, Poland, Slovakia, Russia, China, India, Korea, Taiwan, Indonesia, Malaysia, Philippines, Thailand, Vietnam, Singapore
BRIICs/5 Brazil, Russia, India, Indonesia, China; Former Centrally Planned Economies
Former centrally planned economies/7 Cyprus, Malta, Recently acceded countries, Other Central Europe, Former Soviet Union
USMCA/8 Canada, Mexico, United States
Europe and Central Asia/9 Europe, Former Soviet Union
Middle East and North Africa/10 Middle East and North Africa
Other Southeast Asia outlook/11 Malaysia, Philippines, Thailand, Vietnam
Other South America outlook/12 Chile, Colombia, Peru, Bolivia, Paraguay, Uruguay
Indicator Source
Real gross domestic product (GDP) World Bank World Development Indicators, IHS Global Insight, Oxford Economics Forecasting, as well as estimated and projected values developed by the Economic Research Service all converted to a 2015 base year.
Real GDP per capita U.S. Department of Agriculture, Economic Research Service, Macroeconomic Data Set, GDP table and Population table.
GDP deflator World Bank World Development Indicators, IHS Global Insight, Oxford Economics Forecasting, as well as estimated and projected values developed by the Economic Research Service, all converted to a 2015 base year.
Real GDP shares U.S. Department of Agriculture, Economic Research Service, Macroeconomic Data Set, GDP table.
Real exchange rates U.S. Department of Agriculture, Economic Research Service, Macroeconomic Data Set, CPI table, and Nominal XR and Trade Weights tables developed by the Economic Research Service.
Consumer price indices (CPI) International Financial Statistics International Monetary Fund, IHS Global Insight, Oxford Economics Forecasting, as well as estimated and projected values developed by the Economic Research Service, all converted to a 2015 base year.
Population Department of Commerce, Bureau of the Census, U.S. Department of Agriculture, Economic Research Service, International Data Base.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Gross Domestic Product per capita in India was last recorded at 2396.71 US dollars in 2024. The GDP per Capita in India is equivalent to 19 percent of the world's average. This dataset provides - India GDP per capita - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset provides key economic indicators for five of the world's largest economies, based on their nominal Gross Domestic Product (GDP) in 2022. It includes the GDP values, population, GDP growth rates, per capita GDP, and each country's share of the global economy.
Columns: Country: Name of the country. GDP (nominal, 2022): The total nominal GDP in 2022, represented in USD. GDP (abbrev.): The abbreviated GDP in trillions of USD. GDP growth: The percentage growth in GDP compared to the previous year. Population: Total population of each country in 2022. GDP per capita: The GDP per capita, representing average economic output per person in USD. Share of world GDP: The percentage of global GDP contributed by each country. Key Highlights: The dataset includes some of the largest global economies, such as the United States, China, Japan, Germany, and India. The data can be used to analyze the economic standing of countries in terms of overall GDP and per capita wealth. It offers insights into the relative growth rates and population sizes of these leading economies. This dataset is ideal for exploring economic trends, performing country-wise comparisons, or studying the relationship between population size and GDP growth.
Facebook
TwitterThe Global Findex 2025 reveals how mobile technology is equipping more adults around the world to own and use financial accounts to save formally, access credit, make and receive digital payments, and pursue opportunities. Including the inaugural Global Findex Digital Connectivity Tracker, this fifth edition of Global Findex presents new insights on the interactions among mobile phone ownership, internet use, and financial inclusion.
The Global Findex is the world’s most comprehensive database on digital and financial inclusion. It is also the only global source of comparable demand-side data, allowing cross-country analysis of how adults access and use mobile phones, the internet, and financial accounts to reach digital information and resources, save, borrow, make payments, and manage their financial health. Data for the Global Findex 2025 were collected from nationally representative surveys of about 145,000 adults in 141 economies. The latest edition follows the 2011, 2014, 2017, and 2021 editions and includes new series measuring mobile phone ownership and internet use, digital safety, and frequency of transactions using financial services.
