18 datasets found
  1. World Population by Countries (2025)

    • kaggle.com
    Updated Jan 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Samith Chimminiyan (2025). World Population by Countries (2025) [Dataset]. https://www.kaggle.com/datasets/samithsachidanandan/world-population-by-countries-2025/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 23, 2025
    Dataset provided by
    Kaggle
    Authors
    Samith Chimminiyan
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Area covered
    World
    Description

    Description

    This Dataset contains details of World Population by country. According to the worldometer, the current population of the world is 8.2 billion people. Highest populated country is India followed by China and USA.

    Attribute Information

    • Rank : Country Rank by Population.
    • Country : Name of the Country.
    • Population(2024) : Current Population of each Country.
    • Yearly Change : Percentage Yearly Change in Population.
    • Net Change : Net change in the Population.
    • Density (P/Km²) : Population density (population per square km)
    • Land Area(Km²) : Total land area of the Country.
    • Migrants (net) : Total number of migrants.
    • Fertility Rate : Fertility rate
    • Median Age : Median age of the population
    • Urban Pop % : Percentage of urban population
    • World Share : Share to the word with population.

    Acknowledgements

    https://www.worldometers.info/world-population/population-by-country/

    Image by Gerd Altmann from Pixabay

  2. C

    China Proportion of People Living Below 50 Percent Of Median Income: %

    • ceicdata.com
    Updated Dec 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2024). China Proportion of People Living Below 50 Percent Of Median Income: % [Dataset]. https://www.ceicdata.com/en/china/social-poverty-and-inequality/proportion-of-people-living-below-50-percent-of-median-income-
    Explore at:
    Dataset updated
    Dec 15, 2024
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2010 - Dec 1, 2021
    Area covered
    China
    Description

    China Proportion of People Living Below 50 Percent Of Median Income: % data was reported at 11.600 % in 2021. This records a decrease from the previous number of 11.900 % for 2020. China Proportion of People Living Below 50 Percent Of Median Income: % data is updated yearly, averaging 15.100 % from Dec 1990 (Median) to 2021, with 19 observations. The data reached an all-time high of 19.500 % in 2010 and a record low of 8.900 % in 1990. China Proportion of People Living Below 50 Percent Of Median Income: % data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s China – Table CN.World Bank.WDI: Social: Poverty and Inequality. The percentage of people in the population who live in households whose per capita income or consumption is below half of the median income or consumption per capita. The median is measured at 2017 Purchasing Power Parity (PPP) using the Poverty and Inequality Platform (http://www.pip.worldbank.org). For some countries, medians are not reported due to grouped and/or confidential data. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).

  3. w

    Global Financial Inclusion (Global Findex) Database 2021 - Hong Kong SAR,...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Dec 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2022). Global Financial Inclusion (Global Findex) Database 2021 - Hong Kong SAR, China [Dataset]. https://microdata.worldbank.org/index.php/catalog/4650
    Explore at:
    Dataset updated
    Dec 16, 2022
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2021
    Area covered
    Hong Kong
    Description

    Abstract

    The fourth edition of the Global Findex offers a lens into how people accessed and used financial services during the COVID-19 pandemic, when mobility restrictions and health policies drove increased demand for digital services of all kinds.

    The Global Findex is the world's most comprehensive database on financial inclusion. It is also the only global demand-side data source allowing for global and regional cross-country analysis to provide a rigorous and multidimensional picture of how adults save, borrow, make payments, and manage financial risks. Global Findex 2021 data were collected from national representative surveys of about 128,000 adults in more than 120 economies. The latest edition follows the 2011, 2014, and 2017 editions, and it includes a number of new series measuring financial health and resilience and contains more granular data on digital payment adoption, including merchant and government payments.

    The Global Findex is an indispensable resource for financial service practitioners, policy makers, researchers, and development professionals.

