Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset provides insights into the global housing market, covering various economic factors from 2015 to 2024. It includes details about property prices, rental yields, interest rates, and household income across multiple countries. This dataset is ideal for real estate analysis, financial forecasting, and market trend visualization.
| Column Name | Description |
|---|---|
Country | The country where the housing market data is recorded 🌍 |
Year | The year of observation 📅 |
Average House Price ($) | The average price of houses in USD 💰 |
Median Rental Price ($) | The median monthly rent for properties in USD 🏠 |
Mortgage Interest Rate (%) | The average mortgage interest rate percentage 📉 |
Household Income ($) | The average annual household income in USD 🏡 |
Population Growth (%) | The percentage increase in population over the year 👥 |
Urbanization Rate (%) | Percentage of the population living in urban areas 🏙️ |
Homeownership Rate (%) | The percentage of people who own their homes 🔑 |
GDP Growth Rate (%) | The annual GDP growth percentage 📈 |
Unemployment Rate (%) | The percentage of unemployed individuals in the labor force 💼 |
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
30 Year Mortgage Rate in the United States decreased to 6.23 percent in November 26 from 6.26 percent in the previous week. This dataset includes a chart with historical data for the United States 30 Year Mortgage Rate.
Facebook
TwitterBy Zillow Data [source]
This dataset, Negative Equity in the US Housing Market, provides an in-depth look into the negative equity occurring across the United States during this single quarter. Included are metrics such as total amount of negative equity in millions of dollars, total number of homes in negative equity, percentage of homes with mortgages that are in negative equity and more. These data points provide helpful insights into both regional and national trends regarding the prevalence and rate of home mortgage delinquency stemming from a diminishment of value from peak levels.
Home types available for analysis include 'all homes', condos/co-ops, multifamily units containing five or more housing units as well as duplexes/triplexes. Additionally, Cash buyers rates for particular areas can also be determined by referencing this collection. Further metrics such as mortgage affordability rates and impacts on overall indebtedness are readily calculated using information related to Zillow's Home Value Index (ZHVI) forecast methodology and TransUnion data respectively.
Other variables featured within this dataset include characteristics like region type (i.e city, county ..etc), size rank based on population values , percentage change in ZHVI since peak levels as well as loan-to-value ratio greater than 200 across all regions constituted herein (NE). Moreover Zillow's own Secondary Mortgage Market Survey data is utilized to acquire average mortgage quote rates while correlative Census Bureau NCHS median household income figures represent typical assessable proportions between wages and debt obligations . So whether you're looking to assess effects along metro lines or detailed buffering through zip codes , this database should prove sufficient for insightful explorations! Nonetheless users must strictly adhere to all conditions encompassed within Terms Of Use commitments put forth by our lead provider before accessing any resources included herewith
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
- Analyzing regional and state trends in negative equity: Analyze geographic differences in the percentage of mortgages “underwater”, total amount of negative equity, number of homes at least 90 days late, and other key indicators to provide insight into the factors influencing negative equity across regions, states and cities.
- Tracking the recovery rate over time: Track short-term changes in numbers related to negative equity (e.g., region or area ZHVI Change from Peak) to monitor recovery rates over time as well as how different policy interventions are affecting homeownership levels in affected areas.
- Exploring best practices for promoting housing affordability: Compare affordability metrics (e.g., mortgage payments, price-to-income ratios) across different geographic locations over time to identify best practices for empowering homeowners and promoting stability within the housing market while reducing local inequality impacts related to availability of affordable housing options and access to credit markets like mortgages/loans etc
If you use this dataset in your research, please credit the original authors. Data Source
See the dataset description for more information.
File: NESummary_2017Q1_Public.csv | Column name | Description | |:------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------| | RegionType | The type of region (e.g., city, county, metro etc.) (String) | | City | Name of the city (String) | | County | Name of the county (String) | | State | Name of the state (String) | | Metro ...
Facebook
TwitterOur Home Ownership Mortgage Database is rebuilt from every two months and contains information on over 50+ million US Homeowners. The data is collected from county recorder and assessor offices.
The file is processed via National Change of Address (NCOA) to ensure deliverability. Additionally, the data is passed against suppression files to eliminate consumers or telephone numbers as appropriate such as Decease File, State Attorney General (SAG) data, the Direct Marketing Association's (DMA) do-not-mail and do-not-call lists, and the national FTC do-not-call file.
