100+ datasets found
  1. CMS Program Statistics - Medicare Home Health Agency

    • catalog.data.gov
    • data.virginia.gov
    • +1more
    Updated Sep 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Medicare & Medicaid Services (2025). CMS Program Statistics - Medicare Home Health Agency [Dataset]. https://catalog.data.gov/dataset/medicare-home-health-agency-1fa6a
    Explore at:
    Dataset updated
    Sep 10, 2025
    Dataset provided by
    Centers for Medicare & Medicaid Services
    Description

    The Medicare Home Health Agency tables provide use and payment data for home health agencies. The tables include use and expenditure data from home health Part A (Hospital Insurance) and Part B (Medical Insurance) claims. For additional information on enrollment, providers, and Medicare use and payment, visit the CMS Program Statistics page. These data do not exist in a machine-readable format, so the view data and API options are not available. Please use the download function to access the data. Below is the list of tables: MDCR HHA 1. Medicare Home Health Agencies: Utilization and Program Payments for Original Medicare Beneficiaries, by Type of Entitlement, Yearly Trend MDCR HHA 2. Medicare Home Health Agencies: Utilization and Program Payments for Original Medicare Beneficiaries, by Demographic Characteristics and Medicare-Medicaid Enrollment Status MDCR HHA 3. Medicare Home Health Agencies: Utilization and Program Payments for Original Medicare Beneficiaries, by Area of Residence MDCR HHA 4. Medicare Home Health Agencies: Persons with Utilization and Total Service Visits for Original Medicare Beneficiaries, Type of Agency and Type of Service Visit MDCR HHA 5. Medicare Home Health Agencies: Persons with Utilization and Total Service Visits for Original Medicare Beneficiaries, by Type of Control and Type of Service Visit MDCR HHA 6. Medicare Home Health Agencies: Persons with Utilization, Total Service Visits, and Program Payments for Original Medicare Beneficiaries, by Number of Service Visits and Number of Episodes

  2. a

    Gallatin County Health Insurance Coverage

    • strategic-plan-bozeman.opendata.arcgis.com
    • public-bozeman.opendata.arcgis.com
    Updated Sep 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Bozeman, Montana (2023). Gallatin County Health Insurance Coverage [Dataset]. https://strategic-plan-bozeman.opendata.arcgis.com/datasets/gallatin-county-health-insurance-coverage/about
    Explore at:
    Dataset updated
    Sep 27, 2023
    Dataset authored and provided by
    City of Bozeman, Montana
    Area covered
    Description

    This feature service contains data from the American Community Survey: 5-year Estimates Subject Tables for all census tracts within Gallatin County. The attributes come from the Selected Characteristics of Health Insurance Coverage in the United States table (S2701). Processing Notes:Data was downloaded from the U.S. Census Bureau and imported into FME to create an AGOL Feature Service. Each attribute has been given an abbreviated alias name derived from the American Community Survey (ACS) categorical descriptions. The Data Dictionary below includes all given ACS attribute name aliases. For example: Pct_Uninsured_EduB is the percent of the population that is without health insurance coverage, noninstitutionalized 26 years and over, with a Bachelor's degree or higherData DictionaryACS_EST_YR: American Community Survey 5-Year Estimate Subject Tables data yearGEO_ID: Census Bureau geographic identifierNAME: Specified geographyPct_Insured: Percent of the population with health insurance coveragePct_Uninsured: Percent of the population without health insurance coverageRace/Ethinicity:A: AsianAIAN: American Indian or Alaska NativeBAA: Black or African AmericanHL: Hispanic or LatinoNHPI: Native Hawaiian or other Pacific IslanderW: WhiteOther: Some other raceTwo: Two or more racesAnnual Income:IncUnder25k: Household income below $25,000Inc25kto50k:Household income from $25,000 to $49,999Inc50kto75k: Household income from $50,000 to $74,999Inc75kto100k: Household income from $75,000 to $99,999IncOver100k: Household income $100,000 and overEducational Attainment (Civilian noninstitutionalized population 26 years and over):EduB: Bachelor's degree or higherEduHS: High school graduate (includes equivalency)EduNHS: Less than high school graduateEduA: Some college or associate's degreeDownload Selected Characteristics of Health Insurance Coverage in the United States data for Gallatin County, MT. Additional LinksU.S. Census BureauU.S. Census Bureau American Community Survey (ACS)About the American Community Survey

  3. 2024 American Community Survey: B27001G | Health Insurance Coverage Status...