    Geographic coverage

    National coverage

    Analysis unit

    Individual

    Kind of data

    Observation data/ratings [obs]

    Sampling procedure

    In most developing economies, Global Findex data have traditionally been collected through face-to-face interviews. Surveys are conducted face-to-face in economies where telephone coverage represents less than 80 percent of the population or where in-person surveying is the customary methodology. However, because of ongoing COVID-19 related mobility restrictions, face-to-face interviewing was not possible in some of these economies in 2021. Phone-based surveys were therefore conducted in 67 economies that had been surveyed face-to-face in 2017. These 67 economies were selected for inclusion based on population size, phone penetration rate, COVID-19 infection rates, and the feasibility of executing phone-based methods where Gallup would otherwise conduct face-to-face data collection, while complying with all government-issued guidance throughout the interviewing process. Gallup takes both mobile phone and landline ownership into consideration. According to Gallup World Poll 2019 data, when face-to-face surveys were last carried out in these economies, at least 80 percent of adults in almost all of them reported mobile phone ownership. All samples are probability-based and nationally representative of the resident adult population. Phone surveys were not a viable option in 17 economies that had been part of previous Global Findex surveys, however, because of low mobile phone ownership and surveying restrictions. Data for these economies will be collected in 2022 and released in 2023.

    In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households. Each eligible household member is listed, and the hand-held survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.

    In traditionally phone-based economies, respondent selection follows the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies where mobile phone and landline penetration is high, a dual sampling frame is used.

    The same respondent selection procedure is applied to the new phone-based economies. Dual frame (landline and mobile phone) random digital dialing is used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digital dialing is used in economies with limited to no landline presence (less than 20 percent).

    For landline respondents in economies where mobile phone or landline penetration is 80 percent or higher, random selection of respondents is achieved by using either the latest birthday or household enumeration method. For mobile phone respondents in these economies or in economies where mobile phone or landline penetration is less than 80 percent, no further selection is performed. At least three attempts are made to reach a person in each household, spread over different days and times of day.

    Sample size for Hong Kong SAR, China is 1003.

    Mode of data collection

    Landline and mobile telephone

    Research instrument

    Questionnaires are available on the website.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar. 2022. The Global Findex Database 2021: Financial Inclusion, Digital Payments, and Resilience in the Age of COVID-19. Washington, DC: World Bank.

  4. C

    China % of Population with Access to Water: City

    • ceicdata.com
    Updated Dec 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2024). China % of Population with Access to Water: City [Dataset]. https://www.ceicdata.com/en/china/percentage-of-population-with-access-to-water/-of-population-with-access-to-water-city
    Explore at:
    Dataset updated
    Dec 15, 2024
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2012 - Dec 1, 2023
    Area covered
    China
    Variables measured
    Material Supply
    Description

    China % of Population with Access to Water: City data was reported at 99.433 % in 2023. This records an increase from the previous number of 99.387 % for 2022. China % of Population with Access to Water: City data is updated yearly, averaging 96.120 % from Dec 1985 (Median) to 2023, with 31 observations. The data reached an all-time high of 99.433 % in 2023 and a record low of 63.900 % in 2000. China % of Population with Access to Water: City data remains active status in CEIC and is reported by Ministry of Housing and Urban-Rural Development. The data is categorized under China Premium Database’s Utility Sector – Table CN.RCA: Percentage of Population with Access to Water.

  5. C

    China Poverty Headcount Ratio at Societal Poverty Lines: % of Population

    • ceicdata.com
    Updated Feb 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). China Poverty Headcount Ratio at Societal Poverty Lines: % of Population [Dataset]. https://www.ceicdata.com/en/china/social-poverty-and-inequality
    Explore at:
    Dataset updated
    Feb 1, 2023
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2010 - Dec 1, 2021
    Area covered
    China
    Description

