17 datasets found
  1. United States US: Urban Population Living in Areas Where Elevation is Below...

    • ceicdata.com
    Updated Mar 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). United States US: Urban Population Living in Areas Where Elevation is Below 5 meters: % of Total Population [Dataset]. https://www.ceicdata.com/en/united-states/land-use-protected-areas-and-national-wealth/us-urban-population-living-in-areas-where-elevation-is-below-5-meters--of-total-population
    Explore at:
    Dataset updated
    Mar 15, 2023
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1990 - Dec 1, 2010
    Area covered
    United States
    Description

    United States US: Urban Population Living in Areas Where Elevation is Below 5 meters: % of Total Population data was reported at 2.264 % in 2010. This records an increase from the previous number of 2.246 % for 2000. United States US: Urban Population Living in Areas Where Elevation is Below 5 meters: % of Total Population data is updated yearly, averaging 2.264 % from Dec 1990 (Median) to 2010, with 3 observations. The data reached an all-time high of 2.329 % in 1990 and a record low of 2.246 % in 2000. United States US: Urban Population Living in Areas Where Elevation is Below 5 meters: % of Total Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Land Use, Protected Areas and National Wealth. Urban population below 5m is the percentage of the total population, living in areas where the elevation is 5 meters or less.; ; Center for International Earth Science Information Network (CIESIN)/Columbia University. 2013. Urban-Rural Population and Land Area Estimates Version 2. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/lecz-urban-rural-population-land-area-estimates-v2.; Weighted Average;

  2. o

    US Cities: Demographics

    • public.opendatasoft.com
    • data.smartidf.services
    • +3more
    csv, excel, json
    Updated Jul 27, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). US Cities: Demographics [Dataset]. https://public.opendatasoft.com/explore/dataset/us-cities-demographics/
    Explore at:
    excel, csv, jsonAvailable download formats
    Dataset updated
    Jul 27, 2017
    License

    https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain

    Area covered
    United States
    Description

    This dataset contains information about the demographics of all US cities and census-designated places with a population greater or equal to 65,000. This data comes from the US Census Bureau's 2015 American Community Survey. This product uses the Census Bureau Data API but is not endorsed or certified by the Census Bureau.

  3. N

    cities in Baltimore city Ranked by Multi-Racial Asian Population // 2025...

    • neilsberg.com
    csv, json
    Updated Feb 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). cities in Baltimore city Ranked by Multi-Racial Asian Population // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/lists/cities-in-baltimore-city-md-by-multi-racial-asian-population/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 11, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Baltimore, Maryland
    Variables measured
    Multi-Racial Asian Population, Multi-Racial Asian Population as Percent of Total Population of cities in Baltimore city, MD, Multi-Racial Asian Population as Percent of Total Multi-Racial Asian Population of Baltimore city, MD
    Measurement technique
    To measure the rank and respective trends, we initially gathered data from the five most recent American Community Survey (ACS) 5-Year Estimates. We then analyzed and categorized the data for each of the racial categories identified by the U.S. Census Bureau. Based on the required racial category classification, we calculated the rank. For geographies with no population reported for the chosen race, we did not assign a rank and excluded them from the list. It is possible that a small population exists but was not reported or captured due to limitations or variations in Census data collection and reporting. We ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories and do not rely on any ethnicity classification, unless explicitly required.For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    This list ranks the 1 cities in the Baltimore city, MD by Multi-Racial Asian population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:

    • 2019-2023 American Community Survey 5-Year Estimates
    • 2018-2022 American Community Survey 5-Year Estimates
    • 2017-2021 American Community Survey 5-Year Estimates
    • 2016-2020 American Community Survey 5-Year Estimates
    • 2015-2019 American Community Survey 5-Year Estimates

    Variables / Data Columns

    • Rank by Multi-Racial Asian Population: This column displays the rank of cities in the Baltimore city, MD by their Multi-Racial Asian population, using the most recent ACS data available.
    • cities: The cities for which the rank is shown in the previous column.
    • Multi-Racial Asian Population: The Multi-Racial Asian population of the cities is shown in this column.
    • % of Total cities Population: This shows what percentage of the total cities population identifies as Multi-Racial Asian. Please note that the sum of all percentages may not equal one due to rounding of values.
    • % of Total Baltimore city Multi-Racial Asian Population: This tells us how much of the entire Baltimore city, MD Multi-Racial Asian population lives in that cities. Please note that the sum of all percentages may not equal one due to rounding of values.
    • 5 Year Rank Trend: TThis column displays the rank trend across the last 5 years.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

  4. Vital Signs: Poverty - by tract

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Dec 12, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2018). Vital Signs: Poverty - by tract [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Poverty-by-tract/974p-p6wz
    Explore at:
    xml, application/rssxml, tsv, json, csv, application/rdfxmlAvailable download formats
    Dataset updated
    Dec 12, 2018
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    U.S. Census Bureau
    Description

    VITAL SIGNS INDICATOR Poverty (EQ5)

    FULL MEASURE NAME The share of the population living in households that earn less than 200 percent of the federal poverty limit

    LAST UPDATED December 2018

    DESCRIPTION Poverty refers to the share of the population living in households that earn less than 200 percent of the federal poverty limit, which varies based on the number of individuals in a given household. It reflects the number of individuals who are economically struggling due to low household income levels.

