9 datasets found
  1. D

    Stock Analysis Software Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Stock Analysis Software Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-stock-analysis-software-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Stock Analysis Software Market Outlook




    The global stock analysis software market size was valued at approximately USD 1.2 billion in 2023 and is projected to reach around USD 3.5 billion by 2032, growing at a compound annual growth rate (CAGR) of 12.5% during the forecast period. The growth of this market is driven by the increasing adoption of advanced analytics tools by individual investors and financial institutions to make informed investment decisions. The rising demand for automated trading systems and the integration of artificial intelligence (AI) and machine learning (ML) in stock analysis software are significant growth factors contributing to the market expansion.




    One of the primary growth factors for the stock analysis software market is the increasing complexity and volume of financial data. With the exponential growth of data from various sources such as social media, news articles, and financial statements, investors and financial analysts require sophisticated tools to process and interpret this information accurately. Stock analysis software equipped with AI and ML algorithms can analyze vast datasets in real-time, providing valuable insights and predictive analytics that enhance investment strategies. Moreover, the growing trend of algorithmic trading, which relies heavily on high-speed data processing and automated decision-making, is further propelling the market growth.




    Another crucial growth driver is the rising awareness and adoption of stock analysis software among individual investors. As more individuals seek to actively manage their investment portfolios, there is a growing demand for user-friendly and cost-effective stock analysis tools that offer comprehensive market analysis, technical indicators, and personalized investment recommendations. The proliferation of mobile applications and the increasing accessibility of cloud-based stock analysis solutions have made it easier for retail investors to access advanced analytical tools, thereby contributing to market expansion.




    The integration of innovative technologies such as natural language processing (NLP) and sentiment analysis into stock analysis software is also a significant growth factor. These technologies enable the software to interpret and analyze unstructured data from news articles, social media, and other textual sources to gauge market sentiment and predict stock price movements. This capability is particularly valuable in today's fast-paced financial markets, where sentiment and news events can have a substantial impact on stock prices. The continuous advancements in AI and NLP technologies are expected to drive further innovations and improvements in stock analysis software, thereby boosting market growth.



    In the evolving landscape of financial technology, Investor Relations Tools have become indispensable for companies seeking to maintain transparent and effective communication with their stakeholders. These tools facilitate seamless interaction between companies and their investors, providing real-time updates, financial reports, and strategic insights. By leveraging these tools, companies can enhance their investor engagement strategies, build trust, and foster long-term relationships with their shareholders. The integration of advanced analytics and AI-driven insights into Investor Relations Tools further empowers companies to tailor their communication strategies, ensuring that they meet the diverse needs of their investor base. As the demand for transparency and accountability in financial markets continues to grow, the adoption of sophisticated Investor Relations Tools is expected to rise, playing a crucial role in the broader ecosystem of stock analysis software.




    From a regional perspective, North America is anticipated to hold the largest market share due to the high concentration of financial institutions, brokerage firms, and individual investors in the region. The presence of key market players and the early adoption of advanced technologies also contribute to the dominant position of North America in the global stock analysis software market. Additionally, the Asia Pacific region is expected to witness significant growth during the forecast period, driven by the increasing number of retail investors, rapid economic development, and the growing financial markets in countries such as China and India.



    Component Analysis



  2. m

    JPMorgan American Investment Trust - Cash-Flow-Per-Share

    • macro-rankings.com
    csv, excel
    Updated Aug 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2025). JPMorgan American Investment Trust - Cash-Flow-Per-Share [Dataset]. https://www.macro-rankings.com/markets/stocks/jam-lse/key-financial-ratios/dividends-and-more/cash-flow-per-share
    Explore at:
    excel, csvAvailable download formats
    Dataset updated
    Aug 23, 2025
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    uk
    Description

    Cash-Flow-Per-Share Time Series for JPMorgan American Investment Trust. JPMorgan American Investment Trust plc is a close-ended equity mutual fund launched and managed by JPMorgan Funds Limited. It is co-managed by JPMorgan Asset Management (UK) Limited. The fund invests in public equity markets of the United States. It seeks to invest in stocks of companies operating across diversified sectors. The fund primarily invests in stocks of large cap companies. It employs fundamental analysis with a bottom-up stock picking approach to create its portfolio. The fund benchmarks the performance of its portfolio against the S&P 500 Net Index. It was formerly known as JP Morgan Fleming American Investment Trust. JPMorgan American Investment Trust plc was formed on December 25, 1881 and is domiciled in the United Kingdom.