    Poverty Headcount Ratio at Societal Poverty Lines: % of Population data was reported at 19.000 % in 2021. This records a decrease from the previous number of 20.900 % for 2020. Poverty Headcount Ratio at Societal Poverty Lines: % of Population data is updated yearly, averaging 31.700 % from Dec 1990 (Median) to 2021, with 19 observations. The data reached an all-time high of 72.000 % in 1990 and a record low of 19.000 % in 2021. Poverty Headcount Ratio at Societal Poverty Lines: % of Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s China – Table CN.World Bank.WDI: Social: Poverty and Inequality. The poverty headcount ratio at societal poverty line is the percentage of a population living in poverty according to the World Bank's Societal Poverty Line. The Societal Poverty Line is expressed in purchasing power adjusted 2017 U.S. dollars and defined as max($2.15, $1.15 + 0.5*Median). This means that when the national median is sufficiently low, the Societal Poverty line is equivalent to the extreme poverty line, $2.15. For countries with a sufficiently high national median, the Societal Poverty Line grows as countries’ median income grows.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).

  6. w

    Global Financial Inclusion (Global Findex) Database 2014 - China

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Oct 29, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2015). Global Financial Inclusion (Global Findex) Database 2014 - China [Dataset]. https://microdata.worldbank.org/index.php/catalog/2400
    Explore at:
    Dataset updated
    Oct 29, 2015
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2014
    Area covered
    China
    Description

    Abstract

    Financial inclusion is critical in reducing poverty and achieving inclusive economic growth. When people can participate in the financial system, they are better able to start and expand businesses, invest in their children’s education, and absorb financial shocks. Yet prior to 2011, little was known about the extent of financial inclusion and the degree to which such groups as the poor, women, and rural residents were excluded from formal financial systems.

    By collecting detailed indicators about how adults around the world manage their day-to-day finances, the Global Findex allows policy makers, researchers, businesses, and development practitioners to track how the use of financial services has changed over time. The database can also be used to identify gaps in access to the formal financial system and design policies to expand financial inclusion.

    Geographic coverage

    National Coverage. Oversampling was used in Beijing, Guangzhou, and Shanghai.

    Analysis unit

    Individual

    Universe

    The target population is the civilian, non-institutionalized population 15 years and above.

    Kind of data

    Sample survey data [ssd]

    Frequency of data collection

    Triennial

    Sampling procedure

    As in the first edition, the indicators in the 2014 Global Findex are drawn from survey data covering almost 150,000 people in more than 140 economies-representing more than 97 percent of the world's population. The survey was carried out over the 2014 calendar year by Gallup, Inc. as part of its Gallup World Poll, which since 2005 has continually conducted surveys of approximately 1,000 people in each of more than 160 economies and in over 140 languages, using randomly selected, nationally representative samples. The target population is the entire civilian, noninstitutionalized population age 15 and above. The set of indicators will be collected again in 2017.

    Surveys are conducted face to face in economies where telephone coverage represents less than 80 percent of the population or is the customary methodology. In most economies the fieldwork is completed in two to four weeks. In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households by means of the Kish grid. In economies where cultural restrictions dictate gender matching, respondents are randomly selected through the Kish grid from among all eligible adults of the interviewer's gender.

    In economies where telephone interviewing is employed, random digit dialing or a nationally representative list of phone numbers is used. In most economies where cell phone penetration is high, a dual sampling frame is used. Random selection of respondents is achieved by using either the latest birthday or Kish grid method. At least three attempts are made to reach a person in each household, spread over different days and times of day.

    The sample size in China was 4,696 individuals.

    Mode of data collection

    Other [oth]

    Research instrument

    The questionnaire was designed by the World Bank, in conjunction with a Technical Advisory Board composed of leading academics, practitioners, and policy makers in the field of financial inclusion. The Bill and Melinda Gates Foundation and Gallup Inc. also provided valuable input. The questionnaire was piloted in multiple countries, using focus groups, cognitive interviews, and field testing. The questionnaire is available in 142 languages upon request.