    • data.census.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2024 American Community Survey: B27001G | Health Insurance Coverage Status by Age (Two or More Races) (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT1Y2024.B27001G?q=Health+Insurance&g=040XX00US50
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024
    Description

    Key Table Information.Table Title.Health Insurance Coverage Status by Age (Two or More Races).Table ID.ACSDT1Y2024.B27001G.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cit...

  4. U

    United States Insurance: Number Employed: Home-Office Personnel: Health...

    • ceicdata.com
    Updated Feb 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). United States Insurance: Number Employed: Home-Office Personnel: Health Insurance [Dataset]. https://www.ceicdata.com/en/united-states/insurance-operational-statistics/insurance-number-employed-homeoffice-personnel-health-insurance
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2012 - Dec 1, 2023
    Area covered
    United States
    Variables measured
    Insurance Market
    Description

    United States Insurance: Number Employed: Home-Office Personnel: Health Insurance data was reported at 600,276.000 Person in 2023. This records an increase from the previous number of 573,908.000 Person for 2022. United States Insurance: Number Employed: Home-Office Personnel: Health Insurance data is updated yearly, averaging 324,900.000 Person from Dec 1960 (Median) to 2023, with 48 observations. The data reached an all-time high of 600,276.000 Person in 2023 and a record low of 50,200.000 Person in 1960. United States Insurance: Number Employed: Home-Office Personnel: Health Insurance data remains active status in CEIC and is reported by National Association of Insurance Commissioners. The data is categorized under Global Database’s United States – Table US.RG001: Insurance: Operational Statistics.

  5. d

    Statistical data on the number of insured persons with disabilities in the...

    • data.gov.tw
    ods
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Health Insurance Administration, Statistical data on the number of insured persons with disabilities in the fifth category of the National Health Insurance (low-income households) [Dataset]. https://data.gov.tw/en/datasets/26770
    Explore at:
    odsAvailable download formats
    Dataset authored and provided by
    National Health Insurance Administration
    License

    https://data.gov.tw/licensehttps://data.gov.tw/license

    Description

    Provide the number of insured persons with physical and mental disabilities by county, township, gender, and age group.

  6. a

    City of Bozeman Health Insurance Coverage

    • public-bozeman.opendata.arcgis.com
    • strategic-plan-bozeman.opendata.arcgis.com
    Updated Sep 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Bozeman, Montana (2023). City of Bozeman Health Insurance Coverage [Dataset]. https://public-bozeman.opendata.arcgis.com/datasets/city-of-bozeman-health-insurance-coverage
    Explore at:
    Dataset updated
    Sep 27, 2023
    Dataset authored and provided by
    City of Bozeman, Montana
    Area covered
    Bozeman
    Description

