This statistic shows the population of the United States in the final census year before the American Civil War, shown by race and gender. From the data we can see that there were almost 27 million white people, 4.5 million black people, and eighty thousand classed as 'other'. The proportions of men to women were different for each category, with roughly 700 thousand more white men than women, over 100 thousand more black women than men, and almost three times as many men than women in the 'other' category. The reason for the higher male numbers in the white and other categories is because men migrated to the US at a higher rate than women, while there is no concrete explanation for the statistic regarding black people.
This map shows the percentage of people who identify as something other than non-Hispanic white throughout the US according to the most current American Community Survey. The pattern is shown by states, counties, and Census tracts. Zoom or search for anywhere in the US to see a local pattern. Click on an area to learn more. Filter to your area and save a new version of the map to use for your own mapping purposes.The Arcade expression used was: 100 - B03002_calc_pctNHWhiteE, which is simply 100 minus the percent of population who identifies as non-Hispanic white. The data is from the U.S. Census Bureau's American Community Survey (ACS). The figures in this map update automatically annually when the newest estimates are released by ACS. For more detailed metadata, visit the ArcGIS Living Atlas Layer: ACS Race and Hispanic Origin Variables - Boundaries.The data on race were derived from answers to the question on race that was asked of individuals in the United States. The Census Bureau collects racial data in accordance with guidelines provided by the U.S. Office of Management and Budget (OMB), and these data are based on self-identification. The racial categories included in the census questionnaire generally reflect a social definition of race recognized in this country and not an attempt to define race biologically, anthropologically, or genetically. The categories represent a social-political construct designed for collecting data on the race and ethnicity of broad population groups in this country, and are not anthropologically or scientifically based. Learn more here.Other maps of interest:American Indian or Alaska Native Population in the US (Current ACS)Asian Population in the US (Current ACS)Black or African American Population in the US (Current ACS)Hawaiian or Other Pacific Islander Population in the US (Current ACS)Hispanic or Latino Population in the US (Current ACS) (some people prefer Latinx)Population who are Some Other Race in the US (Current ACS)Population who are Two or More Races in the US (Current ACS) (some people prefer mixed race or multiracial)White Population in the US (Current ACS)Race in the US by Dot DensityWhat is the most common race/ethnicity?
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Relative concentration of the Central California region's Black/African American population. The variable BLACKALN records all individuals who select black or African American as their SOLE racial identity in response to the Census questionnaire, regardless of their response to the Hispanic ethnicity question. Both Hispanic and non-Hispanic in the Census questionnaire are potentially associated with black race alone. "Relative concentration" is a measure that compares the proportion of population within each Census block group data unit that identify as Black/African American alone to the proportion of all people that live within the 4,961 block groups in the Central California RRK region that identify as Black/African American alone. Example: if 5.2% of people in a block group identify as BLACKALN, the block group has twice the proportion of BLACKALN individuals compared to the Central California RRK region (2.6%), and more than three times the proportion compared to the entire state of California (1.6%). If the local proportion is twice the regional proportion, then BLACKALN individuals are highly concentrated locally.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Labor Force Participation Rate - 20 Yrs. & over, Black or African American Men (LNS11300031) from Jan 1972 to Feb 2025 about 20 years +, males, participation, African-American, labor force, labor, household survey, rate, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of West Virginia by race. It includes the population of West Virginia across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of West Virginia across relevant racial categories.