    Questions on cash withdrawals, saving using an informal savings club or person outside the family, domestic remittances, school fees, and agricultural payments are only asked in developing economies and few other selected countries. The question on mobile money accounts was only asked in economies that were part of the Mobile Money for the Unbanked (MMU) database of the GSMA at the time the interviews were being held.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Asli Demirguc-Kunt, Leora Klapper, Dorothe Singer, and Peter Van Oudheusden, “The Global Findex Database 2014: Measuring Financial Inclusion around the World.” Policy Research Working Paper 7255, World Bank, Washington, D.C.

  7. GDP-BY-COUNTRY-2022

    • kaggle.com
    Updated Oct 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Muneeb_Qureshi3131 (2024). GDP-BY-COUNTRY-2022 [Dataset]. https://www.kaggle.com/datasets/muneebqureshi3131/gdp-by-country
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 24, 2024
    Dataset provided by
    Kaggle
    Authors
    Muneeb_Qureshi3131
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    This dataset provides key economic indicators for five of the world's largest economies, based on their nominal Gross Domestic Product (GDP) in 2022. It includes the GDP values, population, GDP growth rates, per capita GDP, and each country's share of the global economy.

    Columns: Country: Name of the country. GDP (nominal, 2022): The total nominal GDP in 2022, represented in USD. GDP (abbrev.): The abbreviated GDP in trillions of USD. GDP growth: The percentage growth in GDP compared to the previous year. Population: Total population of each country in 2022. GDP per capita: The GDP per capita, representing average economic output per person in USD. Share of world GDP: The percentage of global GDP contributed by each country. Key Highlights: The dataset includes some of the largest global economies, such as the United States, China, Japan, Germany, and India. The data can be used to analyze the economic standing of countries in terms of overall GDP and per capita wealth. It offers insights into the relative growth rates and population sizes of these leading economies. This dataset is ideal for exploring economic trends, performing country-wise comparisons, or studying the relationship between population size and GDP growth.

  8. g

    CARMA, China Power Plant Emissions, China, 2000/ 2007/Future

    • geocommons.com
    Updated May 5, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CARMA (2008). CARMA, China Power Plant Emissions, China, 2000/ 2007/Future [Dataset]. http://geocommons.com/search.html
    Explore at:
    Dataset updated
    May 5, 2008
    Dataset provided by
    data
    CARMA
    Description

    All the data for this dataset is provided from CARMA: Data from CARMA (www.carma.org) This dataset provides information about Power Plant emissions in China. Power Plant emissions from all power plants in China were obtained by CARMA for the past (2000 Annual Report), the present (2007 data), and the future. CARMA determine data presented for the future to reflect planned plant construction, expansion, and retirement. The dataset provides the name, company, parent company, city, state, metro area, lat/lon, and plant id for each individual power plant. Only Power Plants that had a listed longitude and latitude in CARMA's database were mapped. The dataset reports for the three time periods: Intensity: Pounds of CO2 emitted per megawatt-hour of electricity produced. Energy: Annual megawatt-hours of electricity produced. Carbon: Annual carbon dioxide (CO2) emissions. The units are short or U.S. tons. Multiply by 0.907 to get metric tons. Carbon Monitoring for Action (CARMA) is a massive database containing information on the carbon emissions of over 50,000 power plants and 4,000 power companies worldwide. Power generation accounts for 40% of all carbon emissions in the United States and about one-quarter of global emissions. CARMA is the first global inventory of a major, sector of the economy. The objective of CARMA.org is to equip individuals with the information they need to forge a cleaner, low-carbon future. By providing complete information for both clean and dirty power producers, CARMA hopes to influence the opinions and decisions of consumers, investors, shareholders, managers, workers, activists, and policymakers. CARMA builds on experience with public information disclosure techniques that have proven successful in reducing traditional pollutants. Please see carma.org for more information http://carma.org/region/detail/47

  9. C

    China Educational Attainment: Doctoral or Equivalent: Population 25+ Years:...