Selections include mortgage loan and property attributes along with household, individual and neighborhood demographics.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Public Use Database (PUDB) is released annually to meet FHFA’s requirement under 12 U.S.C. 4543 and 4546(d) to publicly disclose data about the Enterprises’ single-family and multifamily mortgage acquisitions. The datasets supply mortgage lenders, planners, researchers, policymakers, and housing advocates with information concerning the flow of mortgage credit in America’s neighborhoods. Beginning with data for mortgages acquired in 2018, FHFA has ordered that the PUDB be expanded to include additional data that is the same as the data definitions used by the regulations implementing the Home Mortgage Disclosure Act, as required by 12 U.S.C. 4543(a)(2) and 4546(d)(1).The PUDB single-family datasets include loan-level records that include data elements on the income, race, and sex of each borrower as well as the census tract location of the property, loan-to-value (LTV) ratio, age of mortgage note, and affordability of the mortgage. New for 2018 are the inclusion of the borrower’s debt-to-income (DTI) ratio and detailed LTV ratio data at the census tract level. The PUDB multifamily property-level datasets include information on the unpaid principal balance and type of seller/servicer from which the Enterprise acquired the mortgage. New for 2018 is the inclusion of property size data at the census tract level. The multifamily unit-class files also include information on the number and affordability of the units in the property. Both the single-family and multifamily datasets include indicators of whether the purchases are from “underserved” census tracts, as defined in terms of median income and minority percentage of population.Prior to 2010 the single-family PUDB consisted of three files: Census Tract, National A, and National B files. With the 2010 PUDB a fourth file, National C, was added to provide information on high-cost mortgages acquired by the Enterprises. The single-family Census Tract file includes information on the location of the property based on the 2010 Census for acquisition years 2012 through 2021, and the 2020 Census beginning with the 2022 acquisition year. The National files contain other information but lack detailed geographic information in order to protect Enterprise proprietary data. The multifamily datasets also consist of a Census Tract file, and a National file without detailed geographic information.Several dashboards are available to analyze the data:Enterprise Multifamily Public Use Database DashboardThe Enterprise Multifamily Public Use Database (PUDB) Dashboard provides users an interactive way to generate and visualize Enterprise PUDB data of multifamily mortgage acquisitions by Fannie Mae and Freddie Mac. It shows characteristics about multifamily loans, properties and units at the national level, and characteristics about multifamily loans and properties at the state level. It includes key statistics, time series charts, and state maps of multifamily housing characteristics such as median loan amount, number of properties, average number of units per property, and unit affordability. The underlying aggregate statistics presented in the dashboard come from three multifamily data files in the Enterprise PUDB, updated annually since 2008, including two property-level datasets and a data file on the size and affordability of individual units.Enterprise Multifamily Public Use DashboardPress Release - FHFA Releases Data Visualization Dashboard for Enterprises’ Multifamily Mortgage AcquisitionsMortgage Loan and Natural Disaster DashboardFHFA published an interactive Mortgage Loan and Natural Disaster Dashboard that combines FHFA’s PUDB reports on single-family and multifamily acquisitions for the regulated entities, FEMA’s National Risk Index (NRI), and FHFA’s Duty to Serve 2023 High-Needs rural areas. Desired geographies can be exported to .pdf and Excel from the Public Use Database and National Risk Index Dashboard.Mortgage Loan and Natural Disaster DashboardMortgage Loan and Natural Disaster Dashboard FAQs
Facebook
TwitterLike other Assessor and Recorder data sets from First American, BlackKnight, ATTOM or HouseCanary, we provide both residential real estate and commercial restate data on homes, properties and pracels nationally.
Over 250M parcels, updated daily.