The Global Findex 2025 is an indispensable resource for policy makers in the fields of digital connectivity and financial inclusion, as well as for practitioners, researchers, and development professionals.
National Coverage
Individual
Observation data/ratings [obs]
In most low- and middle-income economies, Global Findex data were collected through face-to-face interviews. In these economies, an area frame design was used for interviewing. In most high-income economies, telephone surveys were used. In 2024, face-to-face interviews were again conducted in 22 economies after phone-based surveys had been employed in 2021 as a result of mobility restrictions related to COVID-19. In addition, an abridged form of the questionnaire was administered by phone to survey participants in Algeria, China, the Islamic Republic of Iran, Libya, Mauritius, and Ukraine because of economy-specific restrictions. In just one economy, Singapore, did the interviewing mode change from face to face in 2021 to phone based in 2024.
In economies in which face-to-face surveys were conducted, the first stage of sampling was the identification of primary sampling units. These units were then stratified by population size, geography, or both and clustered through one or more stages of sampling. Where population information was available, sample selection was based on probabilities proportional to population size; otherwise, simple random sampling was used. Random route procedures were used to select sampled households. Unless an outright refusal occurred, interviewers made up to three attempts to survey each sampled household. To increase the probability of contact and completion, attempts were made at different times of the day and, where possible, on different days. If an interview could not be completed at a household that was initially part of the sample, a simple substitution method was used to select a replacement household for inclusion.
Respondents were randomly selected within sampled households. Each eligible household member (that is, all those ages 15 or older) was listed, and a handheld survey device randomly selected the household member to be interviewed. For paper surveys, the Kish grid method was used to select the respondent. In economies in which cultural restrictions dictated gender matching, respondents were randomly selected from among all eligible adults of the interviewer’s gender.
In economies in which Global Findex surveys have traditionally been phone based, respondent selection followed the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies in which mobile phone and landline penetration is high, a dual sampling frame was used.
The same procedure for respondent selection was applied to economies in which phone-based interviews were being conducted for the first time. Dual-frame (landline and mobile phone) random digit dialing was used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digit dialing was used in economies with limited or no landline presence (less than 20 percent). For landline respondents in economies in which mobile phone or landline penetration is 80 percent or higher, respondents were selected randomly by using either the next-birthday method or the household enumeration method, which involves listing all eligible household members and randomly selecting one to participate. For mobile phone respondents in these economies or in economies in which mobile phone or landline penetration is less than 80 percent, no further selection was performed. At least three attempts were made to reach the randomly selected person in each household, spread over different days and times of day.
The English version of the questionnaire is provided for download.
Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in: Klapper, Leora, Dorothe Singer, Laura Starita, and Alexandra Norris. 2025. The Global Findex Database 2025: Connectivity and Financial Inclusion in the Digital Economy. Washington, DC: World Bank. https://doi.org/10.1596/978-1-4648-2204-9.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
India IN: GDP: % of GDP: Gross Value Added: Agriculture, Forestry, and Fishing data was reported at 15.998 % in 2024. This records a decrease from the previous number of 16.639 % for 2023. India IN: GDP: % of GDP: Gross Value Added: Agriculture, Forestry, and Fishing data is updated yearly, averaging 27.320 % from Mar 1961 (Median) to 2024, with 64 observations. The data reached an all-time high of 42.752 % in 1968 and a record low of 15.998 % in 2024. India IN: GDP: % of GDP: Gross Value Added: Agriculture, Forestry, and Fishing data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s India – Table IN.World Bank.WDI: Gross Domestic Product: Share of GDP. Agriculture, forestry, and fishing corresponds to ISIC divisions 1-3 and includes forestry, hunting, and fishing, as well as cultivation of crops and livestock production. Value added is the net output of a sector after adding up all outputs and subtracting intermediate inputs. It is calculated without making deductions for depreciation of fabricated assets or depletion and degradation of natural resources. The origin of value added is determined by the International Standard Industrial Classification (ISIC), revision 4. Note: For VAB countries, gross value added at factor cost is used as the denominator.;World Bank national accounts data, and OECD National Accounts data files.;Weighted average;Note: Data for OECD countries are based on ISIC, revision 4.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Gross Domestic Product (GDP) in India expanded 8.20 percent in the third quarter of 2025 over the same quarter of the previous year. This dataset provides - India GDP Annual Growth Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterExplore the World Competitiveness Ranking dataset for 2016, including key indicators such as GDP per capita, fixed telephone tariffs, and pension funding. Discover insights on social cohesion, scientific research, and digital transformation in various countries.