    DATA SOURCE U.S Census Bureau: Decennial Census http://www.nhgis.org (1980-1990) http://factfinder2.census.gov (2000)

    U.S. Census Bureau: American Community Survey Form C17002 (2006-2017) http://api.census.gov

    METHODOLOGY NOTES (across all datasets for this indicator) The U.S. Census Bureau defines a national poverty level (or household income) that varies by household size, number of children in a household, and age of householder. The national poverty level does not vary geographically even though cost of living is different across the United States. For the Bay Area, where cost of living is high and incomes are correspondingly high, an appropriate poverty level is 200% of poverty or twice the national poverty level, consistent with what was used for past equity work at MTC and ABAG. For comparison, however, both the national and 200% poverty levels are presented.

    For Vital Signs, the poverty rate is defined as the number of people (including children) living below twice the poverty level divided by the number of people for whom poverty status is determined. Poverty rates do not include unrelated individuals below 15 years old or people who live in the following: institutionalized group quarters, college dormitories, military barracks, and situations without conventional housing. The household income definitions for poverty change each year to reflect inflation. The official poverty definition uses money income before taxes and does not include capital gains or noncash benefits (such as public housing, Medicaid, and food stamps). For the national poverty level definitions by year, see: https://www.census.gov/hhes/www/poverty/data/threshld/index.html For an explanation on how the Census Bureau measures poverty, see: https://www.census.gov/hhes/www/poverty/about/overview/measure.html

    For the American Community Survey datasets, 1-year data was used for region, county, and metro areas whereas 5-year rolling average data was used for city and census tract.

    To be consistent across metropolitan areas, the poverty definition for non-Bay Area metros is twice the national poverty level. Data were not adjusted for varying income and cost of living levels across the metropolitan areas.

  5. Census Data

    • catalog.data.gov
    • datadiscoverystudio.org
    • +3more
    Updated Mar 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Bureau of the Census (2024). Census Data [Dataset]. https://catalog.data.gov/dataset/census-data
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The Bureau of the Census has released Census 2000 Summary File 1 (SF1) 100-Percent data. The file includes the following population items: sex, age, race, Hispanic or Latino origin, household relationship, and household and family characteristics. Housing items include occupancy status and tenure (whether the unit is owner or renter occupied). SF1 does not include information on incomes, poverty status, overcrowded housing or age of housing. These topics will be covered in Summary File 3. Data are available for states, counties, county subdivisions, places, census tracts, block groups, and, where applicable, American Indian and Alaskan Native Areas and Hawaiian Home Lands. The SF1 data are available on the Bureau's web site and may be retrieved from American FactFinder as tables, lists, or maps. Users may also download a set of compressed ASCII files for each state via the Bureau's FTP server. There are over 8000 data items available for each geographic area. The full listing of these data items is available here as a downloadable compressed data base file named TABLES.ZIP. The uncompressed is in FoxPro data base file (dbf) format and may be imported to ACCESS, EXCEL, and other software formats. While all of this information is useful, the Office of Community Planning and Development has downloaded selected information for all states and areas and is making this information available on the CPD web pages. The tables and data items selected are those items used in the CDBG and HOME allocation formulas plus topics most pertinent to the Comprehensive Housing Affordability Strategy (CHAS), the Consolidated Plan, and similar overall economic and community development plans. The information is contained in five compressed (zipped) dbf tables for each state. When uncompressed the tables are ready for use with FoxPro and they can be imported into ACCESS, EXCEL, and other spreadsheet, GIS and database software. The data are at the block group summary level. The first two characters of the file name are the state abbreviation. The next two letters are BG for block group. Each record is labeled with the code and name of the city and county in which it is located so that the data can be summarized to higher-level geography. The last part of the file name describes the contents . The GEO file contains standard Census Bureau geographic identifiers for each block group, such as the metropolitan area code and congressional district code. The only data included in this table is total population and total housing units. POP1 and POP2 contain selected population variables and selected housing items are in the HU file. The MA05 table data is only for use by State CDBG grantees for the reporting of the racial composition of beneficiaries of Area Benefit activities. The complete package for a state consists of the dictionary file named TABLES, and the five data files for the state. The logical record number (LOGRECNO) links the records across tables.

  6. Vital Signs: Poverty - by county

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Dec 12, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2018). Vital Signs: Poverty - by county [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Poverty-by-county/gia5-zvpb
    Explore at:
    json, csv, application/rdfxml, application/rssxml, tsv, xmlAvailable download formats
    Dataset updated
    Dec 12, 2018
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    U.S. Census Bureau
    Description

    VITAL SIGNS INDICATOR Poverty (EQ5)

    FULL MEASURE NAME The share of the population living in households that earn less than 200 percent of the federal poverty limit

    LAST UPDATED December 2018

    DESCRIPTION Poverty refers to the share of the population living in households that earn less than 200 percent of the federal poverty limit, which varies based on the number of individuals in a given household. It reflects the number of individuals who are economically struggling due to low household income levels.