Access detailed property and tax assessment records with our extensive nationwide database. This robust dataset provides comprehensive information about residential and commercial properties, including detailed ownership, valuation, and transaction history. Core Data Elements:
Complete property identification (APNs, Tax IDs) Full property addresses with geocoding Precise latitude/longitude coordinates FIPS codes and Census tract information School district assignments
Property Characteristics:
Detailed lot dimensions and size Building square footage breakdowns Living area measurements Basement and attic specifications Garage and parking information Year built and effective year Number of bedrooms and bathrooms Room counts and configurations Building class and condition codes Construction details and materials Property amenities and features
Valuation Information:
Current AVM (Automated Valuation Model) values Confidence scores and value ranges Market valuations with dates Assessed values (land and improvements) Tax amounts and years Tax rate codes and districts Various tax exemption statuses
Transaction History:
Current and previous sale details Recording dates and document numbers Sale prices and price codes Buyer and seller information Multiple mortgage records including:
Loan amounts and terms Lender information Recording dates Interest rates Due dates Loan types and positions
Ownership Details:
Current owner information Corporate ownership indicators Owner-occupied status Mailing addresses Care of names Foreign address indicators
Legal Information:
Complete legal descriptions Subdivision details Lot and block numbers Zoning information Land use codes HOA information and fees
Property Status Indicators:
Vacancy flags Pre-foreclosure status Current listing status Price ranges Market position
Perfect For:
Real Estate Professionals
Property researchers Title companies Real estate attorneys Appraisers Market analysts
Financial Services
Mortgage lenders Insurance companies Investment firms Risk assessment teams Portfolio managers
Government & Planning
Urban planners Tax assessors Economic developers Policy researchers Municipal agencies
Data Analytics
Market researchers Data scientists Economic analysts GIS specialists Demographics experts
Data Delivery Features:
Multiple format options Regular updates Bulk download capability Custom field selection Geographic filtering API access available Standardized formatting Quality assured data
Quality Assurance:
Verified against public records Regular updates Standardized formatting Address verification Geocoding validation Duplicate removal Data normalization Quality control processes
This comprehensive property database provides unprecedented access to detailed property information, perfect for industry professionals requiring in-depth property data for analysis, research, or business development. Our data undergoes rigorous quality control processes to ensure accuracy and completeness, making it an invaluable resource for real estate professionals, financial institutions, and government agencies. Updated continuously from authoritative sources, this dataset offers the most current and accurate property information available in the market. Custom data extracts and specific geographic coverage options are available to meet your exact needs.
Weekly/Quarterly/Annual and One-time options are available for sale.
See our sample
Facebook
TwitterExplore the dataset and potentially gain valuable insight into your data science project through interesting features. The dataset was developed for a portfolio optimization graduate project I was working on. The goal was to the monetize risk of company deleveraging by associated with changes in economic data. Applications of the dataset may include. To see the data in action visit my analytics page. Analytics Page & Dashboard and to access all 295,000+ records click here.
For any questions, you may reach us at research_development@goldenoakresearch.com. For immediate assistance, you may reach me on at 585-626-2965. Please Note: the number is my personal number and email is preferred
Note: in total there are 75 fields the following are just themes the fields fall under Home Owner Costs: Sum of utilities, property taxes.
2012-2016 ACS 5-Year Documentation was provided by the U.S. Census Reports. Retrieved May 2, 2018, from
Providing you the potential to monetize risk and optimize your investment portfolio through quality economic features at unbeatable price. Access all 295,000+ records on an incredibly small scale, see links below for more details:
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Mortgage Application in the United States increased by 0.20 percent in the week ending November 21 of 2025 over the previous week. This dataset provides - United States MBA Mortgage Applications - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Mortgage Status by Aggregate Real Estate Taxes Paid (Dollars).Table ID.ACSDT1Y2024.B25090.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, ci...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Fixed 30-year mortgage rates in the United States averaged 6.40 percent in the week ending November 21 of 2025. This dataset provides the latest reported value for - United States MBA 30-Yr Mortgage Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterBy Zillow Data [source]
This dataset provides a comprehensive analysis of the current real estate situation in the United States. It includes breakeven analysis charts that compare buying vs renting across major U.S. markets. This dataset contains various metrics such as home types, housing stock, price-to-income ratio, cash buyers, mortgage affordability and rental affordability to name a few. This data has been compiled using Zillow's own data along with TransUnion financing survey data and the Freddie Mac Primary Mortgage Market Survey to provide an accurate understanding of each metro area’s market health and purchasing power for buyers and renters alike. By downloading this information you can compare different regions based on size rank and other factors to get full insights regarding their potential fit for your needs or investments strategies as well as any potential risks associated with each region's housing market health
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset is for real estate professionals, owner-occupants, potential buyers and renters who are interested in understanding which U.S. markets offer the most favorable home buying or rental opportunities from a financial perspective over the long term.