Key observations
The percent distribution of West Virginia population by race (across all racial categories recognized by the U.S. Census Bureau): 90.90% are white, 3.28% are Black or African American, 0.09% are American Indian and Alaska Native, 0.75% are Asian, 0.03% are Native Hawaiian and other Pacific Islander, 0.68% are some other race and 4.28% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for West Virginia Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Relative concentration of the Northern California region's Hispanic/Latino population. The variable HISPANIC records all individuals who select Hispanic or Latino in response to the Census questionnaire, regardless of their response to the racial identity question. "Relative concentration" is a measure that compares the proportion of population within each Census block group data unit that identify as Hispanic or LatinoAmerican Indian / Alaska Native alone to the proportion of all people that live within the 1,207 block groups in the Northern California RRK region that identify as Hispanic or LatinoAmerican Indian / Alaska native alone. Example: if 5.2% of people in a block group identify as HISPANIC, the block group has twice the proportion of HISPANIC individuals compared to the Northern California RRK region (2.6%), and more than three times the proportion compared to the entire state of California (1.6%). If the local proportion is twice the regional proportion, then HISPANIC individuals are highly concentrated locally.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Employment-Population Ratio - Black or African American (LNS12300006) from Jan 1972 to Feb 2025 about employment-population ratio, African-American, 16 years +, household survey, employment, population, and USA.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.
The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.
The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .
The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .
The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.
COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update.
The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates.
The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.
Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf
Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic.
Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics
Data are subject to future revision as reporting changes.
Starting in July 2020, this dataset will be updated every weekday.
Additional notes: A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020.
A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differ from the timestamp in DPH's daily PDF reports.
Starting 5/10/2021, the date field will represent the date this data was updated on data.ct.gov. Previously the date the data was pulled by DPH was listed, which typically coincided with the date before the data was published on data.ct.gov. This change was made to standardize the COVID-19 data sets on data.ct.gov.
In 2023, 17.9 percent of Black people living in the United States were living below the poverty line, compared to 7.7 percent of white people. That year, the total poverty rate in the U.S. across all races and ethnicities was 11.1 percent. Poverty in the United States Single people in the United States making less than 12,880 U.S. dollars a year and families of four making less than 26,500 U.S. dollars a year are considered to be below the poverty line. Women and children are more likely to suffer from poverty, due to women staying home more often than men to take care of children, and women suffering from the gender wage gap. Not only are women and children more likely to be affected, racial minorities are as well due to the discrimination they face. Poverty data Despite being one of the wealthiest nations in the world, the United States had the third highest poverty rate out of all OECD countries in 2019. However, the United States' poverty rate has been fluctuating since 1990, but has been decreasing since 2014. The average median household income in the U.S. has remained somewhat consistent since 1990, but has recently increased since 2014 until a slight decrease in 2020, potentially due to the pandemic. The state that had the highest number of people living below the poverty line in 2020 was California.
This statistic shows the number of black men and women in the US from 1820 until 1880. Slavery was legal in the Southern States of the US until 1865, when the Thirteenth Amendment was added to the US Constitution after the American Civil War. Until that time all of the slaves included in this statistic were registered as living in the South, whereas the majority of the free, black men and women lived in the Northern States. From the data we can see that, while the slave experience was very different for men and women, there was relatively little difference between their numbers in each respective category. While female slaves were more likely to serve in domestic roles, they were also more likely to be working in the lowest and unskilled jobs on plantations, whereas men were given more skilled and physically demanding roles. As slavery was abolished in 1870, all black people from this point were considered free in the census data. It is also worth noticing that in these years the difference in the number of men and women increased, most likely as a result of all the black male soldiers who fell fighting in the American Civil War.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Homeownership Rates by Race and Ethnicity: Black Alone in the United States (BOAAAHORUSQ156N) from Q1 1994 to Q4 2024 about homeownership, African-American, rate, and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Labor Force Participation Rate - Black or African American (LNS11300006) from Jan 1972 to Feb 2025 about participation, African-American, 16 years +, labor force, labor, household survey, rate, and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Unemployment Rate - 20 Yrs. & over, Black or African American Men (LNS14000031) from Jan 1972 to Feb 2025 about 20 years +, males, African-American, household survey, unemployment, rate, and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Employed full time: Median usual weekly real earnings: Wage and salary workers: 16 years and over: Black or African American (LEU0252884600Q) from Q1 2000 to Q4 2024 about full-time, African-American, salaries, workers, earnings, 16 years +, wages, median, real, employment, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Russia town by race. It includes the population of Russia town across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Russia town across relevant racial categories.
