8 datasets found
  1. 2024 American Community Survey: B992707 | Allocation of...

    • data.census.gov
    Updated Sep 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS (2024). 2024 American Community Survey: B992707 | Allocation of Medicaid/Means-Tested Public Coverage (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT1Y2024.B992707?q=medicaid+status
    Explore at:
    Dataset updated
    Sep 12, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024
    Description

    Key Table Information.Table Title.Allocation of Medicaid/Means-Tested Public Coverage.Table ID.ACSDT1Y2024.B992707.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and...

  2. f

    Trend in no health insurance coverage and Medicaid coverage by marital...

    • plos.figshare.com
    xls
    Updated Jun 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jim P. Stimpson; Jessie Kemmick Pintor; Fernando A. Wilson (2023). Trend in no health insurance coverage and Medicaid coverage by marital status, sex, and state Medicaid expansion status, American Community Survey 2010–16, N = 3,874,432 Medicaid eligible respondents. [Dataset]. http://doi.org/10.1371/journal.pone.0223556.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 20, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Jim P. Stimpson; Jessie Kemmick Pintor; Fernando A. Wilson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Trend in no health insurance coverage and Medicaid coverage by marital status, sex, and state Medicaid expansion status, American Community Survey 2010–16, N = 3,874,432 Medicaid eligible respondents.

  3. f

    Percentage of Medicaid eligible respondents by marital status and state...

    • plos.figshare.com
    xls
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jim P. Stimpson; Jessie Kemmick Pintor; Fernando A. Wilson (2023). Percentage of Medicaid eligible respondents by marital status and state Medicaid expansion status, American Community Survey 2010–16, N = 3,874,432. [Dataset]. http://doi.org/10.1371/journal.pone.0223556.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Jim P. Stimpson; Jessie Kemmick Pintor; Fernando A. Wilson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Percentage of Medicaid eligible respondents by marital status and state Medicaid expansion status, American Community Survey 2010–16, N = 3,874,432.

  4. f

    Affordable Care Act and healthcare delivery: A comparison of California and...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    docx
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Monique T. Barakat; Aditi Mithal; Robert J. Huang; Alka Mithal; Amrita Sehgal; Subhas Banerjee; Gurkirpal Singh (2023). Affordable Care Act and healthcare delivery: A comparison of California and Florida hospitals and emergency departments [Dataset]. http://doi.org/10.1371/journal.pone.0182346
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Monique T. Barakat; Aditi Mithal; Robert J. Huang; Alka Mithal; Amrita Sehgal; Subhas Banerjee; Gurkirpal Singh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Florida, California
    Description

    ImportanceThe Affordable Care Act (ACA) has expanded access to health insurance for millions of Americans, but the impact of Medicaid expansion on healthcare delivery and utilization remains uncertain.ObjectiveTo determine the early impact of the Medicaid expansion component of ACA on hospital and ED utilization in California, a state that implemented the Medicaid expansion component of ACA and Florida, a state that did not.DesignAnalyze all ED encounters and hospitalizations in California and Florida from 2009 to 2014 and evaluate trends by payer and diagnostic category. Data were collected from State Inpatient Databases, State Emergency Department Databases and the California Office of Statewide Health Planning and Development.SettingHospital and ED encounters.ParticipantsPopulation-based study of California and Florida state residents.ExposureImplementation of Medicaid expansion component of ACA in California in 2014.Main outcomes or measuresChanges in ED visits and hospitalizations by payer, percentage of patients hospitalized after an ED encounter, top diagnostic categories for ED and hospital encounters.ResultsIn California, Medicaid ED visits increased 33% after Medicaid expansion implementation and self-pay visits decreased by 25% compared with a 5.7% increase in the rate of Medicaid patient ED visits and a 5.1% decrease in rate of self-pay patient visits in Florida. In addition, California experienced a 15.4% increase in Medicaid inpatient stays and a 25% decrease in self pay stays. Trends in the percentage of patients admitted to the hospital from the ED were notable; a 5.4% decrease in hospital admissions originating from the ED in California, and a 2.1% decrease in Florida from 2013 to 2014.Conclusions and relevanceWe observed a significant shift in payer for ED visits and hospitalizations after Medicaid expansion in California without a significant change in top diagnoses or overall rate of these ED visits and hospitalizations. There appears to be a shift in reimbursement burden from patients and hospitals to the government without a dramatic shift in patterns of ED or hospital utilization.

  5. 2024 American Community Survey: C27007 | Medicaid/Means-Tested Public...

    • data.census.gov
    Updated Sep 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS (2024). 2024 American Community Survey: C27007 | Medicaid/Means-Tested Public Coverage by Sex by Age (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT1Y2024.C27007?q=medicaid+status
    Explore at:
    Dataset updated
    Sep 12, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024
    Description

    Key Table Information.Table Title.Medicaid/Means-Tested Public Coverage by Sex by Age.Table ID.ACSDT1Y2024.C27007.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and ...

  6. f

    Triple differences linear probability model for Medicaid coverage by marital...