    DATA SOURCE U.S Census Bureau: Decennial Census http://www.nhgis.org (1980-1990) http://factfinder2.census.gov (2000)

    U.S. Census Bureau: American Community Survey Form C17002 (2006-2017) http://api.census.gov

    METHODOLOGY NOTES (across all datasets for this indicator) The U.S. Census Bureau defines a national poverty level (or household income) that varies by household size, number of children in a household, and age of householder. The national poverty level does not vary geographically even though cost of living is different across the United States. For the Bay Area, where cost of living is high and incomes are correspondingly high, an appropriate poverty level is 200% of poverty or twice the national poverty level, consistent with what was used for past equity work at MTC and ABAG. For comparison, however, both the national and 200% poverty levels are presented.

    For Vital Signs, the poverty rate is defined as the number of people (including children) living below twice the poverty level divided by the number of people for whom poverty status is determined. Poverty rates do not include unrelated individuals below 15 years old or people who live in the following: institutionalized group quarters, college dormitories, military barracks, and situations without conventional housing. The household income definitions for poverty change each year to reflect inflation. The official poverty definition uses money income before taxes and does not include capital gains or noncash benefits (such as public housing, Medicaid, and food stamps). For the national poverty level definitions by year, see: https://www.census.gov/hhes/www/poverty/data/threshld/index.html For an explanation on how the Census Bureau measures poverty, see: https://www.census.gov/hhes/www/poverty/about/overview/measure.html

    For the American Community Survey datasets, 1-year data was used for region, county, and metro areas whereas 5-year rolling average data was used for city and census tract.

    To be consistent across metropolitan areas, the poverty definition for non-Bay Area metros is twice the national poverty level. Data were not adjusted for varying income and cost of living levels across the metropolitan areas.

  7. N

    St. Louis city, MO Non-Hispanic Population Breakdown By Race Dataset:...

    • neilsberg.com
    csv, json
    Updated Jul 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). St. Louis city, MO Non-Hispanic Population Breakdown By Race Dataset: Non-Hispanic Population Counts and Percentages for 7 Racial Categories as Identified by the US Census Bureau // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e13988a8-2310-11ef-bd92-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 7, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Missouri, St. Louis
    Variables measured
    Non-Hispanic Asian Population, Non-Hispanic Black Population, Non-Hispanic White Population, Non-Hispanic Some other race Population, Non-Hispanic Two or more races Population, Non-Hispanic American Indian and Alaska Native Population, Non-Hispanic Native Hawaiian and Other Pacific Islander Population, Non-Hispanic Asian Population as Percent of Total Non-Hispanic Population, Non-Hispanic Black Population as Percent of Total Non-Hispanic Population, Non-Hispanic White Population as Percent of Total Non-Hispanic Population, and 4 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) Non-Hispanic population and (b) population as a percentage of the total Non-Hispanic population, we initially analyzed and categorized the data for each of the racial categories idetified by the US Census Bureau. It is ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories, and are part of Non-Hispanic classification. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Non-Hispanic population of St. Louis city by race. It includes the distribution of the Non-Hispanic population of St. Louis city across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of St. Louis city across relevant racial categories.

    Key observations

    Of the Non-Hispanic population in St. Louis city, the largest racial group is White alone with a population of 132,931 (46.61% of the total Non-Hispanic population).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race: This column displays the racial categories (for Non-Hispanic) for the St. Louis city
    • Population: The population of the racial category (for Non-Hispanic) in the St. Louis city is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each race as a proportion of St. Louis city total Non-Hispanic population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for St. Louis city Population by Race & Ethnicity. You can refer the same here

  8. g

    Census of Population and Housing, 1980 [United States]: Public Use Microdata...

    • search.gesis.org
    Updated May 6, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Department of Commerce. Bureau of the Census (2021). Census of Population and Housing, 1980 [United States]: Public Use Microdata Sample (B Sample): 1-Percent Sample - Archival Version [Dataset]. http://doi.org/10.3886/ICPSR08170
    Explore at:
    Dataset updated
    May 6, 2021
    Dataset provided by
    GESIS search
    ICPSR - Interuniversity Consortium for Political and Social Research
    Authors
    United States Department of Commerce. Bureau of the Census
    License

    https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de442733https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de442733

    Area covered
    United States
    Description

    Abstract (en): The Public Use Microdata Samples (PUMS) contain person- and household-level information from the "long-form" questionnaires distributed to a sample of the population enumerated in the 1980 Census. The B Sample containing 1-percent data, consists of a file for each state and an additional file for households and persons residing in metropolitan areas that are too small to be separately identified and/or that cross state boundaries. The B Sample defines Standard Metropolitan Statistical Areas (SMSAs) and county groups differently than in the A Sample [CENSUS OF POPULATION AND HOUSING, 1980 [UNITED STATES]: PUBLIC USE MICRODATA SAMPLE (A SAMPLE): 5-PERCENT SAMPLE (ICPSR 8101)]. Most states cannot be identified in their entirety. Household-level variables include housing tenure, year structure was built, number and types of rooms in dwelling, plumbing facilities, heating equipment, taxes and mortgage costs, number of children, and household and family income. The person record, in addition to containing demographic items such as sex, age, marital status, race, Spanish origin, income, occupation, transportation to work, and education. All persons and housing units in the United States. The B Sample is a stratified sample of households that received the "long-form" questionnaire in the 1980 Census. It comprises 1 percent of all households enumerated in the Census. 2006-01-12 All files were removed from dataset 81 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 80 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 81 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 80 and flagged as study-level files, so that they will accompany all downloads. The household and person records in each data file have a logical record length of 193 characters, but the number of records varies with each file.