    This feature service contains data from the American Community Survey: 5-year Estimates Subject Tables for City of Bozeman, MT. The attributes come from the Selected Characteristics of Health Insurance Coverage in the United States table (S2701). Processing Notes:Data was downloaded from the U.S. Census Bureau and imported into FME to create an AGOL Feature Service. Each attribute has been given an abbreviated alias name derived from the American Community Survey (ACS) categorical descriptions. The Data Dictionary below includes all given ACS attribute name aliases. For example: Pct_Uninsured_EduB is the percent of the population that is without health insurance coverage, noninstitutionalized 26 years and over, with a Bachelor's degree or higherData DictionaryACS_EST_YR: American Community Survey 5-Year Estimate Subject Tables data yearGEO_ID: Census Bureau geographic identifierNAME: Specified geographyPct_Insured: Percent of the population with health insurance coveragePct_Uninsured: Percent of the population without health insurance coverageRace/Ethinicity:A: AsianAIAN: American Indian or Alaska NativeBAA: Black or African AmericanHL: Hispanic or LatinoNHPI: Native Hawaiian or other Pacific IslanderW: WhiteOther: Some other raceTwo: Two or more racesAnnual Income:IncUnder25k: Household income below $25,000Inc25kto50k:Household income from $25,000 to $49,999Inc50kto75k: Household income from $50,000 to $74,999Inc75kto100k: Household income from $75,000 to $99,999IncOver100k: Household income $100,000 and overEducational Attainment (Civilian noninstitutionalized population 26 years and over):EduB: Bachelor's degree or higherEduHS: High school graduate (includes equivalency)EduNHS: Less than high school graduateEduA: Some college or associate's degreeDownload Selected Characteristics of Health Insurance Coverage in the United States data for Bozeman, MT. Additional LinksU.S. Census BureauU.S. Census Bureau American Community Survey (ACS)About the American Community Survey

  7. c

    Health Insurance

    • data.clevelandohio.gov
    • hub.arcgis.com
    Updated Aug 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cleveland | GIS (2023). Health Insurance [Dataset]. https://data.clevelandohio.gov/datasets/ClevelandGIS::health-insurance
    Explore at:
    Dataset updated
    Aug 21, 2023
    Dataset authored and provided by
    Cleveland | GIS
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    Description

    This layer shows health insurance coverage by type and by age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.


    This layer is symbolized to show the percent uninsured. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right.

    Current Vintage: 2019-2023
    ACS Table(s): B27010 (Not all lines of this ACS table are available in this feature layer.)

    The United States Census Bureau's American Community Survey (ACS):
    This ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.

    Data Note from the Census:
    Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.

    Data Processing Notes:
    • This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.
    • Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2022 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).
    • The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico
    • Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).
    • Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.
    • Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.
    • Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:
      • The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.
      • Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.
      • The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.
      • The estimate is controlled. A statistical test for sampling variability is not appropriate.
      • The data for this geographic area cannot be displayed because the number of sample cases is too small.

  8. 2024 American Community Survey: B27001A | Health Insurance Coverage Status...

    • data.census.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2024 American Community Survey: B27001A | Health Insurance Coverage Status by Age (White Alone) (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT1Y2024.B27001A?q=Health+Insurance&g=040XX00US13
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024
    Description

    Key Table Information.Table Title.Health Insurance Coverage Status by Age (White Alone).Table ID.ACSDT1Y2024.B27001A.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, a...

  9. a

    Disability and Health Insurance - Seattle Neighborhoods

    • hub.arcgis.com
    • data.seattle.gov
    • +1more
    Updated Feb 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Seattle ArcGIS Online (2024). Disability and Health Insurance - Seattle Neighborhoods [Dataset]. https://hub.arcgis.com/maps/SeattleCityGIS::disability-and-health-insurance-seattle-neighborhoods
    Explore at:
    Dataset updated
    Feb 29, 2024
    Dataset authored and provided by
    City of Seattle ArcGIS Online
    Area covered
    Seattle
    Description

    Table from the American Community Survey (ACS) 5-year series on disabilities and health insurance related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes C21007 Age by Veteran Status by Poverty Status in the Past 12 Months by Disability Status, B27010 Types of Health Insurance Coverage by Age, B22010 Receipt of Food Stamps/SNAP by Disability Status for Households. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.Table created for and used in the Neighborhood Profiles application.Vintages: 2023ACS Table(s): C21007, B27010, B22010Data downloaded from: Census Bureau's Explore Census Data The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  10. d

    Current Population Survey (CPS)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damico, Anthony (2023). Current Population Survey (CPS) [Dataset]. http://doi.org/10.7910/DVN/AK4FDD
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Damico, Anthony
    Description

    analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D

  11. US Healthcare Visits Statistics

    • johnsnowlabs.com
    csv
    Updated Jan 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Snow Labs (2021). US Healthcare Visits Statistics [Dataset]. https://www.johnsnowlabs.com/marketplace/us-healthcare-visits-statistics/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jan 20, 2021
    Dataset authored and provided by
    John Snow Labs
    Area covered
    United States
    Description

    The US Healthcare Visits Statistics dataset includes data about the frequency of healthcare visits to doctor offices, emergency departments, and home visits within the past 12 months in the United States by age, race, Hispanic origin, poverty level, health insurance status, geographic region and other characteristics between 1997 and 2016.

