Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of New Britain by race. It includes the population of New Britain across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of New Britain across relevant racial categories.
Key observations
The percent distribution of New Britain population by race (across all racial categories recognized by the U.S. Census Bureau): 53.28% are white, 13.17% are Black or African American, 0.56% are American Indian and Alaska Native, 2.32% are Asian, 0.31% are Native Hawaiian and other Pacific Islander, 15.72% are some other race and 14.64% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for New Britain Population by Race & Ethnicity. You can refer the same here
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
National and subnational mid-year population estimates for the UK and its constituent countries by administrative area, age and sex (including components of population change, median age and population density).
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Census 2021 data: 19 tick-box ethnic groups, by age, sex, and age and sex.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Experimental statistics for population estimates by ethnic group broken down into age and sex at a national regional level for England and Wales.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Dataset population: Persons
Country of birth
Country of birth is the country in which a person was born. This topic records whether the person was born in or if they were not born in a country.
For the full country of birth classification in England and Wales, please see the National Statistics Country Classification.
Ethnic group
Ethnic group classifies people according to their own perceived ethnic group and cultural background.
This topic contains ethnic group write-in responses without reference to the five broad ethnic group categories, e.g. all Irish people, irrespective of whether they are White, Mixed/multiple ethnic groups, Asian/Asian British, Black/African/Caribbean/Black British or Other ethnic group, are in the 'Irish' response category. This topic was created as part of the commissioned table processing.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Labour market status by ethnic group, UK, published quarterly, non-seasonally adjusted. Labour Force Survey. These are official statistics in development.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual white student percentage from 2014 to 2023 for Uk Early Childhood Lab vs. Kentucky and Fayette County School District
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual white student percentage from 2011 to 2023 for New Britain Transition Center vs. Connecticut and New Britain School District
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual white student percentage from 1993 to 2023 for Little Britain Elementary School vs. New York and Washingtonville Central School District
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical Dataset of New Britain Transition Center is provided by PublicSchoolReview and contain statistics on metrics:Total Students Trends Over Years (2011-2023),Total Classroom Teachers Trends Over Years (2013-2023),Distribution of Students By Grade Trends,Student-Teacher Ratio Comparison Over Years (2013-2023),Hispanic Student Percentage Comparison Over Years (2011-2023),Black Student Percentage Comparison Over Years (2011-2023),White Student Percentage Comparison Over Years (2011-2023),Two or More Races Student Percentage Comparison Over Years (2011-2023),Diversity Score Comparison Over Years (2011-2023),Free Lunch Eligibility Comparison Over Years (2011-2023),Reduced-Price Lunch Eligibility Comparison Over Years (2010-2015)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual white student percentage from 1991 to 2023 for Britain Elementary School vs. Texas and Irving Independent School District
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Live births, stillbirths and infant deaths by ethnicity of the baby, England and Wales, 2007 to 2019
The data collection contains population projections for UK ethnic groups and all local area by age (single year of age up to 100+) and sex. Included in the data set are also input data to the cohort component model that was used to project populations into the future-fertility rates, mortality rates, international migration flows and internal migration probabilities. Also included in data set are output data: Number of deaths, births and internal migrants. All data included are for the years 2011 to 2061. We have produced two ethnic population projections for UK local authorities, based on information on 2011 Census ethnic populations and 2010-2011-2012 ethnic components. Both projections align fertility and mortality assumptions to ONS assumptions. Where they differ is in the migration assumptions. In LEEDS L1 we employ internal migration rates for 2001 to 2011, including periods of boom and bust. We use a new assumption about international migration anticipating that the UK may leave the EU (BREXIT). In LEEDS L2 we use average internal migration rates for the 5 year period 2006-11 and the official international migration flow assumptions with a long term balance of +185 thousand per annum. This project aims to understand and to forecast the ethnic transition in the United Kingdom's population at national and sub-national