  9. d

    Poverty - ACS 2018-2022 - Tempe Tracts

    • catalog.data.gov
    • datasets.ai
    • +9more
    Updated Sep 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2024). Poverty - ACS 2018-2022 - Tempe Tracts [Dataset]. https://catalog.data.gov/dataset/poverty-acs-2018-2022-tempe-tracts
    Explore at:
    Dataset updated
    Sep 20, 2024
    Dataset provided by
    City of Tempe
    Area covered
    Tempe
    Description

    This layer shows poverty status by age group. Data is from US Census American Community Survey (ACS) 5-year estimates.This layer is symbolized to show the percentage of the population whose income falls below the Federal poverty line. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right (in ArcGIS Online). To view only the census tracts that are predominantly in Tempe, add the expression City is Tempe in the map filter settings.A ‘Null’ entry in the estimate indicates that data for this geographic area cannot be displayed because the number of sample cases is too small (per the U.S. Census).Vintage: 2018-2022ACS Table(s): B17020 (Not all lines of these ACS tables are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community SurveyData Preparation: Data curated from Esri Living Atlas clipped to Census Tract boundaries that are within or adjacent to the City of Tempe boundaryDate of Census update: December 15, 2023National Figures: data.census.gov

  10. Vital Signs: Poverty - Bay Area

    • data.bayareametro.gov
    • open-data-demo.mtc.ca.gov
    application/rdfxml +5
    Updated Jan 8, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2019). Vital Signs: Poverty - Bay Area [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Poverty-Bay-Area/38fe-vd33
    Explore at:
    csv, application/rssxml, tsv, json, xml, application/rdfxmlAvailable download formats
    Dataset updated
    Jan 8, 2019
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    U.S. Census Bureau
    Area covered
    San Francisco Bay Area
    Description

    VITAL SIGNS INDICATOR Poverty (EQ5)

    FULL MEASURE NAME The share of the population living in households that earn less than 200 percent of the federal poverty limit

    LAST UPDATED December 2018

    DESCRIPTION Poverty refers to the share of the population living in households that earn less than 200 percent of the federal poverty limit, which varies based on the number of individuals in a given household. It reflects the number of individuals who are economically struggling due to low household income levels.

    DATA SOURCE U.S Census Bureau: Decennial Census http://www.nhgis.org (1980-1990) http://factfinder2.census.gov (2000)

    U.S. Census Bureau: American Community Survey Form C17002 (2006-2017) http://api.census.gov

    METHODOLOGY NOTES (across all datasets for this indicator) The U.S. Census Bureau defines a national poverty level (or household income) that varies by household size, number of children in a household, and age of householder. The national poverty level does not vary geographically even though cost of living is different across the United States. For the Bay Area, where cost of living is high and incomes are correspondingly high, an appropriate poverty level is 200% of poverty or twice the national poverty level, consistent with what was used for past equity work at MTC and ABAG. For comparison, however, both the national and 200% poverty levels are presented.

    For Vital Signs, the poverty rate is defined as the number of people (including children) living below twice the poverty level divided by the number of people for whom poverty status is determined. Poverty rates do not include unrelated individuals below 15 years old or people who live in the following: institutionalized group quarters, college dormitories, military barracks, and situations without conventional housing. The household income definitions for poverty change each year to reflect inflation. The official poverty definition uses money income before taxes and does not include capital gains or noncash benefits (such as public housing, Medicaid, and food stamps). For the national poverty level definitions by year, see: https://www.census.gov/hhes/www/poverty/data/threshld/index.html For an explanation on how the Census Bureau measures poverty, see: https://www.census.gov/hhes/www/poverty/about/overview/measure.html

    For the American Community Survey datasets, 1-year data was used for region, county, and metro areas whereas 5-year rolling average data was used for city and census tract.

    To be consistent across metropolitan areas, the poverty definition for non-Bay Area metros is twice the national poverty level. Data were not adjusted for varying income and cost of living levels across the metropolitan areas.

  11. l

    Racially or Ethnically Concentrated Areas of Poverty (R/ECAPs)

    • data.lojic.org
    • catalog.data.gov
    • +2more
    Updated Aug 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2023). Racially or Ethnically Concentrated Areas of Poverty (R/ECAPs) [Dataset]. https://data.lojic.org/datasets/HUD::racially-or-ethnically-concentrated-areas-of-poverty-r-ecaps
    Explore at:
    Dataset updated
    Aug 21, 2023
    Dataset authored and provided by
    Department of Housing and Urban Development
    Area covered
    Description

    To assist communities in identifying racially/ethnically-concentrated areas of poverty (R/ECAPs), HUD has developed a census tract-based definition of R/ECAPs. The definition involves a racial/ethnic concentration threshold and a poverty test. The racial/ethnic concentration threshold is straightforward: R/ECAPs must have a non-white population of 50 percent or more. Regarding the poverty threshold, Wilson (1980) defines neighborhoods of extreme poverty as census tracts with 40 percent or more of individuals living at or below the poverty line. Because overall poverty levels are substantially lower in many parts of the country, HUD supplements this with an alternate criterion. Thus, a neighborhood can be a R/ECAP if it has a poverty rate that exceeds 40% or is three or more times the average tract poverty rate for the metropolitan/micropolitan area, whichever threshold is lower. Census tracts with this extreme poverty that satisfy the racial/ethnic concentration threshold are deemed R/ECAPs. This translates into the following equation: Where i represents census tracts, () is the metropolitan/micropolitan (CBSA) mean tract poverty rate, is the ith tract poverty rate, () is the non-Hispanic white population in tract i, and Pop is the population in tract i.While this definition of R/ECAP works well for tracts in CBSAs, place outside of these geographies are unlikely to have racial or ethnic concentrations as high as 50 percent. In these areas, the racial/ethnic concentration threshold is set at 20 percent.