  12. U

    United States US: Health Expenditure: Private: % of GDP

    • ceicdata.com
    Updated Mar 15, 2009
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2009). United States US: Health Expenditure: Private: % of GDP [Dataset]. https://www.ceicdata.com/en/united-states/health-statistics/us-health-expenditure-private--of-gdp
    Explore at:
    Dataset updated
    Mar 15, 2009
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Variables measured
    undefined
    Description

    United States US: Health Expenditure: Private: % of GDP data was reported at 8.862 % in 2014. This records an increase from the previous number of 8.853 % for 2013. United States US: Health Expenditure: Private: % of GDP data is updated yearly, averaging 8.434 % from Dec 1995 (Median) to 2014, with 20 observations. The data reached an all-time high of 8.985 % in 2009 and a record low of 7.132 % in 1997. United States US: Health Expenditure: Private: % of GDP data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Health Statistics. Private health expenditure includes direct household (out-of-pocket) spending, private insurance, charitable donations, and direct service payments by private corporations.; ; World Health Organization Global Health Expenditure database (see http://apps.who.int/nha/database for the most recent updates).; Weighted average;

  13. Percent of Families with Income Below Poverty Level

    • data.wu.ac.at
    csv, json, xml
    Updated Aug 27, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Census Bureau American Community Survey (2016). Percent of Families with Income Below Poverty Level [Dataset]. https://data.wu.ac.at/schema/performance_smcgov_org/dXRqZi1jNDM4
    Explore at:
    csv, json, xmlAvailable download formats
    Dataset updated
    Aug 27, 2016
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    Data about the general economic characteristics of the population of San Mateo County, by City. This dataset includes information on employment, unemployment, median household income, health insurance coverage, and families and people whose income in the past 12 months is below the poverty level. Note that household income data for Atherton and Hillsborough is noted as $250,000. The US Census Bureau estimates the household income for these locations as "$250,000+." The value was changed to maintain data functionality in the Open Data Portal. This data was extracted from the United States Cenus Bureau's American Community Survey 2014 5 year estimates.

  14. 2024 American Community Survey: C27001A | Health Insurance Coverage Status...

    • data.census.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2024 American Community Survey: C27001A | Health Insurance Coverage Status by Age (White Alone) (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT1Y2024.C27001A?q=Table+C27001A-I
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024
    Description

    Key Table Information.Table Title.Health Insurance Coverage Status by Age (White Alone).Table ID.ACSDT1Y2024.C27001A.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, a...

  15. K

    Kazakhstan KZ: Domestic Private Health Expenditure: % of Current Health...

    • ceicdata.com
    Updated May 29, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). Kazakhstan KZ: Domestic Private Health Expenditure: % of Current Health Expenditure [Dataset]. https://www.ceicdata.com/en/kazakhstan/health-statistics
    Explore at:
    Dataset updated
    May 29, 2018
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2004 - Dec 1, 2015
    Area covered
    Kazakhstan
    Description

    KZ: Domestic Private Health Expenditure: % of Current Health Expenditure data was reported at 39.463 % in 2015. This records an increase from the previous number of 37.746 % for 2014. KZ: Domestic Private Health Expenditure: % of Current Health Expenditure data is updated yearly, averaging 38.039 % from Dec 2000 (Median) to 2015, with 16 observations. The data reached an all-time high of 49.062 % in 2000 and a record low of 31.419 % in 2011. KZ: Domestic Private Health Expenditure: % of Current Health Expenditure data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Kazakhstan – Table KZ.World Bank: Health Statistics. Share of current health expenditures funded from domestic private sources. Domestic private sources include funds from households, corporations and non-profit organizations. Such expenditures can be either prepaid to voluntary health insurance or paid directly to healthcare providers.; ; World Health Organization Global Health Expenditure database (http://apps.who.int/nha/database).; Weighted Average;

  16. J

    Jordan JO: Domestic Private Health Expenditure: % of Current Health...