levels. The ethnic transition is the change in population composition from one dominated by the White British to much greater diversity. In the decade 2001-2011 the UK population grew strongly as a result of high immigration, increased fertility and reduced mortality. Both the Office for National Statistics (ONS) and Leeds University estimated the growth or decline in the sixteen ethnic groups making up the UK's population in 2001. The 2011 Census results revealed that both teams had over-estimated the growth of the White British population and under-estimated the growth of the ethnic minority populations. The wide variation between our local authority projected populations in 2011 and the Census suggested inaccurate forecasting of internal migration. We propose to develop, working closely with ONS as our first external partner, fresh estimates of mid-year ethnic populations and their components of change using new data on the later years of the decade and new methods to ensure the estimates agree in 2011 with the Census. This will involve using population accounting theory and an adjustment technique known as iterative proportional fitting to generate a fully consistent set of ethnic population estimates between 2001 and 2011. We will study, at national and local scales, the development of demographic rates for ethnic group populations (fertility, mortality, internal migration and international migration). The ten year time series of component summary indicators and age-specific rates will provide a basis for modelling future assumptions for projections. We will, in our main projection, align the assumptions to the ONS 2012-based principal projection. The national assumptions will need conversion to ethnic groups and to local scale. The ten years of revised ethnic-specific component rates will enable us to study the relationships between national and local demographic trends. In addition, we will analyse a consistent time series of local authority internal migration. We cannot be sure, at this stage, how the national-local relationships for each ethnic group will be modelled but we will be able to test our models using the time series. Of course, all future projections of the population are uncertain. We will therefore work to measure the uncertainty of component rates. The error distributions can be used to construct probability distributions of future populations via stochastic projections so that we can define confidence intervals around our projections. Users of projections are always interested in the impact of the component assumptions on future populations. We will run a set of reference projections to estimate the magnitude and direction of impact of international migrations assumptions (net effect of immigration less emigration), of internal migration assumptions (the net effect of in-migration less out-migration), of fertility assumptions compared with replacement level, of mortality assumptions compared with no change and finally the effect of the initial age distribution (i.e. demographic potential). The outputs from the project will be a set of technical reports on each aspect of the research, journal papers submitted for peer review and a database of projection inputs and outputs available to users via the web. The demographic inputs will be subject to quality assurance by Edge Analytics, our second external partner. They will also help in disseminating these inputs to local government users who want to use them in their own ethnic projections. In sum, the project will show how a wide range of secondary data sources can be used in theoretically refined demographic models to provide us with a more reliable picture of how the UK population is going to change in ethnic composition. Base year data (2011) are derived from the 2011 census, vital statistics and ONS migration data. Subsequent population data are computed with a cohort component model.
On 1 April 2025 responsibility for fire and rescue transferred from the Home Office to the Ministry of Housing, Communities and Local Government.
This information covers fires, false alarms and other incidents attended by fire crews, and the statistics include the numbers of incidents, fires, fatalities and casualties as well as information on response times to fires. The Ministry of Housing, Communities and Local Government (MHCLG) also collect information on the workforce, fire prevention work, health and safety and firefighter pensions. All data tables on fire statistics are below.
MHCLG has responsibility for fire services in England. The vast majority of data tables produced by the Ministry of Housing, Communities and Local Government are for England but some (0101, 0103, 0201, 0501, 1401) tables are for Great Britain split by nation. In the past the Department for Communities and Local Government (who previously had responsibility for fire services in England) produced data tables for Great Britain and at times the UK. Similar information for devolved administrations are available at https://www.firescotland.gov.uk/about/statistics/" class="govuk-link">Scotland: Fire and Rescue Statistics, https://statswales.gov.wales/Catalogue/Community-Safety-and-Social-Inclusion/Community-Safety" class="govuk-link">Wales: Community safety and https://www.nifrs.org/home/about-us/publications/" class="govuk-link">Northern Ireland: Fire and Rescue Statistics.