    • ceicdata.com
    Updated Dec 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2024). China Educational Attainment: Doctoral or Equivalent: Population 25+ Years: % Cumulative: Female [Dataset]. https://www.ceicdata.com/en/china/social-education-statistics/educational-attainment-doctoral-or-equivalent-population-25-years--cumulative-female
    Explore at:
    Dataset updated
    Dec 15, 2024
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2020
    Area covered
    China
    Variables measured
    Education Statistics
    Description

    China Educational Attainment: Doctoral or Equivalent: Population 25+ Years: % Cumulative: Female data was reported at 0.090 % in 2020. China Educational Attainment: Doctoral or Equivalent: Population 25+ Years: % Cumulative: Female data is updated yearly, averaging 0.090 % from Dec 2020 (Median) to 2020, with 1 observations. The data reached an all-time high of 0.090 % in 2020 and a record low of 0.090 % in 2020. China Educational Attainment: Doctoral or Equivalent: Population 25+ Years: % Cumulative: Female data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s China – Table CN.World Bank.WDI: Social: Education Statistics. The percentage of population ages 25 and over that attained or completed Doctoral or equivalent.;UNESCO Institute for Statistics (UIS). UIS.Stat Bulk Data Download Service. Accessed April 5, 2025. https://apiportal.uis.unesco.org/bdds.;;

  10. H

    Hong Kong SAR, China HK: Rural Population Living in Areas Where Elevation is...

    • ceicdata.com
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Hong Kong SAR, China HK: Rural Population Living in Areas Where Elevation is Below 5 Meters: % of Total Population [Dataset]. https://www.ceicdata.com/en/hong-kong/land-use-protected-areas-and-national-wealth/hk-rural-population-living-in-areas-where-elevation-is-below-5-meters--of-total-population
    Explore at:
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1990 - Dec 1, 2010
    Area covered
    Hong Kong
    Description

    Hong Kong HK: Rural Population Living in Areas Where Elevation is Below 5 Meters: % of Total Population data was reported at 4.422 % in 2010. This records a decrease from the previous number of 4.450 % for 2000. Hong Kong HK: Rural Population Living in Areas Where Elevation is Below 5 Meters: % of Total Population data is updated yearly, averaging 4.450 % from Dec 1990 (Median) to 2010, with 3 observations. The data reached an all-time high of 4.539 % in 1990 and a record low of 4.422 % in 2010. Hong Kong HK: Rural Population Living in Areas Where Elevation is Below 5 Meters: % of Total Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Hong Kong SAR – Table HK.World Bank.WDI: Land Use, Protected Areas and National Wealth. Rural population below 5m is the percentage of the total population, living in areas where the elevation is 5 meters or less.; ; Center for International Earth Science Information Network (CIESIN)/Columbia University. 2013. Urban-Rural Population and Land Area Estimates Version 2. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/lecz-urban-rural-population-land-area-estimates-v2.; Weighted average;

  11. H

    Hong Kong SAR, China HK: Access to Electricity: Urban: % of Population

    • ceicdata.com
    Updated Jan 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Hong Kong SAR, China HK: Access to Electricity: Urban: % of Population [Dataset]. https://www.ceicdata.com/en/hong-kong/energy-production-and-consumption/hk-access-to-electricity-urban--of-population
    Explore at:
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    Hong Kong
    Variables measured
    Industrial Production
    Description

    Hong Kong HK: Access to Electricity: Urban: % of Population data was reported at 100.000 % in 2016. This stayed constant from the previous number of 100.000 % for 2015. Hong Kong HK: Access to Electricity: Urban: % of Population data is updated yearly, averaging 100.000 % from Dec 1990 (Median) to 2016, with 27 observations. The data reached an all-time high of 100.000 % in 2016 and a record low of 100.000 % in 2016. Hong Kong HK: Access to Electricity: Urban: % of Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Hong Kong SAR – Table HK.World Bank.WDI: Energy Production and Consumption. Access to electricity, urban is the percentage of urban population with access to electricity.; ; World Bank, Sustainable Energy for All (SE4ALL) database from the SE4ALL Global Tracking Framework led jointly by the World Bank, International Energy Agency, and the Energy Sector Management Assistance Program.; Weighted average;

  12. M

    Macau SAR, China MO: Labour Force With Intermediate Education: % of Total...