    Data Source: American Community Survey (ACS), 2009-2013; Decennial Census (2010); Brown Longitudinal Tract Database (LTDB) based on decennial census data, 1990, 2000 & 2010.

    Related AFFH-T Local Government, PHA Tables/Maps: Table 4, 7; Maps 1-17. Related AFFH-T State Tables/Maps: Table 4, 7; Maps 1-15, 18.

    References:Wilson, William J. (1980). The Declining Significance of Race: Blacks and Changing American Institutions. Chicago: University of Chicago Press.

    To learn more about R/ECAPs visit:https://www.hud.gov/program_offices/fair_housing_equal_opp/affh ; https://www.hud.gov/sites/dfiles/FHEO/documents/AFFH-T-Data-Documentation-AFFHT0006-July-2020.pdf, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Date of Coverage: 11/2017

  12. c

    City of Rochester Data Division Population 2021

    • data.cityofrochester.gov
    • hub.arcgis.com
    Updated May 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Open_Data_Admin (2023). City of Rochester Data Division Population 2021 [Dataset]. https://data.cityofrochester.gov/datasets/city-of-rochester-data-division-population-2021
    Explore at:
    Dataset updated
    May 23, 2023
    Dataset authored and provided by
    Open_Data_Admin
    Area covered
    Description

    Dataset SummaryAbout this data:This feature layer symbolizes the relative population counts for the City's 12 Data Divisions, aggregating the tract-level estimates from the the Census Bureau's American Community Survey 2021 five-year samples.If you click on each Data Division, you can view other Census demographic information about that Data Division in addition to the population count.About the Census Data:The data comes from the U.S. Census Bureau's American Community Survey's 2017-2021 five-year samples. The American Community Survey (ACS) is an ongoing survey conducted by the federal government that provides vital information annually about America and its population. Information from the survey generates data that help determine how more than $675 billion in federal and state funds are distributed each year.For more information about the Census Bureau's ACS data and process of constructing the survey, visit the ACS's About page.About the City's Data Divisions:As a planning analytic tool, an interdepartmental working group divided Rochester into 12 “data divisions.” These divisions are well-defined and static so they are positioned to be used by the City of Rochester for statistical and planning purposes. Census data is tied to these divisions and serves as the basis for analyses over time. As such, the data divisions are designed to follow census boundaries, while also recognizing natural and human-made boundaries, such as the River, rail lines, and highways. Historical neighborhood boundaries, while informative in the division process, did not drive the boundaries. Data divisions are distinct from the numerous neighborhoods in Rochester. Neighborhood boundaries, like quadrant boundaries, police precincts, and legislative districts often change, which makes statistical analysis challenging when looking at data over time. The data division boundaries, however, are intended to remain unchanged. It is hoped that over time, all City data analysts will adopt the data divisions for the purpose of measuring change over time throughout the city.Dictionary: Division: The name of the data division. Total_Popu: The total population of the division. The population is calculated from the Census Bureau’s American Community Survey 2021 five-year samples. Percentage: Represents the percentage of City of Rochester residents which live in the division. Area_in_Sq: The total area in square miles of a given division. Source:City of Rochester Office of Innovation

  13. A

    Climate Ready Boston Social Vulnerability

    • data.boston.gov
    • cloudcity.ogopendata.com
    • +3more
    Updated Sep 21, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Boston Maps (2017). Climate Ready Boston Social Vulnerability [Dataset]. https://data.boston.gov/dataset/climate-ready-boston-social-vulnerability
    Explore at:
    html, csv, geojson, arcgis geoservices rest api, zip, kmlAvailable download formats
    Dataset updated
    Sep 21, 2017
    Dataset provided by
    BostonMaps
    Authors
    Boston Maps
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Area covered
    Boston
    Description
    Social vulnerability is defined as the disproportionate susceptibility of some social groups to the impacts of hazards, including death, injury, loss, or disruption of livelihood. In this dataset from Climate Ready Boston, groups identified as being more vulnerable are older adults, children, people of color, people with limited English proficiency, people with low or no incomes, people with disabilities, and people with medical illnesses.

    Source:

    The analysis and definitions used in Climate Ready Boston (2016) are based on "A framework to understand the relationship between social factors that reduce resilience in cities: Application to the City of Boston." Published 2015 in the International Journal of Disaster Risk Reduction by Atyia Martin, Northeastern University.