    • ceicdata.com
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Jordan JO: Domestic Private Health Expenditure: % of Current Health Expenditure [Dataset]. https://www.ceicdata.com/en/jordan/health-statistics/jo-domestic-private-health-expenditure--of-current-health-expenditure
    Explore at:
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2004 - Dec 1, 2015
    Area covered
    Jordan
    Description

    Jordan JO: Domestic Private Health Expenditure: % of Current Health Expenditure data was reported at 36.141 % in 2015. This records an increase from the previous number of 29.639 % for 2014. Jordan JO: Domestic Private Health Expenditure: % of Current Health Expenditure data is updated yearly, averaging 39.058 % from Dec 2000 (Median) to 2015, with 16 observations. The data reached an all-time high of 52.422 % in 2000 and a record low of 28.780 % in 2010. Jordan JO: Domestic Private Health Expenditure: % of Current Health Expenditure data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Jordan – Table JO.World Bank: Health Statistics. Share of current health expenditures funded from domestic private sources. Domestic private sources include funds from households, corporations and non-profit organizations. Such expenditures can be either prepaid to voluntary health insurance or paid directly to healthcare providers.; ; World Health Organization Global Health Expenditure database (http://apps.who.int/nha/database).; Weighted Average;

  17. N

    Nigeria NG: Domestic Private Health Expenditure: % of Current Health...

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Nigeria NG: Domestic Private Health Expenditure: % of Current Health Expenditure [Dataset]. https://www.ceicdata.com/en/nigeria/health-statistics/ng-domestic-private-health-expenditure--of-current-health-expenditure
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2004 - Dec 1, 2015
    Area covered
    Nigeria
    Description

    Nigeria NG: Domestic Private Health Expenditure: % of Current Health Expenditure data was reported at 73.729 % in 2015. This records a decrease from the previous number of 74.393 % for 2014. Nigeria NG: Domestic Private Health Expenditure: % of Current Health Expenditure data is updated yearly, averaging 76.836 % from Dec 2000 (Median) to 2015, with 16 observations. The data reached an all-time high of 84.515 % in 2003 and a record low of 73.146 % in 2013. Nigeria NG: Domestic Private Health Expenditure: % of Current Health Expenditure data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Nigeria – Table NG.World Bank.WDI: Health Statistics. Share of current health expenditures funded from domestic private sources. Domestic private sources include funds from households, corporations and non-profit organizations. Such expenditures can be either prepaid to voluntary health insurance or paid directly to healthcare providers.; ; World Health Organization Global Health Expenditure database (http://apps.who.int/nha/database).; Weighted average;

  18. T

    Trinidad and Tobago TT: Domestic Private Health Expenditure: % of Current...

    • ceicdata.com
    Updated Dec 15, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2017). Trinidad and Tobago TT: Domestic Private Health Expenditure: % of Current Health Expenditure [Dataset]. https://www.ceicdata.com/en/trinidad-and-tobago/health-statistics/tt-domestic-private-health-expenditure--of-current-health-expenditure
    Explore at:
    Dataset updated
    Dec 15, 2017
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2004 - Dec 1, 2015
    Area covered
    Trinidad and Tobago
    Description

    Trinidad and Tobago TT: Domestic Private Health Expenditure: % of Current Health Expenditure data was reported at 46.059 % in 2015. This records an increase from the previous number of 45.074 % for 2014. Trinidad and Tobago TT: Domestic Private Health Expenditure: % of Current Health Expenditure data is updated yearly, averaging 51.035 % from Dec 2000 (Median) to 2015, with 16 observations. The data reached an all-time high of 57.303 % in 2000 and a record low of 42.503 % in 2010. Trinidad and Tobago TT: Domestic Private Health Expenditure: % of Current Health Expenditure data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Trinidad and Tobago – Table TT.World Bank.WDI: Health Statistics. Share of current health expenditures funded from domestic private sources. Domestic private sources include funds from households, corporations and non-profit organizations. Such expenditures can be either prepaid to voluntary health insurance or paid directly to healthcare providers.; ; World Health Organization Global Health Expenditure database (http://apps.who.int/nha/database).; Weighted average;

  19. 2024 American Community Survey: B27001H | Health Insurance Coverage Status...