The “Real Estate Breakeven Analysis for U.S Home Types” dataset contains data pulled from Zillow's current and forecasted housing market metrics across many different real estate regions in the United States including cities, counties, states, metro areas and combined statistical areas (CSAs). The data includes several measures of affordability such as median price-to-rent ratio (MedPR), median breakeven horizon (MedBE) - which refers to how long it takes to make up purchase costs when compared with renting; cash purchaser share; mortgage rate; mortgage affordability indices; rental affordability rates etc.
In order to analyze and compare buying vs renting decisions across various regions in the US this dataset provides breakeven analysis at various levels of geographies i.e., state names, region types (city/metro area/county) and show how long it will take homeowners to break even on their purchase costs when compared with renting in that region over a longer period of time using discounted cash flow methodology. This information helps people understand what type of transaction is a better fit for them by weighing short term vs long term goals accordingly by evaluating these different factors related to housing metrics carefully before making financial decisions about purchasing or renting properties in desired location(s).
To use this dataset one can use either basic filters like RegionType or RegionName or more detailed filter criteria like CountyName, City name , Metro area name , State Name etc . For example if someone wanted to look at properties available for rent only then they can apply filters based on Province Type =‘Rental’ Also one can further refine searches based on filtering them with defined SampleRate , Median Price – To – Rent Ratio …..etc . This could be useful if seekers would want only specific type of property like Condominium/Coop /Multifamily 5+ Units /Duplex Triplex listing etc …and then apply other parameters like Cash Buyers percent , Mortgage Affordability Rate….etc ..in order narrow down search results while looking at Breakeven scores /horizons in their target locations . One should take advantages of all relevant parameters while searching through data before making any decision related with owning rental properties so that they can make sure best possible investment decision given
- Visualizing changes in real estate trends across regions by comparing price to rent ratios, mortgage affordability indices and cash buyers over time.
- Market segmentation analysis based on region-level market characteristics such as negative equity data, rental affordability, median house values and population size.
- Predicting housing demand within a particular region based on its breakeven horizon or price to rent ratio
If you use this dataset in your research, please credit the original authors. Data Source
See the dataset description for more information.
File: BreakEven_2017-03.csv | Column name | Description | |:----------------|:----------------------------------------------------...
Facebook
TwitterThe Property Valuation Data Listing offered by BatchData delivers an extensive and detailed dataset designed to provide unparalleled insight into real estate market trends, property values, and investment opportunities. This dataset includes over 9 critical data points that offer a comprehensive view of property valuations across various geographic regions and market conditions. Below is an in-depth description of the data points and their implications for users in the real estate industry.
The Property Valuation Data Listing by BatchData is categorized into four primary sections, each offering detailed insights into different aspects of property valuation. Here’s an in-depth look at each category:
Current Valuation AVM Value as of Specific Date: The Automated Valuation Model (AVM) estimate of the property’s current market value, calculated as of a specified date. This value reflects the most recent assessment based on available data. Use Case: Provides an up-to-date valuation, essential for making current investment decisions, setting sale prices, or conducting market analysis. Valuation Confidence Score: A measure indicating the confidence level of the AVM value. This score reflects the reliability of the valuation based on data quality, volume, and model accuracy. Use Case: Helps users gauge the reliability of the valuation estimate. Higher confidence scores suggest more reliable values, while lower scores may indicate uncertainty or data limitations.
Valuation Range Price Range Minimum: The lowest estimated market value for the property within the given range. This figure represents the lower bound of the valuation spectrum. Use Case: Useful for understanding the potential minimum value of the property, helping in scenarios like setting a reserve price in auctions or evaluating downside risk. Price Range Maximum: The highest estimated market value for the property within the given range. This figure represents the upper bound of the valuation spectrum. Use Case: Provides insight into the potential maximum value, aiding in price setting, investment analysis, and comparative market assessments. AVM Value Standard Deviation: A statistical measure of the variability or dispersion of the AVM value estimates. It indicates how much the estimated values deviate from the average AVM value. Use Case: Assists in understanding the variability of the valuation and assessing the stability of the estimated value. A higher standard deviation suggests more variability and potential uncertainty.
LTV (Loan to Value Ratio) Current Loan to Value Ratio: The ratio of the outstanding loan balance to the current market value of the property, expressed as a percentage. This ratio helps assess the risk associated with the loan relative to the property’s value. Use Case: Crucial for lenders and investors to evaluate the financial risk of a property. A higher LTV ratio indicates higher risk, as the property value is lower compared to the loan amount.
