Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 4 cities in the Coke County, TX by Non-Hispanic Asian population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 4 cities in the Coke County, TX by Hispanic Black or African American population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
A. SUMMARY This dataset includes unintentional drug overdose death rates by race/ethnicity by year. This dataset is created using data from the California Electronic Death Registration System (CA-EDRS) via the Vital Records Business Intelligence System (VRBIS). Substance-related deaths are identified by reviewing the cause of death. Deaths caused by opioids, methamphetamine, and cocaine are included. Homicides and suicides are excluded. Ethnic and racial groups with fewer than 10 events are not tallied separately for privacy reasons but are included in the “all races” total.
Unintentional drug overdose death rates are calculated by dividing the total number of overdose deaths by race/ethnicity by the total population size for that demographic group and year and then multiplying by 100,000. The total population size is based on estimates from the US Census Bureau County Population Characteristics for San Francisco, 2022 Vintage by age, sex, race, and Hispanic origin.
These data differ from the data shared in the Preliminary Unintentional Drug Overdose Death by Year dataset since this dataset uses finalized counts of overdose deaths associated with cocaine, methamphetamine, and opioids only.
B. HOW THE DATASET IS CREATED This dataset is created by copying data from the Annual Substance Use Trends in San Francisco report from the San Francisco Department of Public Health Center on Substance Use and Health.
C. UPDATE PROCESS This dataset will be updated annually, typically at the end of the year.
D. HOW TO USE THIS DATASET N/A
E. RELATED DATASETS Overdose-Related 911 Responses by Emergency Medical Services Preliminary Unintentional Drug Overdose Deaths San Francisco Department of Public Health Substance Use Services
F. CHANGE LOG
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 4 cities in the Coke County, TX by Non-Hispanic Some Other Race (SOR) population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Coke County population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Coke County. The dataset can be utilized to understand the population distribution of Coke County by age. For example, using this dataset, we can identify the largest age group in Coke County.
Key observations
The largest age group in Coke County, TX was for the group of age 65 to 69 years years with a population of 315 (9.50%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Coke County, TX was the 20 to 24 years years with a population of 92 (2.78%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Coke County Population by Age. You can refer the same here
Background: Whilst cannabis is known to be toxic to brain function and brain development in many respects it is not known if its increasing availability is associated with the rising US autism rates, whether this contribution is sufficient to effect overall trends and if its effects persist after controlling for other major covariates.
Methods: Longitudinal epidemiological study using national autism census data from the US Department of Education Individuals with Disabilities Act (IDEA) 1991-2011 and nationally representative drug exposure (cigarettes, alcohol, analgesic, and cocaine abuse, and cannabis use monthly, daily and in pregnancy) datasets from National Survey of Drug Use and Health and US Census (income and ethnicity) and CDC Wonder population and birth data. Geotemporospatial and causal inference analysis conducted in R.
Results: 266,950 autistic of a population of 40,119,464 eight year olds 1994-2011. At the national level after adjustment daily cannabis use was significantly related (β-estimate=4.37 (95%C.I. 4.06-4.68), P<2.2x10-16) as was cannabis exposure in the first trimester of pregnancy (β-estimate=0.12 (0.08-0.16), P=1.7x10-12). At the state level following adjustment cannabis use was significant (from β-estimate=8.41 (3.08-13.74), P=0.002); after adjustment for varying cannabis exposure by ethnicity and other covariates (from β-estimate=10.88 (5.97-15.79), P=1.4x10-5). Cannabigerol (from β-estimate=-13.77 (-19.41—8.13), P = 1.8x10-6) and Δ9-tetrahydrocannabinol (from β-estimate=1.96 (0.88-3.04), P=4x10-4) were also significant. Geospatial state-level modelling showed an exponential relationship between ASMR and both Δ9-tetrahydrocannabinol and cannabigerol exposure; effect size calculations reflected this exponentiation. Exponential coefficients for the relationship between modelled ASMR and THC- and cannabigerol- exposure were 7.053 (6.39-7.71) and 185.334 (167.88-202.79; both P<2.0x10-7).
In inverse probability-weighted robust generalized linear models ethnic cannabis exposure (from β-estimate=3.64 (2.94-4.34), P=5.9x10-13) and cannabis independently (β-estimate=1.08 (0.63-1.54), P=2.9x10-5) were significant. High eValues in geospatial models indicated that uncontrolled confounding did not explain these findings. Therefore the demonstrated relationship satified the criteria of causal inference. Dichotomized legal status was geospatiotemporally linked with elevated ASMR.
Conclusions: Data show cannabis use is associated with ASMR, is powerful enough to affect overall trends, and persists after controlling for other major drug, socioeconomic, and ethnic-related covariates. Selected cannabinoids are exponentially associated with ASMR. The cannabis-autism relationship satisfies criteria of causal inference.