Social cohesion, The image abroad of your country encourages business development, Scientific articles published by origin of author, International Telecommunication Union, World Telecommunication/ICT Indicators database, Data reproduced with the kind permission of ITU, National sources, Fixed telephone tariffs, GDP (PPP) per capita, Overall, Exports of goods - growth, Pension funding is adequately addressed for the future, Companies are very good at using big data and analytics to support decision-making, Gross fixed capital formation - real growth, Economic Performance, Scientific research legislation, Percentage of GDP, Health infrastructure meets the needs of society, Estimates based on preliminary data for the most recent year., Singapore: including re-exports., Value, Laws relating to scientific research do encourage innovation, % of GDP, Gross Domestic Product (GDP), Health Infrastructure, Digital transformation in companies is generally well understood, Industrial disputes, EE, Female / male ratio, State ownership of enterprises, Total expenditure on R&D (%), Score, Colombia, Estimates for the most recent year., Percentage change, based on US$ values, Number of listed domestic companies, Tax evasion is not a threat to your economy, Scientific articles, Tax evasion, % change, Use of big data and analytics, National sources, Disposable Income, Equal opportunity, Listed domestic companies, Government budget surplus/deficit (%), Pension funding, US$ per capita at purchasing power parity, Estimates; US$ per capita at purchasing power parity, Image abroad or branding, Equal opportunity legislation in your economy encourages economic development, Number, Article counts are from a selection of journals, books, and conference proceedings in S&E from Scopus. Articles are classified by their year of publication and are assigned to a region/country/economy on the basis of the institutional address(es) listed in the article. Articles are credited on a fractional-count basis. The sum of the countries/economies may not add to the world total because of rounding. Some publications have incomplete address information for coauthored publications in the Scopus database. The unassigned category count is the sum of fractional counts for publications that cannot be assigned to a country or economy. Hong Kong: research output items by the higher education institutions funded by the University Grants Committee only., State ownership of enterprises is not a threat to business activities, Protectionism does not impair the conduct of your business, Digital transformation in companies, Total final energy consumption per capita, Social cohesion is high, Rank, MTOE per capita, Percentage change, based on constant prices, US$ billions, National sources, World Trade Organization Statistics database, Rank, Score, Value, World Rankings
Argentina, Australia, Austria, Belgium, Brazil, Bulgaria, Canada, Chile, China, Colombia, Croatia, Cyprus, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, India, Indonesia, Ireland, Israel, Italy, Japan, Jordan, Kazakhstan, Latvia, Lithuania, Luxembourg, Malaysia, Mexico, Mongolia, Netherlands, New Zealand, Norway, Oman, Peru, Philippines, Poland, Portugal, Qatar, Romania, Russia, Saudi Arabia, Singapore, Slovenia, South Africa, Spain, Sweden, Switzerland, Thailand, Turkey, Ukraine, United Kingdom, Venezuela
Follow data.kapsarc.org for timely data to advance energy economics research.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
India IN: Contribution to World Trade Volume: Goods and Services: expressed in USD data was reported at 0.151 % in 2025. This records a decrease from the previous number of 0.162 % for 2024. India IN: Contribution to World Trade Volume: Goods and Services: expressed in USD data is updated yearly, averaging 0.151 % from Dec 1997 (Median) to 2025, with 29 observations. The data reached an all-time high of 0.570 % in 2021 and a record low of -0.324 % in 2020. India IN: Contribution to World Trade Volume: Goods and Services: expressed in USD data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s India – Table IN.OECD.EO: Trade Statistics: Share in World Trade and Performance Indicators: Forecast: Non OECD Member: Annual. CTGSVD-Contribution to world trade growth, goods and services expressed in USD OECD calculation, see OECD Economic Outlook database documentation
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