Valuation Equity Calculated Total Equity: based upon estimate amortized balances for all open liens and AVM value Use Case: Provides insight into the net worth of the property for the owner. Useful for evaluating the financial health of the property, planning for refinancing, or understanding the owner’s potential gain or loss in case of sale.
This structured breakdown of data points offers a comprehensive view of property valuations, allowing users to make well-informed decisions based on current market conditions, valuation accuracy, financial risk, and equity potential.
This information can be particularly useful for: - Automated Valuation Models (AVMs) - Fuel Risk Management Solutions - Property Valuation Tools - ARV, rental data, building condition and more - Listing/offer Price Determination
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains a comprehensive collection of indicators which dictate the housing prices in the United States.
Facebook
TwitterHow does your organization use this dataset? What other NYSERDA or energy-related datasets would you like to see on Open NY? Let us know by emailing OpenNY@nyserda.ny.gov. The Low- to Moderate-Income (LMI) New York State (NYS) Census Population Analysis dataset is resultant from the LMI market database designed by APPRISE as part of the NYSERDA LMI Market Characterization Study (https://www.nyserda.ny.gov/lmi-tool). All data are derived from the U.S. Census Bureau’s American Community Survey (ACS) 1-year Public Use Microdata Sample (PUMS) files for 2013, 2014, and 2015. Each row in the LMI dataset is an individual record for a household that responded to the survey and each column is a variable of interest for analyzing the low- to moderate-income population. The LMI dataset includes: county/county group, households with elderly, households with children, economic development region, income groups, percent of poverty level, low- to moderate-income groups, household type, non-elderly disabled indicator, race/ethnicity, linguistic isolation, housing unit type, owner-renter status, main heating fuel type, home energy payment method, housing vintage, LMI study region, LMI population segment, mortgage indicator, time in home, head of household education level, head of household age, and household weight. The LMI NYS Census Population Analysis dataset is intended for users who want to explore the underlying data that supports the LMI Analysis Tool. The majority of those interested in LMI statistics and generating custom charts should use the interactive LMI Analysis Tool at https://www.nyserda.ny.gov/lmi-tool. This underlying LMI dataset is intended for users with experience working with survey data files and producing weighted survey estimates using statistical software packages (such as SAS, SPSS, or Stata).
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The latest population figures produced by the Office for National Statistics (ONS) on 28 June 2018 show that an estimated 534,800 people live in Bradford District – an increase of 2,300 people (0.4%) since the previous year. Bradford District is the fifth largest metropolitan district (in terms of population) in England, after Birmingham, Leeds, Sheffield and Manchester although the District’s population growth is lower than other major cities. The increase in the District’s population is largely due to “natural change”- there have been around 3,300 more births than deaths, although this has been balanced by a larger number of people leaving Bradford to live in other parts of the UK than coming to live here and a lower number of international migrants. In 2016/17 the net internal migration was -2,700 and the net international migration was 1,700. A large proportion of Bradford’s population is dominated by the younger age groups. More than one-quarter (29%) of the District’s population is aged less than 20 and nearly seven in ten people are aged less than 50. Bradford has the highest percentage of the under 16 population in England after the London Borough of Barking and Dagenham, Slough Borough Council and Luton Borough Council. The population of Bradford is ethnically diverse. The largest proportion of the district’s population (63.9%) identifies themselves as White British. The district has the largest proportion of people of Pakistani ethnic origin (20.3%) in England. The largest religious group in Bradford is Christian (45.9% of the population). Nearly one quarter of the population (24.7%) are Muslim. Just over one fifth of the district’s population (20.7%) stated that they had no religion. There are 216,813 households in the Bradford district. Most households own their own home (29.3% outright and 35.7% with a mortgage). The percentage of privately rented households is 18.1%. 29.6% of households were single person households. Information from the Annual Population Survey in December 2017 found that Bradford has 228,100 people aged 16-64 in employment. At 68% this is significantly lower than the national rate (74.9%). 91,100 (around 1 in 3 people) aged 16-64, are not in work. The claimant count rate is 2.9% which is higher than the regional and national averages. Skill levels are improving with 26.5% of 16 to 74 year olds educated to degree level. 18% of the district’s employed residents work in retail/wholesale. The percentage of people working in manufacturing has continued to decrease from 13.4% in 2009 to 11.9% in 2016. This is still higher than the average for Great Britain (8.1%).