If you use assistive technology (for example, a screen reader) and need a version of any of these documents in a more accessible format, please email alternativeformats@communities.gov.uk. Please tell us what format you need. It will help us if you say what assistive technology you use.
Fire statistics guidance
Fire statistics incident level datasets
https://assets.publishing.service.gov.uk/media/686d2aa22557debd867cbe14/FIRE0101.xlsx">FIRE0101: Incidents attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 153 KB) Previous FIRE0101 tables
https://assets.publishing.service.gov.uk/media/686d2ab52557debd867cbe15/FIRE0102.xlsx">FIRE0102: Incidents attended by fire and rescue services in England, by incident type and fire and rescue authority (MS Excel Spreadsheet, 2.19 MB) Previous FIRE0102 tables
https://assets.publishing.service.gov.uk/media/686d2aca10d550c668de3c69/FIRE0103.xlsx">FIRE0103: Fires attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 201 KB) Previous FIRE0103 tables
https://assets.publishing.service.gov.uk/media/686d2ad92557debd867cbe16/FIRE0104.xlsx">FIRE0104: Fire false alarms by reason for false alarm, England (MS Excel Spreadsheet, 492 KB) Previous FIRE0104 tables
https://assets.publishing.service.gov.uk/media/686d2af42cfe301b5fb6789f/FIRE0201.xlsx">FIRE0201: Dwelling fires attended by fire and rescue services by motive, population and nation (MS Excel Spreadsheet, <span class="gem-c-attac
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of London Britain township by race. It includes the population of London Britain township across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of London Britain township across relevant racial categories.
Key observations
The percent distribution of London Britain township population by race (across all racial categories recognized by the U.S. Census Bureau): 78.72% are white, 1.16% are Black or African American, 1.66% are Asian, 0.28% are Native Hawaiian and other Pacific Islander, 5.09% are some other race and 13.09% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for London Britain township Population by Race & Ethnicity. You can refer the same here
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The protected characteristics of disabled and non-disabled people in England and Wales, using Census 2021 data. Data estimates provided are as on Census Day, 21 March 2021.
To ensure that individuals cannot be identified in the data, counts and populations have been rounded to the nearest 5, and counts under 10 have not been included. All figures are individually rounded. Totals may not sum exactly because of this rounding.
Age groups are based on an individual's age on their last birthday, as of Census Day, 21 March 2021. The age groups used reflect the European Standard Population (2013).
Age-standardised percentage
The age-standardised percentage of disabled people is that which would have occurred if the observed age-specific percentage of disability had applied in the European Standard Population (ESP).
Age-specific percentage
Age-specific percentage is calculated for each age group:
Mk = (dk / pk) x 100%
where:
Mk = percentage of disabled people in age group k
dk = the number of disabled people in age group k
pk = Census 2021 population in age group k
k = age group
Category
The measures of disability, ethnic group, legal partnership status, religion or sexual orientation in Census 2021 enable different categorisations of responses to the question. These provide different levels of detail from the responses provided.
Count
The count is the number of usual residents in each category (Disabled, Non-disabled, Disabled; limited a lot, Disabled; limited a little, Non-disabled; with non-limiting condition, Non-disabled; no condition), sex, age group and geographic breakdown. To ensure that individuals cannot be identified in the data, counts and populations have been rounded to the nearest 5, and counts under 10 have not been included..
Disability
The definition of disability used in the 2021 Census is aligned with the definition of disability under the Equality Act (2010). A person is considered disabled if they self-report having a physical or mental health condition or illness that has lasted or is expected to last 12 months or more, and that this reduces their ability to carry out day-to-day activities. The detailed response categories are:
Ethnic group
The ethnic group that the person completing the census feels they belong to. This could be based on their culture, family background, identity, or physical appearance. There were two stages to the ethnic group question. The respondent identifies first through one of the following high-level options before selecting a tick-box:
Following this, respondents could choose 1 out of 19 tick-box response categories, including write-in response options.