    • data.census.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2024 American Community Survey: B27001H | Health Insurance Coverage Status by Age (White Alone, Not Hispanic or Latino) (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT1Y2024.B27001H?q=Health+Insurance&g=040XX00US50
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024
    Description

    Key Table Information.Table Title.Health Insurance Coverage Status by Age (White Alone, Not Hispanic or Latino).Table ID.ACSDT1Y2024.B27001H.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, sta...

  20. S

    San Marino SM: Domestic Private Health Expenditure: % of Current Health...

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, San Marino SM: Domestic Private Health Expenditure: % of Current Health Expenditure [Dataset]. https://www.ceicdata.com/en/san-marino/health-statistics/sm-domestic-private-health-expenditure--of-current-health-expenditure
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2004 - Dec 1, 2015
    Area covered
    San Marino
    Description

    San Marino Domestic Private Health Expenditure: % of Current Health Expenditure data was reported at 19.128 % in 2015. This records an increase from the previous number of 18.969 % for 2014. San Marino Domestic Private Health Expenditure: % of Current Health Expenditure data is updated yearly, averaging 20.577 % from Dec 2000 (Median) to 2015, with 16 observations. The data reached an all-time high of 27.177 % in 2000 and a record low of 17.667 % in 2012. San Marino Domestic Private Health Expenditure: % of Current Health Expenditure data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s San Marino – Table SM.World Bank: Health Statistics. Share of current health expenditures funded from domestic private sources. Domestic private sources include funds from households, corporations and non-profit organizations. Such expenditures can be either prepaid to voluntary health insurance or paid directly to healthcare providers.; ; World Health Organization Global Health Expenditure database (http://apps.who.int/nha/database).; Weighted average;

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Centers for Medicare & Medicaid Services (2025). CMS Program Statistics - Medicare Home Health Agency [Dataset]. https://catalog.data.gov/dataset/medicare-home-health-agency-1fa6a
Organization logo

CMS Program Statistics - Medicare Home Health Agency

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Sep 10, 2025
Dataset provided by
Centers for Medicare & Medicaid Services
Description

The Medicare Home Health Agency tables provide use and payment data for home health agencies. The tables include use and expenditure data from home health Part A (Hospital Insurance) and Part B (Medical Insurance) claims. For additional information on enrollment, providers, and Medicare use and payment, visit the CMS Program Statistics page. These data do not exist in a machine-readable format, so the view data and API options are not available. Please use the download function to access the data. Below is the list of tables: MDCR HHA 1. Medicare Home Health Agencies: Utilization and Program Payments for Original Medicare Beneficiaries, by Type of Entitlement, Yearly Trend MDCR HHA 2. Medicare Home Health Agencies: Utilization and Program Payments for Original Medicare Beneficiaries, by Demographic Characteristics and Medicare-Medicaid Enrollment Status MDCR HHA 3. Medicare Home Health Agencies: Utilization and Program Payments for Original Medicare Beneficiaries, by Area of Residence MDCR HHA 4. Medicare Home Health Agencies: Persons with Utilization and Total Service Visits for Original Medicare Beneficiaries, Type of Agency and Type of Service Visit MDCR HHA 5. Medicare Home Health Agencies: Persons with Utilization and Total Service Visits for Original Medicare Beneficiaries, by Type of Control and Type of Service Visit MDCR HHA 6. Medicare Home Health Agencies: Persons with Utilization, Total Service Visits, and Program Payments for Original Medicare Beneficiaries, by Number of Service Visits and Number of Episodes

Search
Clear search
Close search
Google apps
Main menu