Facebook
TwitterDESCRIPTION
For safe and secure lending experience, it's important to analyze the past data. In this project, you have to build a deep learning model to predict the chance of default for future loans using the historical data. As you will see, this dataset is highly imbalanced and includes a lot of features that make this problem more challenging.
Objective: Create a model that predicts whether or not an applicant will be able to repay a loan using historical data.
Domain: Finance
Analysis to be done: Perform data preprocessing and build a deep learning prediction model.
Steps to be done:
⦁ Load the dataset that is given to you ⦁ Check for null values in the dataset ⦁ Print percentage of default to payer of the dataset for the TARGET column ⦁ Balance the dataset if the data is imbalanced ⦁ Plot the balanced data or imbalanced data ⦁ Encode the columns that is required for the model ⦁ Calculate Sensitivity as a metrice ⦁ Calculate area under receiver operating characteristics curve
Facebook
TwitterDESCRIPTION
A banking institution requires actionable insights into mortgage-backed securities, geographic business investment, and real estate analysis. The mortgage bank would like to identify potential monthly mortgage expenses for each region based on monthly family income and rental of the real estate. A statistical model needs to be created to predict the potential demand in dollars amount of loan for each of the region in the USA. Also, there is a need to create a dashboard which would refresh periodically post data retrieval from the agencies. The dashboard must demonstrate relationships and trends for the key metrics as follows: number of loans, average rental income, monthly mortgage and owner’s cost, family income vs mortgage cost comparison across different regions. The metrics described here do not limit the dashboard to these few. Dataset Description
Variables
Description Second mortgage Households with a second mortgage statistics Home equity Households with a home equity loan statistics Debt Households with any type of debt statistics Mortgage Costs Statistics regarding mortgage payments, home equity loans, utilities, and property taxes Home Owner Costs Sum of utilities, and property taxes statistics Gross Rent Contract rent plus the estimated average monthly cost of utility features High school Graduation High school graduation statistics Population Demographics Population demographics statistics Age Demographics Age demographic statistics Household Income Total income of people residing in the household Family Income Total income of people related to the householder Project Task: Week 1
Data Import and Preparation:
Import data.
Figure out the primary key and look for the requirement of indexing.
Gauge the fill rate of the variables and devise plans for missing value treatment. Please explain explicitly the reason for the treatment chosen for each variable.
Exploratory Data Analysis (EDA):
Perform debt analysis. You may take the following steps:
Explore the top 2,500 locations where the percentage of households with a second mortgage is the highest and percent ownership is above 10 percent. Visualize using geo-map. You may keep the upper limit for the percent of households with a second mortgage to 50 percent
Use the following bad debt equation:
Bad Debt = P (Second Mortgage ∩ Home Equity Loan) Bad Debt = second_mortgage + home_equity - home_equity_second_mortgage Create pie charts to show overall debt and bad debt
Create Box and whisker plot and analyze the distribution for 2nd mortgage, home equity, good debt, and bad debt for different cities
Create a collated income distribution chart for family income, house hold income, and remaining income
Perform EDA and come out with insights into population density and age. You may have to derive new fields (make sure to weight averages for accurate measurements):
Use pop and ALand variables to create a new field called population density
Use male_age_median, female_age_median, male_pop, and female_pop to create a new field called median age
Visualize the findings using appropriate chart type
Create bins for population into a new variable by selecting appropriate class interval so that the number of categories don’t exceed 5 for the ease of analysis.
Analyze the married, separated, and divorced population for these population brackets
Visualize using appropriate chart type
Please detail your observations for rent as a percentage of income at an overall level, and for different states.
Perform correlation analysis for all the relevant variables by creating a heatmap. Describe your findings.
Project Task: Week 2
Data Pre-processing:
The economic multivariate data has a significant number of measured variables. The goal is to find where the measured variables depend on a number of smaller unobserved common factors or latent variables.
Each variable is assumed to be dependent upon a linear combination of the common factors, and the coefficients are known as loadings. Each measured variable also includes a component due to independent random variability, known as “specific variance” because it is specific to one variable. Obtain the common factors and then plot the loadings. Use factor analysis to find latent variables in our dataset and gain insight into the linear relationships in the data.
Following are the list of latent variables:
Highschool graduation rates
Median population age
Second mortgage statistics
Percent own
Bad debt expense
Data Modeling :
Build a linear Regression model to predict the total monthly expenditure for home mortgages loan.