    Population Definitions:

    Older Adults:
    Older adults (those over age 65) have physical vulnerabilities in a climate event; they suffer from higher rates of medical illness than the rest of the population and can have some functional limitations in an evacuation scenario, as well as when preparing for and recovering from a disaster. Furthermore, older adults are physically more vulnerable to the impacts of extreme heat. Beyond the physical risk, older adults are more likely to be socially isolated. Without an appropriate support network, an initially small risk could be exacerbated if an older adult is not able to get help.
    Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for population over 65 years of age.
    Attribute label: OlderAdult

    Children:
    Families with children require additional resources in a climate event. When school is cancelled, parents need alternative childcare options, which can mean missing work. Children are especially vulnerable to extreme heat and stress following a natural disaster.
    Data source: 2010 American Community Survey 5-year Estimates (ACS) data by census tract for population under 5 years of age.
    Attribute label: TotChild

    People of Color:
    People of color make up a majority (53 percent) of Boston’s population. People of color are more likely to fall into multiple vulnerable groups as
    well. People of color statistically have lower levels of income and higher levels of poverty than the population at large. People of color, many of whom also have limited English proficiency, may not have ready access in their primary language to information about the dangers of extreme heat or about cooling center resources. This risk to extreme heat can be compounded by the fact that people of color often live in more densely populated urban areas that are at higher risk for heat exposure due to the urban heat island effect.
    Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract: Black, Native American, Asian, Island, Other, Multi, Non-white Hispanics.
    Attribute label: POC2

    Limited English Proficiency:
    Without adequate English skills, residents can miss crucial information on how to prepare
    for hazards. Cultural practices for information sharing, for example, may focus on word-of-mouth communication. In a flood event, residents can also face challenges communicating with emergency response personnel. If residents are more socially
    isolated, they may be less likely to hear about upcoming events. Finally, immigrants, especially ones who are undocumented, may be reluctant to use government services out of fear of deportation or general distrust of the government or emergency personnel.
    Data Source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract, defined as speaks English only or speaks English “very well”.
    Attribute label: LEP

    Low to no Income:
    A lack of financial resources impacts a household’s ability to prepare for a disaster event and to support friends and neighborhoods. For example, residents without televisions, computers, or data-driven mobile phones may face challenges getting news about hazards or recovery resources. Renters may have trouble finding and paying deposits for replacement housing if their residence is impacted by flooding. Homeowners may be less able to afford insurance that will cover flood damage. Having low or no income can create difficulty evacuating in a disaster event because of a higher reliance on public transportation. If unable to evacuate, residents may be more at risk without supplies to stay in their homes for an extended period of time. Low- and no-income residents can also be more vulnerable to hot weather if running air conditioning or fans puts utility costs out of reach.
    Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for low-to- no income populations. The data represents a calculated field that combines people who were 100% below the poverty level and those who were 100–149% of the poverty level.
    Attribute label: Low_to_No

    People with Disabilities:
    People with disabilities are among the most vulnerable in an emergency; they sustain disproportionate rates of illness, injury, and death in disaster events.46 People with disabilities can find it difficult to adequately prepare for a disaster event, including moving to a safer place. They are more likely to be left behind or abandoned during evacuations. Rescue and relief resources—like emergency transportation or shelters, for example— may not be universally accessible. Research has revealed a historic pattern of discrimination against people with disabilities in times of resource scarcity, like after a major storm and flood.
    Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for total civilian non-institutionalized population, including: hearing difficulty, vision difficulty, cognitive difficulty, ambulatory difficulty, self-care difficulty, and independent living difficulty.
    Attribute label: TotDis

    Medical Illness:
    Symptoms of existing medical illnesses are often exacerbated by hot temperatures. For example, heat can trigger asthma attacks or increase already high blood pressure due to the stress of high temperatures put on the body. Climate events can interrupt access to normal sources of healthcare and even life-sustaining medication. Special planning is required for people experiencing medical illness. For example, people dependent on dialysis will have different evacuation and care needs than other Boston residents in a climate event.
    Data source: Medical illness is a proxy measure which is based on EASI data accessed through Simply Map. Health data at the local level in Massachusetts is not available beyond zip codes. EASI modeled the health statistics for the U.S. population based upon age, sex, and race probabilities using U.S. Census Bureau data. The probabilities are modeled against the census and current year and five year forecasts. Medical illness is the sum of asthma in children, asthma in adults, heart disease, emphysema, bronchitis, cancer, diabetes, kidney disease, and liver disease. A limitation is that these numbers may be over-counted as the result of people potentially having more than one medical illness. Therefore, the analysis may have greater numbers of people with medical illness within census tracts than actually present. Overall, the analysis was based on the relationship between social factors.
    Attribute label: MedIllnes

    Other attribute definitions:
    GEOID10: Geographic identifier: State Code (25), Country Code (025), 2010 Census Tract
    AREA_SQFT: Tract area (in square feet)
    AREA_ACRES: Tract area (in acres)
    POP100_RE: Tract population count
    HU100_RE: Tract housing unit count
    Name: Boston Neighborhood
  14. C

    Percent of Household Overcrowding (> 1.0 persons per room) and Severe...