Key observations
The percent distribution of Russia town population by race (across all racial categories recognized by the U.S. Census Bureau): 92.97% are white, 0.91% are Black or African American, 0.71% are American Indian and Alaska Native, 0.36% are Asian and 5.04% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Russia town Population by Race & Ethnicity. You can refer the same here
In 2023, the FBI reported that there were 9,284 Black murder victims in the United States and 7,289 white murder victims. In comparison, there were 554 murder victims of unknown race and 586 victims of another race. Victims of inequality? In recent years, the role of racial inequality in violent crimes such as robberies, assaults, and homicides has gained public attention. In particular, the issue of police brutality has led to increasing attention following the murder of George Floyd, an African American who was killed by a Minneapolis police officer. Studies show that the rate of fatal police shootings for Black Americans was more than double the rate reported of other races. Crime reporting National crime data in the United States is based off the Federal Bureau of Investigation’s new crime reporting system, which requires law enforcement agencies to self-report their data in detail. Due to the recent implementation of this system, less crime data has been reported, with some states such as Delaware and Pennsylvania declining to report any data to the FBI at all in the last few years, suggesting that the Bureau's data may not fully reflect accurate information on crime in the United States.
In 2023, the racial group with the largest representation in accounting services in the United States were Asian where 11 percent of the total workforce was represented. African Americans represented 9.2 percent of those working in accounting services in the United States.
In 2023, about 26.9 percent of Asian private households in the U.S. had an annual income of 200,000 U.S. dollars and more. Comparatively, around 13.9 percent of Black households had an annual income under 15,000 U.S. dollars.
In 2022, there were 313,017 cases filed by the NCIC where the race of the reported missing was White. In the same year, 18,928 people were missing whose race was unknown.
What is the NCIC?
The National Crime Information Center (NCIC) is a digital database that stores crime data for the United States, so criminal justice agencies can access it. As a part of the FBI, it helps criminal justice professionals find criminals, missing people, stolen property, and terrorists. The NCIC database is broken down into 21 files. Seven files belong to stolen property and items, and 14 belong to persons, including the National Sex Offender Register, Missing Person, and Identify Theft. It works alongside federal, tribal, state, and local agencies. The NCIC’s goal is to maintain a centralized information system between local branches and offices, so information is easily accessible nationwide.
Missing people in the United States
A person is considered missing when they have disappeared and their location is unknown. A person who is considered missing might have left voluntarily, but that is not always the case. The number of the NCIC unidentified person files in the United States has fluctuated since 1990, and in 2022, there were slightly more NCIC missing person files for males as compared to females. Fortunately, the number of NCIC missing person files has been mostly decreasing since 1998.
This layer contains 2010-2014 American Community Survey (ACS) 5-year data, and contains estimates and margins of error. The layer shows health insurance coverage sex and race by age group. This is shown by tract, county, and state boundaries. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Sums may add to more than the total, as people can be in multiple race groups (for example, Hispanic and Black). Later vintages of this layer have a different age group for children that includes age 18. This layer is symbolized to show the percent of population with no health insurance coverage. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Vintage: 2010-2014ACS Table(s): B27010, C27001B, C27001C, C27001D, C27001E, C27001F, C27001G, C27001H, C27001I (Not all lines of these tables are available in this layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: November 28, 2020National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer has associated layers containing the most recent ACS data available by the U.S. Census Bureau. Click here to learn more about ACS data releases and click here for the associated boundaries layer. The reason this data is 5+ years different from the most recent vintage is due to the overlapping of survey years. It is recommended by the U.S. Census Bureau to compare non-overlapping datasets.Boundaries come from the US Census TIGER geodatabases. Boundary vintage (2014) appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
This statistic shows the population of the United States in the final census year before the American Civil War, shown by race and gender. From the data we can see that there were almost 27 million white people, 4.5 million black people, and eighty thousand classed as 'other'. The proportions of men to women were different for each category, with roughly 700 thousand more white men than women, over 100 thousand more black women than men, and almost three times as many men than women in the 'other' category. The reason for the higher male numbers in the white and other categories is because men migrated to the US at a higher rate than women, while there is no concrete explanation for the statistic regarding black people.