Please refer deplotment_RE.xlsx. Column hc_mortgage_mean is predicted variable. This is the mean monthly mortgage and owner costs of specified geographical location.
Note: Exclude loans from prediction model which have NaN (Not a Numb...
Facebook
TwitterBy Zillow Data [source]
This dataset contains rental affordability data for different regions in the US, giving valuable insights into regional rental markets. Renters can use this information to identify where their budget will go the farthest. The cities are organized by rent tier in order to analyze affordability trends within and between different housing stock types. Within each region, the data includes median household income, Zillow Rent Index (ZRI), and percent of income spent on rent.
The Zillow Home Value Forecast (ZHVF) is used to calculate future combined mortgage pay/rent payments in each region using current median home prices, actual outstanding debt amounts and 30-year fixed mortgage interest rates reported through partnership with TransUnion credit bureau. Zillow also provides a breakdown of cash vs financing purchases for buyers looking for an investment or cash option solution.
This dataset provides an effective tool for consumers who want to better understand how their budget fits into diverse rental markets across the US; from condominiums and co-ops, multifamily residences with five or more units, duplexes and triplexes - every renter can determine how their housing budget should be adjusted as they consider multiple living possibilities throughout the country based on real-time price data!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
Introduction
Getting Started
First, you'll need to download the
TieredAffordability_Rental.csvdataset from this Kaggle page onto your computer or device.After downloading the data set onto your device, open it with any CSV viewing software of your choice (ex: Excel). It will include columns for RegionName**RegionName** , homes type/housing stock (All Homes or Condo/Co-op) SizeRank , Rent tier tier , Date date , median household income income , Zillow Rent Index zri and PercentIncomeSpentOnRent percentage (what portion of monthly median house-hold goes toward monthly mortgage payment) .
To begin analyzing rental prices across different regions using this dataset, look first at column four: SizeRank; which ranks each region based on size - smallest regions listed first and largest at last - so that you can compare a similar range of Regions when looking at affordability by home sizes larger than one unit multiplex dwellings.*Duples/Triplex*. Once there is an understanding of how all homes compare overall now it is time to consider home types Multifamily 5+ units according to rent tiers tier .
Next, choose one or more region(s) for comparison based on their rank in SizeRank column –so that all information gathered about them reflects what portionof households fall into certain categories ; eg; All Homes / Small Home /Large Home / MultiPlex Dwelling and what tier does each size rank falls into eg.: Affordable/Slightly Expensive/ Moderately Expensive etc.. This will enable further abstraction from other elements like date vs inflation rate per month or periodical intervals set herein by Rate segmentation i e dates givenin ‘Date’Columns – making the task easier and more direct while analyzing renatalAffordibility Analysis Based On Median Income zri 00 zwi & PCISOR 00 PCIRO
- Use the PercentIncomeSpentOnRent column to compare rental affordability between regions within a particular tier and determine optimal rent tiers for relocating families.
- Analyze how market conditions are affecting rental affordability over time by using the income, zri, and PercentageIncomeSpentOnRent columns.
- Identify trends in housing prices for different tiers over the years by comparing SizeRank data with Zillow Home Value Forecast (ZHVF) numbers across different regions in order to identify locations that may be headed up or down in terms of home values (and therefore rent levels)
If you use this dataset in your research, please credit the original authors. Data Source
See the dataset description for more information.
File: TieredAffordability_Rental.csv | Column name | Description | |:-----------------------------|:-------------------------------------------------------------| | RegionName | The name of the region. (String) ...
Facebook
TwitterThe House Price Index (HPI) measures inflation in the residential property market. The HPI captures price changes of all types of dwellings purchased by households (flats, detached houses, terraced houses, etc.). Only transacted dwellings are considered, self-build dwellings are excluded. The land component of the dwelling is included.
The HPI is available for all European Union Member States (except Greece), the United Kingdom (only until the third quarter of 2020), Iceland, Norway, Switzerland and Turkey. In addition to the individual country series, Eurostat produces indices for the euro area and for the European Union (EU). As from the first quarter of 2020 onwards, the EU HPI aggregate no longer includes the HPI from the United Kingdom.
The national HPIs are produced by National Statistical Offices (NSIs) and the European aggregates by Eurostat, by combining the national indices. The data released quarterly on Eurostat's website include the national and European price indices, weights and their rates of change.