    • ceicdata.com
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Macau SAR, China MO: Labour Force With Intermediate Education: % of Total Working-age Population [Dataset]. https://www.ceicdata.com/en/macau/labour-force/mo-labour-force-with-intermediate-education--of-total-workingage-population
    Explore at:
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2009 - Dec 1, 2016
    Area covered
    Macao
    Variables measured
    Labour Force
    Description

    Macau MO: Labour Force With Intermediate Education: % of Total Working-age Population data was reported at 69.820 % in 2016. This records a decrease from the previous number of 70.120 % for 2015. Macau MO: Labour Force With Intermediate Education: % of Total Working-age Population data is updated yearly, averaging 71.650 % from Dec 2009 (Median) to 2016, with 7 observations. The data reached an all-time high of 73.040 % in 2011 and a record low of 69.820 % in 2016. Macau MO: Labour Force With Intermediate Education: % of Total Working-age Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Macau – Table MO.World Bank: Labour Force. The percentage of the working age population with an intermediate level of education who are in the labor force. Intermediate education comprises upper secondary or post-secondary non tertiary education according to the International Standard Classification of Education 2011 (ISCED 2011).; ; International Labour Organization, ILOSTAT database. Data retrieved in September 2018.; Weighted average;

  13. H

    Hong Kong SAR, China HK: Labour Force With Advanced Education: % of Total...

    • ceicdata.com
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Hong Kong SAR, China HK: Labour Force With Advanced Education: % of Total Working-age Population [Dataset]. https://www.ceicdata.com/en/hong-kong/labour-force/hk-labour-force-with-advanced-education--of-total-workingage-population
    Explore at:
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2009 - Dec 1, 2016
    Area covered
    Hong Kong
    Variables measured
    Labour Force
    Description

    Hong Kong HK: Labour Force With Advanced Education: % of Total Working-age Population data was reported at 71.860 % in 2016. This records a decrease from the previous number of 71.880 % for 2015. Hong Kong HK: Labour Force With Advanced Education: % of Total Working-age Population data is updated yearly, averaging 71.735 % from Dec 2009 (Median) to 2016, with 8 observations. The data reached an all-time high of 74.510 % in 2011 and a record low of 70.260 % in 2010. Hong Kong HK: Labour Force With Advanced Education: % of Total Working-age Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Hong Kong – Table HK.World Bank: Labour Force. The percentage of the working age population with an advanced level of education who are in the labor force. Advanced education comprises short-cycle tertiary education, a bachelor’s degree or equivalent education level, a master’s degree or equivalent education level, or doctoral degree or equivalent education level according to the International Standard Classification of Education 2011 (ISCED 2011).; ; International Labour Organization, ILOSTAT database. Data retrieved in November 2017.; Weighted Average;

  14. H

    Hong Kong SAR, China HK: Share of Youth Not in Education, Employment or...