India IN: Share in World Exports: Value Exports: Good and Services: expressed in USD data was reported at 2.600 Ratio in 2025. This records an increase from the previous number of 2.578 Ratio for 2024. India IN: Share in World Exports: Value Exports: Good and Services: expressed in USD data is updated yearly, averaging 1.895 Ratio from Dec 1996 (Median) to 2025, with 30 observations. The data reached an all-time high of 2.600 Ratio in 2025 and a record low of 0.602 Ratio in 1996. India IN: Share in World Exports: Value Exports: Good and Services: expressed in USD data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s India – Table IN.OECD.EO: Trade Statistics: Share in World Trade and Performance Indicators: Forecast: Non OECD Member: Annual. XSHA - Share of value exports of goods and services in world exports in USD OECD calculation, see OECD Economic Outlook database documentation
Facebook
TwitterFinancial inclusion is critical in reducing poverty and achieving inclusive economic growth. When people can participate in the financial system, they are better able to start and expand businesses, invest in their children’s education, and absorb financial shocks. Yet prior to 2011, little was known about the extent of financial inclusion and the degree to which such groups as the poor, women, and rural residents were excluded from formal financial systems.
By collecting detailed indicators about how adults around the world manage their day-to-day finances, the Global Findex allows policy makers, researchers, businesses, and development practitioners to track how the use of financial services has changed over time. The database can also be used to identify gaps in access to the formal financial system and design policies to expand financial inclusion.
National Coverage. Sample excludes Northeast states and remote islands. In addition, some districts in Assam, Bihar, Jammu and Kashmir, Jharkhand, and Uttar Pradesh were replaced because of security concerns. The excluded areas represent less than 10% of the population.
Individual
The target population is the civilian, non-institutionalized population 15 years and above.
Sample survey data [ssd]
Triennial
As in the first edition, the indicators in the 2014 Global Findex are drawn from survey data covering almost 150,000 people in more than 140 economies-representing more than 97 percent of the world's population. The survey was carried out over the 2014 calendar year by Gallup, Inc. as part of its Gallup World Poll, which since 2005 has continually conducted surveys of approximately 1,000 people in each of more than 160 economies and in over 140 languages, using randomly selected, nationally representative samples. The target population is the entire civilian, noninstitutionalized population age 15 and above. The set of indicators will be collected again in 2017.
Surveys are conducted face to face in economies where telephone coverage represents less than 80 percent of the population or is the customary methodology. In most economies the fieldwork is completed in two to four weeks. In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households by means of the Kish grid. In economies where cultural restrictions dictate gender matching, respondents are randomly selected through the Kish grid from among all eligible adults of the interviewer's gender.
In economies where telephone interviewing is employed, random digit dialing or a nationally representative list of phone numbers is used. In most economies where cell phone penetration is high, a dual sampling frame is used. Random selection of respondents is achieved by using either the latest birthday or Kish grid method. At least three attempts are made to reach a person in each household, spread over different days and times of day.
The sample size in India was 3,000 individuals.
Computer Assisted Personal Interview [capi]
The questionnaire was designed by the World Bank, in conjunction with a Technical Advisory Board composed of leading academics, practitioners, and policy makers in the field of financial inclusion. The Bill and Melinda Gates Foundation and Gallup Inc. also provided valuable input. The questionnaire was piloted in multiple countries, using focus groups, cognitive interviews, and field testing. The questionnaire is available in 142 languages upon request.
Questions on cash withdrawals, saving using an informal savings club or person outside the family, domestic remittances, school fees, and agricultural payments are only asked in developing economies and few other selected countries. The question on mobile money accounts was only asked in economies that were part of the Mobile Money for the Unbanked (MMU) database of the GSMA at the time the interviews were being held.
Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Asli Demirguc-Kunt, Leora Klapper, Dorothe Singer, and Peter Van Oudheusden, “The Global Findex Database 2014: Measuring Financial Inclusion around the World.” Policy Research Working Paper 7255, World Bank, Washington, D.C.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
India IN: Share in World Trade: Country's Trade: expressed in USD Volume data was reported at 0.029 % in 2025. This records an increase from the previous number of 0.029 % for 2024. India IN: Share in World Trade: Country's Trade: expressed in USD Volume data is updated yearly, averaging 0.021 % from Dec 1996 (Median) to 2025, with 30 observations. The data reached an all-time high of 0.029 % in 2025 and a record low of 0.008 % in 1997. India IN: Share in World Trade: Country's Trade: expressed in USD Volume data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s India – Table IN.OECD.EO: Trade Statistics: Share in World Trade and Performance Indicators: Forecast: Non OECD Member: Annual. SHTGSVD - Share of country's trade, volume (in USD at OECD reference year prices) in world trade OECD calculation, see OECD Economic Outlook database documentation
Facebook
TwitterFinancial inclusion is critical in reducing poverty and achieving inclusive economic growth. When people can participate in the financial system, they are better able to start and expand businesses, invest in their children’s education, and absorb financial shocks. Yet prior to 2011, little was known about the extent of financial inclusion and the degree to which such groups as the poor, women, and rural residents were excluded from formal financial systems.
By collecting detailed indicators about how adults around the world manage their day-to-day finances, the Global Findex allows policy makers, researchers, businesses, and development practitioners to track how the use of financial services has changed over time. The database can also be used to identify gaps in access to the formal financial system and design policies to expand financial inclusion.
Sample excludes Northeast states and remote islands, representing less than 10% of the population.
Individuals
The target population is the civilian, non-institutionalized population 15 years and above.
Observation data/ratings [obs]
The indicators in the 2017 Global Findex database are drawn from survey data covering almost 150,000 people in 144 economies-representing more than 97 percent of the world’s population (see table A.1 of the Global Findex Database 2017 Report for a list of the economies included). The survey was carried out over the 2017 calendar year by Gallup, Inc., as part of its Gallup World Poll, which since 2005 has annually conducted surveys of approximately 1,000 people in each of more than 160 economies and in over 150 languages, using randomly selected, nationally representative samples. The target population is the entire civilian, noninstitutionalized population age 15 and above. Interview procedure Surveys are conducted face to face in economies where telephone coverage represents less than 80 percent of the population or where this is the customary methodology. In most economies the fieldwork is completed in two to four weeks.
In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used.
Respondents are randomly selected within the selected households. Each eligible household member is listed and the handheld survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer’s gender.
In economies where telephone interviewing is employed, random digit dialing or a nationally representative list of phone numbers is used. In most economies where cell phone penetration is high, a dual sampling frame is used. Random selection of respondents is achieved by using either the latest birthday or household enumeration method. At least three attempts are made to reach a person in each household, spread over different days and times of day.
The sample size was 3000.
Computer Assisted Personal Interview [capi]
The questionnaire was designed by the World Bank, in conjunction with a Technical Advisory Board composed of leading academics, practitioners, and policy makers in the field of financial inclusion. The Bill and Melinda Gates Foundation and Gallup Inc. also provided valuable input. The questionnaire was piloted in multiple countries, using focus groups, cognitive interviews, and field testing. The questionnaire is available in more than 140 languages upon request.
Questions on cash on delivery, saving using an informal savings club or person outside the family, domestic remittances, and agricultural payments are only asked in developing economies and few other selected countries. The question on mobile money accounts was only asked in economies that were part of the Mobile Money for the Unbanked (MMU) database of the GSMA at the time the interviews were being held.
Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar, and Jake Hess. 2018. The Global Findex Database 2017: Measuring Financial Inclusion and the Fintech Revolution. Washington, DC: World Bank
Facebook
TwitterThe Indian Economy is currently the 5th Largest Economy in the world. And it aims to reach among the Top 3 in the next 3-4 years. It has registered tremendous economic growth over the last decade.
The 2023 Union Budget of India was presented by the Minister of Finance of India on February 01, 2023.