  3. m

    Scottish American Investment Co - Ebitda-Per-Share

    • macro-rankings.com
    csv, excel
    Updated Sep 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2025). Scottish American Investment Co - Ebitda-Per-Share [Dataset]. https://www.macro-rankings.com/markets/stocks/sain-lse/key-financial-ratios/dividends-and-more/ebitda-per-share
    Explore at:
    csv, excelAvailable download formats
    Dataset updated
    Sep 18, 2025
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    uk
    Description

    Ebitda-Per-Share Time Series for Scottish American Investment Co. The Scottish American Investment Company P.L.C. is a closed-ended equity mutual fund launched and managed by Baillie Gifford & Co Ltd. The fund is co-managed by Baillie Gifford & Co. and OLIM Property Limited. It invests in public equity markets across the globe. The fund seeks to invest in stocks of companies operating across diversified sectors. It primarily invests in dividend paying growth stocks of companies. The fund benchmarks the performance of its portfolio against a composite index comprised of 50% FTSE All-Share Index and 50% FTSE All-World Ex UK Index. The Scottish American Investment Company P.L.C. was formed in 1873 and is domiciled in the United Kingdom.

  4. Survey of Consumer Finances

    • federalreserve.gov
    Updated Oct 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Board of Governors of the Federal Reserve Board (2023). Survey of Consumer Finances [Dataset]. http://doi.org/10.17016/8799
    Explore at:
    Dataset updated
    Oct 18, 2023
    Dataset provided by
    Federal Reserve Board of Governors
    Federal Reserve Systemhttp://www.federalreserve.gov/
    Authors
    Board of Governors of the Federal Reserve Board
    Time period covered
    1962 - 2023
    Description

    The Survey of Consumer Finances (SCF) is normally a triennial cross-sectional survey of U.S. families. The survey data include information on families' balance sheets, pensions, income, and demographic characteristics.

  5. d

    Real Estate Valuation Data | USA Coverage | 74% Right Party Contact Rate |...

    • datarade.ai
    Updated Feb 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BatchData (2024). Real Estate Valuation Data | USA Coverage | 74% Right Party Contact Rate | BatchData [Dataset]. https://datarade.ai/data-products/batchservice-real-estate-valuation-data-property-rental-d-batchservice
    Explore at:
    .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Feb 28, 2024
    Dataset authored and provided by
    BatchData
    Area covered
    United States of America
    Description

    The Property Valuation Data Listing offered by BatchData delivers an extensive and detailed dataset designed to provide unparalleled insight into real estate market trends, property values, and investment opportunities. This dataset includes over 9 critical data points that offer a comprehensive view of property valuations across various geographic regions and market conditions. Below is an in-depth description of the data points and their implications for users in the real estate industry.

    The Property Valuation Data Listing by BatchData is categorized into four primary sections, each offering detailed insights into different aspects of property valuation. Here’s an in-depth look at each category:

    1. Current Valuation AVM Value as of Specific Date: The Automated Valuation Model (AVM) estimate of the property’s current market value, calculated as of a specified date. This value reflects the most recent assessment based on available data. Use Case: Provides an up-to-date valuation, essential for making current investment decisions, setting sale prices, or conducting market analysis. Valuation Confidence Score: A measure indicating the confidence level of the AVM value. This score reflects the reliability of the valuation based on data quality, volume, and model accuracy. Use Case: Helps users gauge the reliability of the valuation estimate. Higher confidence scores suggest more reliable values, while lower scores may indicate uncertainty or data limitations.