    • data.chhs.ca.gov
    • data.ca.gov
    • +3more
    csv, html, pdf, xlsx +1
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Percent of Household Overcrowding (> 1.0 persons per room) and Severe Overcrowding (> 1.5 persons per room) [Dataset]. https://data.chhs.ca.gov/dataset/housing-crowding
    Explore at:
    pdf(257241), html, zip, csv(79598205), csv(2646), xlsx(77695624)Available download formats
    Dataset updated
    Apr 21, 2025
    Dataset authored and provided by
    California Department of Public Health
    Description

    This dataset contains two tables on the percent of household overcrowding (> 1.0 persons per room) and severe overcrowding (> 1.5 persons per room) for California, its regions, counties, and cities/towns. Data is from the U.S. Department of Housing and Urban Development (HUD), Comprehensive Housing Affordability Strategy (CHAS) and U.S. Census American Community Survey (ACS). The table is part of a series of indicators in the Healthy Communities Data and Indicators Project (HCI) of the Office of Health Equity: Healthy Communities Data and Indicators Project of the Office of Health Equity. Residential crowding has been linked to an increased risk of infection from communicable diseases, a higher prevalence of respiratory ailments, and greater vulnerability to homelessness among the poor. Residential crowding reflects demographic and socioeconomic conditions. Older-adult immigrant and recent immigrant communities, families with low income and renter-occupied households are more likely to experience household crowding. A form of residential overcrowding known as "doubling up"—co-residence with family members or friends for economic reasons—is the most commonly reported prior living situation for families and individuals before the onset of homelessness. More information about the data table and a data dictionary can be found in the About/Attachments section.The household crowding table is part of a series of indicators in the Healthy Communities Data and Indicators Project (HCI) of the Office of Health Equity. The goal of HCI is to enhance public health by providing data, a standardized set of statistical measures, and tools that a broad array of sectors can use for planning healthy communities and evaluating the impact of plans, projects, policy, and environmental changes on community health. The creation of healthy social, economic, and physical environments that promote healthy behaviors and healthy outcomes requires coordination and collaboration across multiple sectors, including transportation, housing, education, agriculture and others. Statistical metrics, or indicators, are needed to help local, regional, and state public health and partner agencies assess community environments and plan for healthy communities that optimize public health. More information on HCI can be found here: https://www.cdph.ca.gov/Programs/OHE/CDPH%20Document%20Library/Accessible%202%20CDPH_Healthy_Community_Indicators1pager5-16-12.pdf
    The format of the household overcrowding tables is based on the standardized data format for all HCI indicators. As a result, this data table contains certain variables used in the HCI project (e.g., indicator ID, and indicator definition). Some of these variables may contain the same value for all observations.

  15. a

    Percent of Residents - Black/African American (Non-Hispanic) - City

    • vital-signs-bniajfi.hub.arcgis.com
    • data.baltimorecity.gov
    • +1more
    Updated Feb 27, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Baltimore Neighborhood Indicators Alliance (2020). Percent of Residents - Black/African American (Non-Hispanic) - City [Dataset]. https://vital-signs-bniajfi.hub.arcgis.com/datasets/percent-of-residents-black-african-american-non-hispanic-city
    Explore at:
    Dataset updated
    Feb 27, 2020
    Dataset authored and provided by
    Baltimore Neighborhood Indicators Alliance
    Area covered
    Description

    The percentage of persons, out of the total number of persons living in an area, self-identifying as racially Black or African American (and ethnically non-Hispanic). “Black or African American” refers to a person having origins in any of the Black racial groups of Africa. This indicator includes people who identified their race as “Black”. Source: U.S. Census Bureau, American Community Survey Years Available: 2010, 2011-2015, 2012-2016, 2013-2017, 2014-2018, 2015-2019, 2020, 2017-2021, 2018-2022, 2019-2023

  16. Data from: Valuation of Specific Crime Rates in the United States, 1980 and...

    • catalog.data.gov
    • icpsr.umich.edu
    Updated Mar 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Justice (2025). Valuation of Specific Crime Rates in the United States, 1980 and 1990 [Dataset]. https://catalog.data.gov/dataset/valuation-of-specific-crime-rates-in-the-united-states-1980-and-1990-cb3f7
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    National Institute of Justicehttp://nij.ojp.gov/
    Area covered
    United States
    Description

    This project was designed to isolate the effects that individual crimes have on wage rates and housing prices, as gauged by individuals' and households' decisionmaking preferences changing over time. Additionally, this project sought to compute a dollar value that individuals would bear in their wages and housing costs to reduce the rates of specific crimes. The study used multiple decades of information obtained from counties across the United States to create a panel dataset. This approach was designed to compensate for the problem of collinearity by tracking how housing and occupation choices within particular locations changed over the decade considering all amenities or disamenities, including specific crime rates. Census data were obtained for this project from the Integrated Public Use Microdata Series (IPUMS) constructed by Ruggles and Sobek (1997). Crime data were obtained from the Federal Bureau of Investigation's Uniform Crime Reports (UCR). Other data were collected from the American Chamber of Commerce Researchers Association, County and City Data Book, National Oceanic and Atmospheric Administration, and Environmental Protection Agency. Independent variables for the Wages Data (Part 1) include years of education, school enrollment, sex, ability to speak English well, race, veteran status, employment status, and occupation and industry. Independent variables for the Housing Data (Part 2) include number of bedrooms, number of other rooms, building age, whether unit was a condominium or detached single-family house, acreage, and whether the unit had a kitchen, plumbing, public sewers, and water service. Both files include the following variables as separating factors: census geographic division, cost-of-living index, percentage unemployed, percentage vacant housing, labor force employed in manufacturing, living near a coastline, living or working in the central city, per capita local taxes, per capita intergovernmental revenue, per capita property taxes, population density, and commute time to work. Lastly, the following variables measured amenities or disamenities: average precipitation, temperature, windspeed, sunshine, humidity, teacher-pupil ratio, number of Superfund sites, total suspended particulate in air, and rates of murder, rape, robbery, aggravated assault, burglary, larceny, auto theft, violent crimes, and property crimes.