    • plos.figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jim P. Stimpson; Jessie Kemmick Pintor; Fernando A. Wilson (2023). Triple differences linear probability model for Medicaid coverage by marital status, sex, age, and state Medicaid expansion status, American Community Survey 2010–16. [Dataset]. http://doi.org/10.1371/journal.pone.0223556.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Jim P. Stimpson; Jessie Kemmick Pintor; Fernando A. Wilson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Triple differences linear probability model for Medicaid coverage by marital status, sex, age, and state Medicaid expansion status, American Community Survey 2010–16.

  7. d

    EOA.B.1 - Number and percentage of residents living below the poverty level...

    • datasets.ai
    Updated Aug 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Austin (2024). EOA.B.1 - Number and percentage of residents living below the poverty level (poverty rate) [Dataset]. https://datasets.ai/datasets/number-and-percentage-of-residents-living-below-the-poverty-level-poverty-rate
    Explore at:
    Dataset updated
    Aug 8, 2024
    Dataset authored and provided by
    City of Austin
    Description

    This measure answers the question of what number and percentage of residents are living below the federal poverty level, which means they meet certain threshold set by a set of parameters and computation performed by the Census Bureau. Following the Office of Management and Budget's (OMB) Statistical Policy Directive 14, the Census Bureau uses a set of money income thresholds that vary by family size and composition to determine who is in poverty. If a family's total income is less than the family's threshold, then that family and every individual in it is considered in poverty. The official poverty thresholds do not vary geographically, but they are updated for inflation using the Consumer Price Index (CPI-U). The official poverty definition uses money income before taxes and does not include capital gains or noncash benefits (such as public housing, Medicaid, and food stamps). Data collected from the U.S. Census Bureau, American Communities Survey (1yr), Poverty Status in the Past 12 Months (Table S1701). American Communities Survey (ACS) is a survey with sampled statistics on the citywide level and is subject to a margin of error. ACS sample size and data quality measures can be found on the U.S. Census website in the Methodology section.

  8. f

    Data_Sheet_1_A Quasi-Experimental Study of Medicaid Expansion and Urban...

    • frontiersin.figshare.com
    • figshare.com
    docx
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cyrus Ayubcha; Pedram Pouladvand; Soussan Ayubcha (2023). Data_Sheet_1_A Quasi-Experimental Study of Medicaid Expansion and Urban Mortality in the American Northeast.docx [Dataset]. http://doi.org/10.3389/fpubh.2021.707907.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Frontiers
    Authors
    Cyrus Ayubcha; Pedram Pouladvand; Soussan Ayubcha
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Northeastern United States
    Description

    Objectives: To investigate the association of state-level Medicaid expansion and non-elderly mortality rates from 1999 to 2018 in Northeastern urban settings.Methods: This quasi-experimental study utilized a synthetic control method to assess the association of Medicaid expansion on non-elderly urban mortality rates [1999–2018]. Counties encompassing the largest cities in the Northeastern Megalopolis (Washington D.C., Baltimore, Philadelphia, New York City, and Boston) were selected as treatment units (n = 5 cities, 3,543,302 individuals in 2018). Cities in states without Medicaid expansion were utilized as control units (n = 17 cities, 12,713,768 individuals in 2018).Results: Across all cities, there was a significant reduction in the neoplasm (Population-Adjusted Average Treatment Effect = −1.37 [95% CI −2.73, −0.42]) and all-cause (Population-Adjusted Average Treatment Effect = −2.57 [95%CI −8.46, −0.58]) mortality rate. Washington D.C. encountered the largest reductions in mortality (Average Treatment Effect on All-Cause Medical Mortality = −5.40 monthly deaths per 100,000 individuals [95% CI −12.50, −3.34], −18.84% [95% CI −43.64%, −11.67%] reduction, p = < 0.001; Average Treatment Effect on Neoplasm Mortality = −1.95 monthly deaths per 100,000 individuals [95% CI −3.04, −0.98], −21.88% [95% CI −34.10%, −10.99%] reduction, p = 0.002). Reductions in all-cause medical mortality and neoplasm mortality rates were similarly observed in other cities.Conclusion: Significant reductions in urban mortality rates were associated with Medicaid expansion. Our study suggests that Medicaid expansion saved lives in the observed urban settings.

  9. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ACS (2024). 2024 American Community Survey: B992707 | Allocation of Medicaid/Means-Tested Public Coverage (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT1Y2024.B992707?q=medicaid+status
Organization logo

2024 American Community Survey: B992707 | Allocation of Medicaid/Means-Tested Public Coverage (ACS 1-Year Estimates Detailed Tables)

2024: ACS 1-Year Estimates Detailed Tables

Explore at:
Dataset updated
Sep 12, 2024
Dataset provided by
United States Census Bureauhttp://census.gov/
Authors
ACS
License

CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically

Time period covered
2024
Description

Key Table Information.Table Title.Allocation of Medicaid/Means-Tested Public Coverage.Table ID.ACSDT1Y2024.B992707.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and...

Search
Clear search
Close search
Google apps
Main menu