In order to provide a more comprehensive picture of the housing market, house sales indicators are also provided. Available house sales indicators refer to the total number and value of dwellings transactions at national level where the purchaser is a household. Eurostat publishes in its database a quarterly and annual house sales index as well as quarterly and annual rates of change.
The HPI is based on market prices of dwellings. Non-marketed prices are ruled out from the scope of this indicator. Self-build dwellings, dwellings purchased by sitting tenants at discount prices or dwellings transacted between family members are out of the scope of the indicator. It covers all monetary dwelling transactions regardless of its type (e.g., carried out through a cash purchase or financed through a mortgage loan).
The HPI measures the price developments of all dwellings purchased by households, regardless of which institutional sector they were bought from and the purpose of the purchase. As such, a dwelling bought by a household for a purpose other than owner-occupancy (e.g., for being rented out) is within the scope of the indicator. The HPI includes all purchases of new and existing dwellings, including those of dwellings transacted between households.
The number and value of house sales cover the total annual value of dwellings transactions at national level where the purchaser is a household. Transactions between households are included. Transfers in dwellings due to donations and inheritances are excluded.
The house sales value reflect the prices paid by household buyers and include both the price of land and the price of the structure of the dwelling. The prices for new dwellings include VAT. Other costs related to the acquisition of the dwelling (e.g., notary fees, registration fees, real estate agency commission, bank fees) are excluded.
Each published index or rate of change refers to transacted dwellings purchased at market prices by the household sector in the corresponding geographical entity. All transacted dwellings are covered, regardless of which institutional sector they were bought from and of the purchase purpose.
more: https://ec.europa.eu/eurostat/cache/metadata/en/prc_hpi_inx_esms.htm
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
These dataset contains supply-demand factors that influence US home prices from past 20 years. This data are categorized into two datasets: Supply and Demand.
| Column | Description |
|---|---|
| DATE | Date |
| PERMIT | New Privately-Owned Housing Units Authorized in Permit-Issuing Places: Total Units (Thousands of Units, Seasonally Adjusted Annual Rate) |
| MSACSR | Monthly Supply of New Houses in the United States (Seasonally Adjusted) |
| TLRESCONS | Total Construction Spending: Residential in the United States (Millions of Dollars, Seasonally Adjusted Annual Rate) |
| EVACANTUSQ176N | Housing Inventory Estimate: Vacant Housing Units in the United States (Thousands of Units, Not Seasonally Adjusted) |
| CSUSHPISA | S&P/Case-Shiller U.S. National Home Price Index (Index Jan 2000=100, Seasonally Adjusted) |
| Column | Description |
|---|---|
| DATE | Date |
| INTDSRUSM193N | Interest Rates, Discount Rate for United States (Billions of Dollars, Seasonally Adjusted Annual Rate) |
| UMCSENT | University of Michigan: Consumer Sentiment |
| GDP | Gross Domestic Product (Billions of Dollars, Seasonally Adjusted Annual Rate) |
| MORTGAGE15US | 30-Year Fixed Rate Mortgage Average in the United States (Percent, Not Seasonally Adjusted) |
| CSUSHPISA | S&P/Case-Shiller U.S. National Home Price Index (Index Jan 2000=100, Seasonally Adjusted) |
| MSPUS | Median Sales Price of Houses Sold for the United States (Not Seasonally Adjusted) |
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset provides insights into the global housing market, covering various economic factors from 2015 to 2024. It includes details about property prices, rental yields, interest rates, and household income across multiple countries. This dataset is ideal for real estate analysis, financial forecasting, and market trend visualization.
| Column Name | Description |
|---|---|
Country | The country where the housing market data is recorded 🌍 |
Year | The year of observation 📅 |
Average House Price ($) | The average price of houses in USD 💰 |
Median Rental Price ($) | The median monthly rent for properties in USD 🏠 |
Mortgage Interest Rate (%) | The average mortgage interest rate percentage 📉 |
Household Income ($) | The average annual household income in USD 🏡 |
Population Growth (%) | The percentage increase in population over the year 👥 |
Urbanization Rate (%) | Percentage of the population living in urban areas 🏙️ |
Homeownership Rate (%) | The percentage of people who own their homes 🔑 |
GDP Growth Rate (%) | The annual GDP growth percentage 📈 |
Unemployment Rate (%) | The percentage of unemployed individuals in the labor force 💼 |