    • ceicdata.com
    Updated Jan 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Hong Kong SAR, China HK: Share of Youth Not in Education, Employment or Training: Female: % of Female Youth Population [Dataset]. https://www.ceicdata.com/en/hong-kong/employment-and-unemployment/hk-share-of-youth-not-in-education-employment-or-training-female--of-female-youth-population
    Explore at:
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2009 - Dec 1, 2016
    Area covered
    Hong Kong
    Variables measured
    Employment
    Description

    Hong Kong HK: Share of Youth Not in Education, Employment or Training: Female: % of Female Youth Population data was reported at 5.900 % in 2016. This records a decrease from the previous number of 6.760 % for 2015. Hong Kong HK: Share of Youth Not in Education, Employment or Training: Female: % of Female Youth Population data is updated yearly, averaging 6.290 % from Dec 2009 (Median) to 2016, with 8 observations. The data reached an all-time high of 6.970 % in 2009 and a record low of 5.770 % in 2012. Hong Kong HK: Share of Youth Not in Education, Employment or Training: Female: % of Female Youth Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Hong Kong – Table HK.World Bank: Employment and Unemployment. Share of youth not in education, employment or training (NEET) is the proportion of young people who are not in education, employment, or training to the population of the corresponding age group: youth (ages 15 to 24); persons ages 15 to 29; or both age groups.; ; International Labour Organization, ILOSTAT database. Data retrieved in November 2017.; Weighted Average;

  15. M

    Macau SAR, China MO: Share of Youth Not in Education, Employment or...

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Macau SAR, China MO: Share of Youth Not in Education, Employment or Training: Male: % of Male Youth Population [Dataset]. https://www.ceicdata.com/en/macau/employment-and-unemployment/mo-share-of-youth-not-in-education-employment-or-training-male--of-male-youth-population
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2009 - Dec 1, 2016
    Area covered
    Macao
    Variables measured
    Employment
    Description

    Macau MO: Share of Youth Not in Education, Employment or Training: Male: % of Male Youth Population data was reported at 5.560 % in 2016. This records an increase from the previous number of 5.250 % for 2015. Macau MO: Share of Youth Not in Education, Employment or Training: Male: % of Male Youth Population data is updated yearly, averaging 5.580 % from Dec 2009 (Median) to 2016, with 8 observations. The data reached an all-time high of 8.420 % in 2009 and a record low of 4.890 % in 2014. Macau MO: Share of Youth Not in Education, Employment or Training: Male: % of Male Youth Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Macau – Table MO.World Bank: Employment and Unemployment. Share of youth not in education, employment or training (NEET) is the proportion of young people who are not in education, employment, or training to the population of the corresponding age group: youth (ages 15 to 24); persons ages 15 to 29; or both age groups.; ; International Labour Organization, ILOSTAT database. Data retrieved in November 2017.; Weighted Average;

  16. M

    Macau SAR, China MO: Share of Youth Not in Education, Employment or...

    • ceicdata.com
    Updated Jan 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Macau SAR, China MO: Share of Youth Not in Education, Employment or Training: Female: % of Female Youth Population [Dataset]. https://www.ceicdata.com/en/macau/employment-and-unemployment/mo-share-of-youth-not-in-education-employment-or-training-female--of-female-youth-population
    Explore at:
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2009 - Dec 1, 2016
    Area covered
    Macao
    Variables measured
    Employment
    Description

    Macau MO: Share of Youth Not in Education, Employment or Training: Female: % of Female Youth Population data was reported at 4.320 % in 2016. This records a decrease from the previous number of 5.360 % for 2015. Macau MO: Share of Youth Not in Education, Employment or Training: Female: % of Female Youth Population data is updated yearly, averaging 5.415 % from Dec 2009 (Median) to 2016, with 8 observations. The data reached an all-time high of 6.300 % in 2011 and a record low of 4.320 % in 2016. Macau MO: Share of Youth Not in Education, Employment or Training: Female: % of Female Youth Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Macau – Table MO.World Bank: Employment and Unemployment. Share of youth not in education, employment or training (NEET) is the proportion of young people who are not in education, employment, or training to the population of the corresponding age group: youth (ages 15 to 24); persons ages 15 to 29; or both age groups.; ; International Labour Organization, ILOSTAT database. Data retrieved in November 2017.; Weighted Average;

  17. M

    Macau SAR, China MO: Labour Force With Basic Education: Male: % of Male...