The Union Budget for FY 2023-24 aims to further strengthen India's economic status. In the 75th Year of India's Independence, the World has recognized the Indian Economy as a 'bright star' with its Economic Growth estimated at 7 per cent, which is the highest among all major economies.
The Vision for** 'Amrit Kaal'** articulated in the Union Budget for FY 2023-24 is centered around:
The seven priorities, termed Saptarishi, adopted in the Union Budget for FY 2023-24 to guide the country towards 'Amrit Kaal', thus providing a blueprint for an empowered and inclusive economy, are:
The dataset provides details about India's allocation of budget to different schemes in various Ministries under Government of India since Fiscal Year 2021-22 to FY 23-24.
The exploratory analysis of the dataset will provide important views about where the Government is targeting in the last few years so as to bring about such drastic change in the economy.
If you like the dataset, please upvote the same so as to keep me motivated for more such datasets in the future.
Facebook
TwitterThe Fiscal Monitor surveys and analyzes the latest public finance developments, it updates fiscal implications of the crisis and medium-term fiscal projections, and assesses policies to put public finances on a sustainable footing.
Country-specific data and projections for key fiscal variables are based on the April 2020 World Economic Outlook database, unless indicated otherwise, and compiled by the IMF staff. Historical data and projections are based on information gathered by IMF country desk officers in the context of their missions and through their ongoing analysis of the evolving situation in each country; they are updated on a continual basis as more information becomes available. Structural breaks in data may be adjusted to produce smooth series through splicing and other techniques. IMF staff estimates serve as proxies when complete information is unavailable. As a result, Fiscal Monitor data can differ from official data in other sources, including the IMF's International Financial Statistics.
The country classification in the Fiscal Monitor divides the world into three major groups: 35 advanced economies, 40 emerging market and middle-income economies, and 40 low-income developing countries. The seven largest advanced economies as measured by GDP (Canada, France, Germany, Italy, Japan, United Kingdom, United States) constitute the subgroup of major advanced economies, often referred to as the Group of Seven (G7). The members of the euro area are also distinguished as a subgroup. Composite data shown in the tables for the euro area cover the current members for all years, even though the membership has increased over time. Data for most European Union member countries have been revised following the adoption of the new European System of National and Regional Accounts (ESA 2010). The low-income developing countries (LIDCs) are countries that have per capita income levels below a certain threshold (currently set at $2,700 in 2016 as measured by the World Bank's Atlas method), structural features consistent with limited development and structural transformation, and external financial linkages insufficiently close to be widely seen as emerging market economies. Zimbabwe is included in the group. Emerging market and middle-income economies include those not classified as advanced economies or low-income developing countries. See Table A, "Economy Groupings," for more details.
Most fiscal data refer to the general government for advanced economies, while for emerging markets and developing economies, data often refer to the central government or budgetary central government only (for specific details, see Tables B-D). All fiscal data refer to the calendar years, except in the cases of Bangladesh, Egypt, Ethiopia, Haiti, Hong Kong Special Administrative Region, India, the Islamic Republic of Iran, Myanmar, Nepal, Pakistan, Singapore, and Thailand, for which they refer to the fiscal year.
Composite data for country groups are weighted averages of individual-country data, unless otherwise specified. Data are weighted by annual nominal GDP converted to U.S. dollars at average market exchange rates as a share of the group GDP.
In many countries, fiscal data follow the IMF's Government Finance Statistics Manual 2014. The overall fiscal balance refers to net lending (+) and borrowing ("") of the general government. In some cases, however, the overall balance refers to total revenue and grants minus total expenditure and net lending.