    2. Valuation Range Price Range Minimum: The lowest estimated market value for the property within the given range. This figure represents the lower bound of the valuation spectrum. Use Case: Useful for understanding the potential minimum value of the property, helping in scenarios like setting a reserve price in auctions or evaluating downside risk. Price Range Maximum: The highest estimated market value for the property within the given range. This figure represents the upper bound of the valuation spectrum. Use Case: Provides insight into the potential maximum value, aiding in price setting, investment analysis, and comparative market assessments. AVM Value Standard Deviation: A statistical measure of the variability or dispersion of the AVM value estimates. It indicates how much the estimated values deviate from the average AVM value. Use Case: Assists in understanding the variability of the valuation and assessing the stability of the estimated value. A higher standard deviation suggests more variability and potential uncertainty.

    3. LTV (Loan to Value Ratio) Current Loan to Value Ratio: The ratio of the outstanding loan balance to the current market value of the property, expressed as a percentage. This ratio helps assess the risk associated with the loan relative to the property’s value. Use Case: Crucial for lenders and investors to evaluate the financial risk of a property. A higher LTV ratio indicates higher risk, as the property value is lower compared to the loan amount.

    4. Valuation Equity Calculated Total Equity: based upon estimate amortized balances for all open liens and AVM value Use Case: Provides insight into the net worth of the property for the owner. Useful for evaluating the financial health of the property, planning for refinancing, or understanding the owner’s potential gain or loss in case of sale.

    This structured breakdown of data points offers a comprehensive view of property valuations, allowing users to make well-informed decisions based on current market conditions, valuation accuracy, financial risk, and equity potential.

    This information can be particularly useful for: - Automated Valuation Models (AVMs) - Fuel Risk Management Solutions - Property Valuation Tools - ARV, rental data, building condition and more - Listing/offer Price Determination

  6. Alternative Data Market Analysis North America, Europe, APAC, South America,...

    • technavio.com
    pdf
    Updated Jan 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Alternative Data Market Analysis North America, Europe, APAC, South America, Middle East and Africa - US, Canada, China, UK, Mexico, Germany, Japan, India, Italy, France - Size and Forecast 2025-2029 [Dataset]. https://www.technavio.com/report/alternative-data-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jan 17, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    Canada, United States
    Description

    Snapshot img

    Alternative Data Market Size 2025-2029

    The alternative data market size is valued to increase USD 60.32 billion, at a CAGR of 52.5% from 2024 to 2029. Increased availability and diversity of data sources will drive the alternative data market.

    Major Market Trends & Insights

    North America dominated the market and accounted for a 56% growth during the forecast period.
    By Type - Credit and debit card transactions segment was valued at USD 228.40 billion in 2023
    By End-user - BFSI segment accounted for the largest market revenue share in 2023
    

    Market Size & Forecast

    Market Opportunities: USD 6.00 million
    Market Future Opportunities: USD 60318.00 million
    CAGR from 2024 to 2029 : 52.5%
    

    Market Summary

    The market represents a dynamic and rapidly expanding landscape, driven by the increasing availability and diversity of data sources. With the rise of alternative data-driven investment strategies, businesses and investors are increasingly relying on non-traditional data to gain a competitive edge. Core technologies, such as machine learning and natural language processing, are transforming the way alternative data is collected, analyzed, and utilized. Despite its potential, the market faces challenges related to data quality and standardization. According to a recent study, alternative data accounts for only 10% of the total data used in financial services, yet 45% of firms surveyed reported issues with data quality.
    Service types, including data providers, data aggregators, and data analytics firms, are addressing these challenges by offering solutions to ensure data accuracy and reliability. Regional mentions, such as North America and Europe, are leading the adoption of alternative data, with Europe projected to grow at a significant rate due to increasing regulatory support for alternative data usage. The market's continuous evolution is influenced by various factors, including technological advancements, changing regulations, and emerging trends in data usage.
    

    What will be the Size of the Alternative Data Market during the forecast period?

    Get Key Insights on Market Forecast (PDF) Request Free Sample

    How is the Alternative Data Market Segmented ?