  17. a

    USA NLCD Impervious Surface Time Series - copy

    • uidaho.hub.arcgis.com
    Updated Sep 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Idaho (2021). USA NLCD Impervious Surface Time Series - copy [Dataset]. https://uidaho.hub.arcgis.com/datasets/9799f7e251164afa8135249e5f2f1e54
    Explore at:
    Dataset updated
    Sep 29, 2021
    Dataset authored and provided by
    University of Idaho
    Area covered
    Description

    Impervious surfaces are surfaces that do not allow water to pass through. Examples of these surfaces include highways, parking lots, rooftops, and airport runways. Instead of allowing rain to pass into the soil, impervious surfaces cause water to collect at the surface, then run off. An increase in impervious surface area causes an increase of water volume which needs to be managed by stormwater systems. With the flow come pollutants, which collect on impervious surfaces then discharge with the runoff into streams and the ocean. Runoff water does not enter the water table, and that can cause other management issues, such as interruptions in baseline stream flow.The NLCD imperviousness layer represents urban impervious surfaces as a percentage of developed surface over every 30-meter pixel in the United States. The layer is organized into a time series with years 2001, 2006, 2011, and 2016, for the lower 48 conterminous US states. This information may be used in conjunction with the USA NLCD Land Cover layer. Time SeriesBy default, this service will appear in your client with a time slider which allows you to play the series as an animation. The animation will advance year by year, but the layer only changes appearance every five years, in 2001, 2006, 2011, and 2016. To select just one year in the series, first turn the time series off on the time slider, then create a definition query on the layer which selects only the desired year.Time Series DescriptorMRLC issued a set of companion rasters with this impervious surface layer showing the reason why each pixel is impervious. This companion layer, called the Developed Imperviousness Descriptor, is not currently available in this map service. The descriptor layer identifies types of roads, core urban areas, and energy production sites for each impervious pixel to allow deeper analysis of developed features. The descriptor layer may be downloaded directly from MRLC and added to ArcGIS Pro.Alaska, Hawaii, and Puerto RicoAt this time Alaska, Hawaii, and Puerto Rico are not included in the time series. No new data were created for these areas since the last time MRLC updated the NLCD imperviousness layer. The older service USA NLCD Impervious Surface 2011 includes a portion of Alaska around Anchorage, but there is as yet no time series available for this part of Alaska.Dataset SummaryPhenomenon Mapped: The proportion of the landscape that is impervious to waterUnits: PercentCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate System: North America Albers Equal Area ConicExtent: Contiguous United StatesSource: Multi-Resolution Land Characteristics ConsortiumPublication Date: 2019ArcGIS Server URL: https://landscape10.arcgis.com/arcgis/The National Land Cover Database products are created through a cooperative project conducted by the Multi-Resolution Land Characteristics Consortium (MRLC). The MRLC Consortium is a partnership of federal agencies, consisting of the U.S. Geological Survey, the National Oceanic and Atmospheric Administration, the U.S. Environmental Protection Agency, the U.S. Department of Agriculture, the U.S. Forest Service, the National Park Service, the U.S. Fish and Wildlife Service, the Bureau of Land Management and the USDA Natural Resources Conservation Service.What can you do with this layer?This layer can be used to create maps and to visualize the underlying data. This layer can be used as an analytic input in ArcGIS Desktop.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.

  18. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
CEICdata.com (2023). United States US: Urban Population Living in Areas Where Elevation is Below 5 meters: % of Total Population [Dataset]. https://www.ceicdata.com/en/united-states/land-use-protected-areas-and-national-wealth/us-urban-population-living-in-areas-where-elevation-is-below-5-meters--of-total-population
Organization logo

United States US: Urban Population Living in Areas Where Elevation is Below 5 meters: % of Total Population

Explore at:
Dataset updated
Mar 15, 2023
Dataset provided by
CEIC Data
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Dec 1, 1990 - Dec 1, 2010
Area covered
United States
Description

United States US: Urban Population Living in Areas Where Elevation is Below 5 meters: % of Total Population data was reported at 2.264 % in 2010. This records an increase from the previous number of 2.246 % for 2000. United States US: Urban Population Living in Areas Where Elevation is Below 5 meters: % of Total Population data is updated yearly, averaging 2.264 % from Dec 1990 (Median) to 2010, with 3 observations. The data reached an all-time high of 2.329 % in 1990 and a record low of 2.246 % in 2000. United States US: Urban Population Living in Areas Where Elevation is Below 5 meters: % of Total Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Land Use, Protected Areas and National Wealth. Urban population below 5m is the percentage of the total population, living in areas where the elevation is 5 meters or less.; ; Center for International Earth Science Information Network (CIESIN)/Columbia University. 2013. Urban-Rural Population and Land Area Estimates Version 2. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/lecz-urban-rural-population-land-area-estimates-v2.; Weighted Average;

Search
Clear search
Close search
Google apps
Main menu