Legal partnership status
Classifies a person according to their legal marital or registered civil partnership status on Census Day, 21 March 2021. The six categories are:
Population
The population is the number of usual residents of each sex, age group and geographic breakdown. These have been rounded.
Religion
The religion people connect or identify with (their religious affiliation), whether or not they practise or have belief in it. The nine categories are:
Sexual orientation
Sexual orientation is an umbrella term covering sexual identity, attraction, and behaviour. For an individual respondent, these may not be the same. The five categories are:
Usual resident
For Census 2021, a usual resident of the UK is anyone who, on census day, was in the UK and had stayed or intended to stay in the UK for a period of 12 months or more or had a permanent UK address and was outside the UK and intended to be outside the UK for less than 12 months.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Part of the dissertation Pitch of Voiced Speech in the Short-Time Fourier Transform: Algorithms, Ground Truths, and Evaluation Methods.
© 2020, Bastian Bechtold. All rights reserved.
Estimating the fundamental frequency of speech remains an active area of research, with varied applications in speech recognition, speaker identification, and speech compression. A vast number of algorithms for estimatimating this quantity have been proposed over the years, and a number of speech and noise corpora have been developed for evaluating their performance. The present dataset contains estimated fundamental frequency tracks of 25 algorithms, six speech corpora, two noise corpora, at nine signal-to-noise ratios between -20 and 20 dB SNR, as well as an additional evaluation of synthetic harmonic tone complexes in white noise.
The dataset also contains pre-calculated performance measures both novel and traditional, in reference to each speech corpus’ ground truth, the algorithms’ own clean-speech estimate, and our own consensus truth. It can thus serve as the basis for a comparison study, or to replicate existing studies from a larger dataset, or as a reference for developing new fundamental frequency estimation algorithms. All source code and data is available to download, and entirely reproducible, albeit requiring about one year of processor-time.
Included Code and Data
ground truth data.zip
is a JBOF dataset of fundamental frequency estimates and ground truths of all speech files in the following corpora:
noisy speech data.zip
is a JBOF datasets of fundamental frequency estimates of speech files mixed with noise from the following corpora:
synthetic speech data.zip
is a JBOF dataset of fundamental frequency estimates of synthetic harmonic tone complexes in white noise.noisy_speech.pkl
and synthetic_speech.pkl
are pickled Pandas dataframes of performance metrics derived from the above data for the following list of fundamental frequency estimation algorithms:
noisy speech evaluation.py
and synthetic speech evaluation.py
are Python programs to calculate the above Pandas dataframes from the above JBOF datasets. They calculate the following performance measures:
Pipfile
is a pipenv-compatible pipfile for installing all prerequisites necessary for running the above Python programs.The Python programs take about an hour to compute on a fast 2019 computer, and require at least 32 Gb of memory.
References:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual white student percentage from 1991 to 2023 for Pulaski Middle School vs. Connecticut and New Britain School District
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Employment by industry and sex, UK, published quarterly, non-seasonally adjusted. Labour Force Survey. These are official statistics in development.
The number of LinkedIn users in the United Kingdom was forecast to continuously increase between 2024 and 2028 by in total 1.5 million users (+4.51 percent). After the eighth consecutive increasing year, the LinkedIn user base is estimated to reach 34.7 million users and therefore a new peak in 2028. User figures, shown here with regards to the platform LinkedIn, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of New Britain by race. It includes the population of New Britain across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of New Britain across relevant racial categories.
Key observations
The percent distribution of New Britain population by race (across all racial categories recognized by the U.S. Census Bureau): 53.28% are white, 13.17% are Black or African American, 0.56% are American Indian and Alaska Native, 2.32% are Asian, 0.31% are Native Hawaiian and other Pacific Islander, 15.72% are some other race and 14.64% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for New Britain Population by Race & Ethnicity. You can refer the same here