    The alternative data industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Type
    
      Credit and debit card transactions
      Social media
      Mobile application usage
      Web scrapped data
      Others
    
    
    End-user
    
      BFSI
      IT and telecommunication
      Retail
      Others
    
    
    Geography
    
      North America
    
        US
        Canada
        Mexico
    
    
      Europe
    
        France
        Germany
        Italy
        UK
    
    
      APAC
    
        China
        India
        Japan
    
    
      Rest of World (ROW)
    

    By Type Insights

    The credit and debit card transactions segment is estimated to witness significant growth during the forecast period.

    Alternative data derived from credit and debit card transactions plays a significant role in offering valuable insights for market analysts, financial institutions, and businesses. This data category is segmented into credit card and debit card transactions. Credit card transactions serve as a rich source of information on consumers' discretionary spending, revealing their luxury spending tendencies and credit management skills. Debit card transactions, on the other hand, shed light on essential spending habits, budgeting strategies, and daily expenses, providing insights into consumers' practical needs and lifestyle choices. Market analysts and financial institutions utilize this data to enhance their strategies and customer experiences.

    Natural language processing (NLP) and sentiment analysis tools help extract valuable insights from this data. Anomaly detection systems enable the identification of unusual spending patterns, while data validation techniques ensure data accuracy. Risk management frameworks and hypothesis testing methods are employed to assess potential risks and opportunities. Data visualization dashboards and machine learning models facilitate data exploration and trend analysis. Data quality metrics and signal processing methods ensure data reliability and accuracy. Data governance policies and real-time data streams enable timely access to data. Time series forecasting, clustering techniques, and high-frequency data analysis provide insights into trends and patterns.

    Model training datasets and model evaluation metrics are essential for model development and performance assessment. Data security protocols are crucial to protect sensitive financial information. Economic indicators and compliance regulations play a role in the context of this market. Unstructured data analysis, data cleansing pipelines, and statistical significance are essential for deriving meaningful insights from this data. New

  7. m

    XCHG Limited American Depositary Share - Investments

    • macro-rankings.com
    csv, excel
    Updated Nov 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2025). XCHG Limited American Depositary Share - Investments [Dataset]. https://www.macro-rankings.com/markets/stocks/xch-nasdaq/cashflow-statement/investments
    Explore at:
    excel, csvAvailable download formats
    Dataset updated
    Nov 2, 2025
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Investments Time Series for XCHG Limited American Depositary Share. XCHG Limited, together with its subsidiaries, engages in designing, manufacturing, and selling of electric vehicle (EV) chargers under the X-Charge brand name in Europe, the People's Republic of China, the United States, and internationally. The company offers direct current (DC) fast chargers under the C6 series and C7 series; and battery-integrated DC fast chargers under the Net Zero series and GridLink, as well as software system upgrades and hardware maintenance services. It serves EV manufacturers, energy players, and charge point operators. XCHG Limited was founded in 2015 and is headquartered in Beijing, the People's Republic of China.

  8. m

    The North American Income Trust plc - Dividend-Per-Share

    • macro-rankings.com
    csv, excel
    Updated Sep 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2025). The North American Income Trust plc - Dividend-Per-Share [Dataset]. https://www.macro-rankings.com/markets/stocks/nait-lse/key-financial-ratios/dividends-and-more/dividend-per-share
    Explore at:
    csv, excelAvailable download formats
    Dataset updated
    Sep 12, 2025
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    uk
    Description

    Dividend-Per-Share Time Series for The North American Income Trust plc. The North American Income Trust plc is an exchange traded fund launched and managed by Aberdeen Fund Managers Limited. The fund invests in the public equity markets of the United States. It seeks to invest in the stocks of companies operating across diversified sectors. The fund invests in the stocks of large-cap companies, within the market capitalization range of S&P 500 Index. It employs active management style to manage its portfolio. The fund benchmarks the performance of its portfolio against the S&P 500 Index. The fund was formerly known as Edinburgh US Tracker Trust plc. The North American Income Trust plc was formed on November 2, 1902 and is domiciled in the United Kingdom.

