44 datasets found
  1. C

    COVID-19 Outcomes by Vaccination Status - Historical

    • data.cityofchicago.org
    • healthdata.gov
    • +2more
    csv, xlsx, xml
    Updated Dec 13, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2023). COVID-19 Outcomes by Vaccination Status - Historical [Dataset]. https://data.cityofchicago.org/w/6irb-gasv/3q3f-6823?cur=5qF1eMNwCRr
    Explore at:
    csv, xml, xlsxAvailable download formats
    Dataset updated
    Dec 13, 2023
    Dataset authored and provided by
    City of Chicago
    Description

    NOTE: This dataset has been retired and marked as historical-only.

    Weekly rates of COVID-19 cases, hospitalizations, and deaths among people living in Chicago by vaccination status and age.

    Rates for fully vaccinated and unvaccinated begin the week ending April 3, 2021 when COVID-19 vaccines became widely available in Chicago. Rates for boosted begin the week ending October 23, 2021 after booster shots were recommended by the Centers for Disease Control and Prevention (CDC) for adults 65+ years old and adults in certain populations and high risk occupational and institutional settings who received Pfizer or Moderna for their primary series or anyone who received the Johnson & Johnson vaccine.

    Chicago residency is based on home address, as reported in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE) and Illinois National Electronic Disease Surveillance System (I-NEDSS).

    Outcomes: • Cases: People with a positive molecular (PCR) or antigen COVID-19 test result from an FDA-authorized COVID-19 test that was reported into I-NEDSS. A person can become re-infected with SARS-CoV-2 over time and so may be counted more than once in this dataset. Cases are counted by week the test specimen was collected. • Hospitalizations: COVID-19 cases who are hospitalized due to a documented COVID-19 related illness or who are admitted for any reason within 14 days of a positive SARS-CoV-2 test. Hospitalizations are counted by week of hospital admission. • Deaths: COVID-19 cases who died from COVID-19-related health complications as determined by vital records or a public health investigation. Deaths are counted by week of death.

    Vaccination status: • Fully vaccinated: Completion of primary series of a U.S. Food and Drug Administration (FDA)-authorized or approved COVID-19 vaccine at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Boosted: Fully vaccinated with an additional or booster dose of any FDA-authorized or approved COVID-19 vaccine received at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Unvaccinated: No evidence of having received a dose of an FDA-authorized or approved vaccine prior to a positive test.

    CLARIFYING NOTE: Those who started but did not complete all recommended doses of an FDA-authorized or approved vaccine prior to a positive test (i.e., partially vaccinated) are excluded from this dataset.

    Incidence rates for fully vaccinated but not boosted people (Vaccinated columns) are calculated as total fully vaccinated but not boosted with outcome divided by cumulative fully vaccinated but not boosted at the end of each week. Incidence rates for boosted (Boosted columns) are calculated as total boosted with outcome divided by cumulative boosted at the end of each week. Incidence rates for unvaccinated (Unvaccinated columns) are calculated as total unvaccinated with outcome divided by total population minus cumulative boosted, fully, and partially vaccinated at the end of each week. All rates are multiplied by 100,000.

    Incidence rate ratios (IRRs) are calculated by dividing the weekly incidence rates among unvaccinated people by those among fully vaccinated but not boosted and boosted people.

    Overall age-adjusted incidence rates and IRRs are standardized using the 2000 U.S. Census standard population.

    Population totals are from U.S. Census Bureau American Community Survey 1-year estimates for 2019.

    All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. This dataset reflects data known to CDPH at the time when the dataset is updated each week.

    Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined.

    For all datasets related to COVID-19, see https://data.cityofchicago.org/browse?limitTo=datasets&sortBy=alpha&tags=covid-19.

    Data Source: Illinois' National Electronic Disease Surveillance System (I-NEDSS), Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE), U.S. Census Bureau American Community Survey

  2. Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status

    • data.virginia.gov
    • healthdata.gov
    • +1more
    csv, json, rdf, xsl
    Updated Jul 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status [Dataset]. https://data.virginia.gov/dataset/rates-of-covid-19-cases-or-deaths-by-age-group-and-vaccination-status
    Explore at:
    xsl, csv, rdf, jsonAvailable download formats
    Dataset updated
    Jul 20, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

    Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

    Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases

  3. Global Covid-19 Data

    • kaggle.com
    zip
    Updated Dec 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Global Covid-19 Data [Dataset]. https://www.kaggle.com/datasets/thedevastator/global-covid-19-data
    Explore at:
    zip(15394324 bytes)Available download formats
    Dataset updated
    Dec 3, 2023
    Authors
    The Devastator
    Description

    Global Covid-19 Data

    Global Covid-19 data on cases, deaths, vaccinations, and more

    By Valtteri Kurkela [source]

    About this dataset

    The dataset is constantly updated and synced hourly to ensure up-to-date information. With over several columns available for analysis and exploration purposes, users can extract valuable insights from this extensive dataset.