    • ceicdata.com
    Updated Jan 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Macau SAR, China MO: Labour Force With Basic Education: Male: % of Male Working-age Population [Dataset]. https://www.ceicdata.com/en/macau/labour-force/mo-labour-force-with-basic-education-male--of-male-workingage-population
    Explore at:
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2009 - Dec 1, 2016
    Area covered
    Macao
    Variables measured
    Labour Force
    Description

    Macau MO: Labour Force With Basic Education: Male: % of Male Working-age Population data was reported at 64.500 % in 2016. This records a decrease from the previous number of 66.610 % for 2015. Macau MO: Labour Force With Basic Education: Male: % of Male Working-age Population data is updated yearly, averaging 67.460 % from Dec 2009 (Median) to 2016, with 7 observations. The data reached an all-time high of 68.740 % in 2009 and a record low of 64.500 % in 2016. Macau MO: Labour Force With Basic Education: Male: % of Male Working-age Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Macau – Table MO.World Bank: Labour Force. The percentage of the working age population with a basic level of education who are in the labor force. Basic education comprises primary education or lower secondary education according to the International Standard Classification of Education 2011 (ISCED 2011).; ; International Labour Organization, ILOSTAT database. Data retrieved in November 2017.; Weighted Average;

  18. H

    Hong Kong SAR, China HK: Labour Force With Intermediate Education: % of...

    • ceicdata.com
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Hong Kong SAR, China HK: Labour Force With Intermediate Education: % of Total Working-age Population [Dataset]. https://www.ceicdata.com/en/hong-kong/labour-force/hk-labour-force-with-intermediate-education--of-total-workingage-population
    Explore at:
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2009 - Dec 1, 2016
    Area covered
    Hong Kong
    Variables measured
    Labour Force
    Description

    Hong Kong HK: Labour Force With Intermediate Education: % of Total Working-age Population data was reported at 62.890 % in 2016. This records a decrease from the previous number of 63.360 % for 2015. Hong Kong HK: Labour Force With Intermediate Education: % of Total Working-age Population data is updated yearly, averaging 63.125 % from Dec 2009 (Median) to 2016, with 8 observations. The data reached an all-time high of 63.560 % in 2014 and a record low of 61.740 % in 2010. Hong Kong HK: Labour Force With Intermediate Education: % of Total Working-age Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Hong Kong – Table HK.World Bank: Labour Force. The percentage of the working age population with an intermediate level of education who are in the labor force. Intermediate education comprises upper secondary or post-secondary non tertiary education according to the International Standard Classification of Education 2011 (ISCED 2011).; ; International Labour Organization, ILOSTAT database. Data retrieved in September 2018.; Weighted average;

  19. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Samith Chimminiyan (2025). World Population by Countries (2025) [Dataset]. https://www.kaggle.com/datasets/samithsachidanandan/world-population-by-countries-2025/code
Organization logo

World Population by Countries (2025)

Countries List Based on the Population

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Jan 23, 2025
Dataset provided by
Kaggle
Authors
Samith Chimminiyan
License

http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

Area covered
World
Description

Description

This Dataset contains details of World Population by country. According to the worldometer, the current population of the world is 8.2 billion people. Highest populated country is India followed by China and USA.

Attribute Information

  • Rank : Country Rank by Population.
  • Country : Name of the Country.
  • Population(2024) : Current Population of each Country.
  • Yearly Change : Percentage Yearly Change in Population.
  • Net Change : Net change in the Population.
  • Density (P/Km²) : Population density (population per square km)
  • Land Area(Km²) : Total land area of the Country.
  • Migrants (net) : Total number of migrants.
  • Fertility Rate : Fertility rate
  • Median Age : Median age of the population
  • Urban Pop % : Percentage of urban population
  • World Share : Share to the word with population.

Acknowledgements

https://www.worldometers.info/world-population/population-by-country/

Image by Gerd Altmann from Pixabay

Search
Clear search
Close search
Google apps
Main menu