  9. T

    Gold - Price Data

    • tradingeconomics.com
    • it.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Gold - Price Data [Dataset]. https://tradingeconomics.com/commodity/gold
    Explore at:
    excel, csv, json, xmlAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1968 - Dec 2, 2025
    Area covered
    World
    Description

    Gold fell to 4,199.97 USD/t.oz on December 2, 2025, down 0.75% from the previous day. Over the past month, Gold's price has risen 4.93%, and is up 58.92% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Gold - values, historical data, forecasts and news - updated on December of 2025.

  10. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Dataintelo (2025). Stock Analysis Software Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-stock-analysis-software-market

Stock Analysis Software Market Report | Global Forecast From 2025 To 2033

Explore at:
csv, pdf, pptxAvailable download formats
Dataset updated
Jan 7, 2025
Dataset authored and provided by
Dataintelo
License

https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

Time period covered
2024 - 2032
Area covered
Global
Description

Stock Analysis Software Market Outlook




The global stock analysis software market size was valued at approximately USD 1.2 billion in 2023 and is projected to reach around USD 3.5 billion by 2032, growing at a compound annual growth rate (CAGR) of 12.5% during the forecast period. The growth of this market is driven by the increasing adoption of advanced analytics tools by individual investors and financial institutions to make informed investment decisions. The rising demand for automated trading systems and the integration of artificial intelligence (AI) and machine learning (ML) in stock analysis software are significant growth factors contributing to the market expansion.




One of the primary growth factors for the stock analysis software market is the increasing complexity and volume of financial data. With the exponential growth of data from various sources such as social media, news articles, and financial statements, investors and financial analysts require sophisticated tools to process and interpret this information accurately. Stock analysis software equipped with AI and ML algorithms can analyze vast datasets in real-time, providing valuable insights and predictive analytics that enhance investment strategies. Moreover, the growing trend of algorithmic trading, which relies heavily on high-speed data processing and automated decision-making, is further propelling the market growth.




Another crucial growth driver is the rising awareness and adoption of stock analysis software among individual investors. As more individuals seek to actively manage their investment portfolios, there is a growing demand for user-friendly and cost-effective stock analysis tools that offer comprehensive market analysis, technical indicators, and personalized investment recommendations. The proliferation of mobile applications and the increasing accessibility of cloud-based stock analysis solutions have made it easier for retail investors to access advanced analytical tools, thereby contributing to market expansion.




The integration of innovative technologies such as natural language processing (NLP) and sentiment analysis into stock analysis software is also a significant growth factor. These technologies enable the software to interpret and analyze unstructured data from news articles, social media, and other textual sources to gauge market sentiment and predict stock price movements. This capability is particularly valuable in today's fast-paced financial markets, where sentiment and news events can have a substantial impact on stock prices. The continuous advancements in AI and NLP technologies are expected to drive further innovations and improvements in stock analysis software, thereby boosting market growth.



In the evolving landscape of financial technology, Investor Relations Tools have become indispensable for companies seeking to maintain transparent and effective communication with their stakeholders. These tools facilitate seamless interaction between companies and their investors, providing real-time updates, financial reports, and strategic insights. By leveraging these tools, companies can enhance their investor engagement strategies, build trust, and foster long-term relationships with their shareholders. The integration of advanced analytics and AI-driven insights into Investor Relations Tools further empowers companies to tailor their communication strategies, ensuring that they meet the diverse needs of their investor base. As the demand for transparency and accountability in financial markets continues to grow, the adoption of sophisticated Investor Relations Tools is expected to rise, playing a crucial role in the broader ecosystem of stock analysis software.




From a regional perspective, North America is anticipated to hold the largest market share due to the high concentration of financial institutions, brokerage firms, and individual investors in the region. The presence of key market players and the early adoption of advanced technologies also contribute to the dominant position of North America in the global stock analysis software market. Additionally, the Asia Pacific region is expected to witness significant growth during the forecast period, driven by the increasing number of retail investors, rapid economic development, and the growing financial markets in countries such as China and India.



Component Analysis



Search
Clear search
Close search
Google apps
Main menu