The fiscal gross and net debt data reported in the Fiscal Monitor are drawn from official data sources and IMF staff estimates. While attempts are made to align gross and net debt data with the definitions in the IMF's Government Finance Statistics Manual, as a result of data limitations or specific country circumstances, these data can sometimes deviate from the formal definitions.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
India IN: GDP: % of Manufacturing: Medium and High Tech Industry data was reported at 41.329 % in 2019. This stayed constant from the previous number of 41.329 % for 2018. India IN: GDP: % of Manufacturing: Medium and High Tech Industry data is updated yearly, averaging 41.234 % from Dec 1990 (Median) to 2019, with 30 observations. The data reached an all-time high of 46.217 % in 1995 and a record low of 34.639 % in 2007. India IN: GDP: % of Manufacturing: Medium and High Tech Industry data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s India – Table IN.World Bank.WDI: Gross Domestic Product: Share of GDP. The proportion of medium and high-tech industry value added in total value added of manufacturing; ; United Nations Industrial Development Organization (UNIDO), Competitive Industrial Performance (CIP) database; ;
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Time series data for the statistic Merchandise exports to low- and middle-income economies in Sub-Saharan Africa (% of total merchandise exports) and country India. Indicator Definition:Merchandise exports to low- and middle-income economies in Sub-Saharan Africa are the sum of merchandise exports from the reporting economy to low- and middle-income economies in the Sub-Saharan Africa region according to World Bank classification of economies. Data are as a percentage of total merchandise exports by the economy. Data are computed only if at least half of the economies in the partner country group had non-missing data.The indicator "Merchandise exports to low- and middle-income economies in Sub-Saharan Africa (% of total merchandise exports)" stands at 8.97 as of 12/31/2023. Regarding the One-Year-Change of the series, the current value constitutes a decrease of -4.07 percent compared to the value the year prior.The 1 year change in percent is -4.07.The 3 year change in percent is 12.14.The 5 year change in percent is 34.64.The 10 year change in percent is 5.34.The Serie's long term average value is 5.15. It's latest available value, on 12/31/2023, is 74.33 percent higher, compared to it's long term average value.The Serie's change in percent from it's minimum value, on 12/31/1989, to it's latest available value, on 12/31/2023, is +2,120.64%.The Serie's change in percent from it's maximum value, on 12/31/2022, to it's latest available value, on 12/31/2023, is -4.07%.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
India IN: Import Penetration: Goods and Services data was reported at 0.182 Ratio in 2027. This records a decrease from the previous number of 0.187 Ratio for 2026. India IN: Import Penetration: Goods and Services data is updated yearly, averaging 0.236 Ratio from Dec 1996 (Median) to 2027, with 32 observations. The data reached an all-time high of 0.238 Ratio in 2012 and a record low of 0.097 Ratio in 1996. India IN: Import Penetration: Goods and Services data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s India – Table IN.OECD.EO: Trade Statistics: Share in World Trade and Performance Indicators: Forecast: Non OECD Member: Annual. MPEN - Import penetration, goods and services OECD calculation, see OECD Economic Outlook database documentation
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
🌍 Global GDP by Country — 2024 Edition
The Global GDP by Country (2024) dataset provides an up-to-date snapshot of worldwide economic performance, summarizing each country’s nominal GDP, growth rate, population, and global economic contribution.
This dataset is ideal for economic analysis, data visualization, policy modeling, and machine learning applications related to global development and financial forecasting.
🎯 Target Use-Cases:
- Economic growth trend analysis
- GDP-based country clustering
- Per capita wealth comparison
- Share of world economy visualization
| Feature Name | Description |
|---|---|
| Country | Official country name |
| GDP (nominal, 2023) | Total nominal GDP in USD |
| GDP (abbrev.) | Simplified GDP format (e.g., “$25.46 Trillion”) |
| GDP Growth | Annual GDP growth rate (%) |
| Population 2023 | Estimated population for 2023 |
| GDP per capita | Average income per person (USD) |
| Share of World GDP | Percentage contribution to global GDP |
💰 Top Economies (Nominal GDP):
United States, China, Japan, Germany, India
📈 Fastest Growing Economies:
India, Bangladesh, Vietnam, and Rwanda
🌐 Global Insights:
- The dataset covers 181 countries representing 100% of global GDP.
- Suitable for data visualization dashboards, AI-driven economic forecasting, and educational research.
Source: Worldometers — GDP by Country (2024)
Dataset compiled and cleaned by: Asadullah Shehbaz
For open research and data analysis.