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Contains a set of data tables for each part of the Smoking, Drinking and Drug Use among Young People in England, 2021 report
The dataset contains outcome variables, control variables, and policy variables. The outcome variables pertain to the change and growth in state-level incarceration rates between 1975 and 2002. Control variables include violent crime rate, property crime rate, percent population between ages of 18-24, percent population between ages of 25-34, percent population African American, percent population of Hispanic origin, percent population living in urban areas, percent adherents to "fundamentalist" religion, income per capita, unemployment rate, percent population below poverty level, GINI income distribution coefficient, state revenues per 100,000 residents, public welfare per 100,000 residents, police officers per 100,000 residents, drug arrest rate, corrections expenditures per 100,000 residents, citizen political ideology, government political ideology, governor's party affiliation, and region. Policy variables capture information regarding sentencing structure, drug policy, time served requirements, habitual offender laws (HOL), and mandatory sentences. Specifically, sentencing structure variables include information on determinate sentencing, structured sentencing, presumptive sentencing guidelines, voluntary sentencing guidelines, and presumptive sentencing. Drug policy variables include sentencing enhancement score (cocaine, heroin, and marijuana), severity levels for possession and sale (cocaine, heroin, and marijuana), minimum sentence for 28 grams of cocaine (sale), maximum sentence for the lowest quantity of cocaine (possession), minimum sentence for 28 grams of heroin (sale), maximum sentence for the lowest quantity of heroin (possession), minimum sentence for 500 grams of marijuana (sale), and minimum sentence for the lowest quantity of marijuana (possession). Variables regarding time served requirements include both time served (all offenses) and time served (violent offenses). The habitual offender laws variables capture information regarding the two-strikes law, three-strikes law, HOL targeted for violent offenses, and HOL targeted for drug offenses. Lastly, variables pertaining to mandatory sentences include number of mandatory minimums for weapons use, number of mandatory minimums for violent offenses, number of mandatory minimums for offenses against protected individuals, number of mandatory minimums for offenses committed while in state custody, and mandatory score. The study consisted of two phases completed between November 2002 and March 2004. The first phase of the research involved building a framework for understanding the types of state-level sentencing and corrections policies in use between 1975 and 2002. To do this, researchers reviewed prior analyses of policies to construct an initial outline of policies or general areas and their characteristics. Next, members of the Vera Institute of Justice's National Associates Program on State Sentencing and Corrections (SSC) reviewed the outline, suggested minor changes in the characteristics detailed, and constructed an initial data collection instrument (DCI). This initial DCI microdatabase was pilot-tested by collecting data on three states, refined, and then a finalized version of the DCI was developed for use in the second stage of the study. Phase two of the project consisted of state-level data collection for all 50 states for all study years, 1975 to 2002. The year 1975 was chosen as the cut-off year since, according to most criminologists and practitioners, most of the dramatic changes in state-level sentencing and corrections policies have occurred post-1975. The principal investigators and six research assistants began by analyzing microfiche versions of state codes as amended in 1975. Microfiche versions of superseded state codes (including supplements) and state sessions laws were then used to collect data on changes to each state's code for each year between 1975 and 2002. Data collection generally involved reading the entire criminal law and criminal procedure sections of each state's 1975 code, locating the relevant policy, and recording information about the provisions of the policy into the DCI. Annual code supplements were then analyzed to note changes to each state's code. When a revised version of the entire code was published, data collection then involved reviewing the entire criminal law and criminal procedure sections of each state's code again. Where changes to policies were unclear from annual supplements, microfiche versions of state sessions laws were consulted, which provided the actual legislation altering the code. This process continued until data collection reached 2002, and analysis turned to the bound versions of state codes as amended in 2002. In order to assess the impacts of state-level sentencing and corrections policies in the United States implemented between 1975 and 2002 on state incarceration rates during that same time period, researchers conducted a two-phase study between November 2002 a...
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
This report contains results from the latest survey of secondary school pupils in England in years 7 to 11 (mostly aged 11 to 15), focusing on smoking, drinking and drug use. It covers a range of topics including prevalence, habits, attitudes, and wellbeing. This survey is usually run every two years, however, due to the impact that the Covid pandemic had on school opening and attendance, it was not possible to run the survey as initially planned in 2020; instead it was delivered in the 2021 school year. In 2021 additional questions were also included relating to the impact of Covid. They covered how pupil's took part in school learning in the last school year (September 2020 to July 2021), and how often pupil's met other people outside of school and home. Results of analysis covering these questions have been presented within parts of the report and associated data tables. It includes this summary report showing key findings, excel tables with more detailed outcomes, technical appendices and a data quality statement. An anonymised record level file of the underlying data on which users can carry out their own analysis will be made available via the UK Data Service later in 2022 (see link below).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Coke County by race. It includes the population of Coke County across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Coke County across relevant racial categories.
Key observations
The percent distribution of Coke County population by race (across all racial categories recognized by the U.S. Census Bureau): 85.16% are white, 1.75% are Black or African American, 0.30% are American Indian and Alaska Native, 0.12% are Asian, 3.50% are some other race and 9.17% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Coke County Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 4 cities in the Coke County, TX by Non-Hispanic Native Hawaiian and Other Pacific Islander (NHPI) population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of Coke County by race. It includes the distribution of the Non-Hispanic population of Coke County across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of Coke County across relevant racial categories.
Key observations
Of the Non-Hispanic population in Coke County, the largest racial group is White alone with a population of 2,501 (95.31% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Coke County Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Coke County Hispanic or Latino population. It includes the distribution of the Hispanic or Latino population, of Coke County, by their ancestries, as identified by the Census Bureau. The dataset can be utilized to understand the origin of the Hispanic or Latino population of Coke County.
Key observations
Among the Hispanic population in Coke County, regardless of the race, the largest group is of Mexican origin, with a population of 665 (87.27% of the total Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Origin for Hispanic or Latino population include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Coke County Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Coke County by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Coke County across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of male population, with 50.23% of total population being male. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Coke County Population by Race & Ethnicity. You can refer the same here
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 4 cities in the Coke County, TX by Non-Hispanic Asian population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.