    Some of the key metrics covered in the dataset include:

    1. Vaccinations: The dataset covers total vaccinations administered worldwide as well as breakdowns of people vaccinated per hundred people and fully vaccinated individuals per hundred people.

    2. Testing & Positivity: Information on total tests conducted along with new tests conducted per thousand people is provided. Additionally, details on positive rate (percentage of positive Covid-19 tests out of all conducted) are included.

    3. Hospital & ICU: Data on ICU patients and hospital patients are available along with corresponding figures normalized per million people. Weekly admissions to intensive care units and hospitals are also provided.

    4. Confirmed Cases: The number of confirmed Covid-19 cases globally is captured in both absolute numbers as well as normalized values representing cases per million people.

    5.Confirmed Deaths: Total confirmed deaths due to Covid-19 worldwide are provided with figures adjusted for population size (total deaths per million).

    6.Reproduction Rate: The estimated reproduction rate (R) indicates the contagiousness of the virus within a particular country or region.

    7.Policy Responses: Besides healthcare-related metrics, this comprehensive dataset includes policy responses implemented by countries or regions such as lockdown measures or travel restrictions.

    8.Other Variables of InterestThe data encompasses various socioeconomic factors that may influence Covid-19 outcomes including population density,membership in a continent,gross domestic product(GDP)per capita;

    For demographic factors: -Age Structure : percentage populations aged 65 and older,aged (70)older,median age -Gender-specific factors: Percentage of female smokers -Lifestyle-related factors: Diabetes prevalence rate and extreme poverty rate

    1. Excess Mortality: The dataset further provides insights into excess mortality rates, indicating the percentage increase in deaths above the expected number based on historical data.

    The dataset consists of numerous columns providing specific information for analysis, such as ISO code for countries/regions, location names,and units of measurement for different parameters.

    Overall,this dataset serves as a valuable resource for researchers, analysts, and policymakers seeking to explore various aspects related to Covid-19

    How to use the dataset

    Introduction:

    • Understanding the Basic Structure:

      • The dataset consists of various columns containing different data related to vaccinations, testing, hospitalization, cases, deaths, policy responses, and other key variables.
      • Each row represents data for a specific country or region at a certain point in time.
    • Selecting Desired Columns:

      • Identify the specific columns that are relevant to your analysis or research needs.
      • Some important columns include population, total cases, total deaths, new cases per million people, and vaccination-related metrics.
    • Filtering Data:

      • Use filters based on specific conditions such as date ranges or continents to focus on relevant subsets of data.
      • This can help you analyze trends over time or compare data between different regions.
    • Analyzing Vaccination Metrics:

      • Explore variables like total_vaccinations, people_vaccinated, and people_fully_vaccinated to assess vaccination coverage in different countries.
      • Calculate metrics such as people_vaccinated_per_hundred or total_boosters_per_hundred for standardized comparisons across populations.
    • Investigating Testing Information:

      • Examine columns such as total_tests, new_tests, and tests_per_case to understand testing efforts in various countries.
      • Calculate rates like tests_per_case to assess testing efficiency or identify changes in testing strategies over time.
    • Exploring Hospitalization and ICU Data:

      • Analyze variables like hosp_patients, icu_patients, and hospital_beds_per_thousand to understand healthcare systems' strain.
      • Calculate rates like icu_patients_per_million or hosp_patients_per_million for cross-country comparisons.
    • Assessing Covid-19 Cases and Deaths:

      • Analyze variables like total_cases, new_ca...
  4. D

    Archive: COVID-19 Vaccination and Case Trends by Age Group, United States

    • data.cdc.gov
    • healthdata.gov
    • +2more
    csv, xlsx, xml
    Updated Oct 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IISInfo (2022). Archive: COVID-19 Vaccination and Case Trends by Age Group, United States [Dataset]. https://data.cdc.gov/Vaccinations/Archive-COVID-19-Vaccination-and-Case-Trends-by-Ag/gxj9-t96f
    Explore at:
    xlsx, xml, csvAvailable download formats
    Dataset updated
    Oct 14, 2022
    Dataset authored and provided by
    IISInfo
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    After October 13, 2022, this dataset will no longer be updated as the related CDC COVID Data Tracker site was retired on October 13, 2022.

    This dataset contains historical trends in vaccinations and cases by age group, at the US national level. Data is stratified by at least one dose and fully vaccinated. Data also represents all vaccine partners including jurisdictional partner clinics, retail pharmacies, long-term care facilities, dialysis centers, Federal Emergency Management Agency and Health Resources and Services Administration partner sites, and federal entity facilities.

  5. United States COVID-19 vaccinations Data

    • kaggle.com
    zip
    Updated Feb 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SandhyaKrishnan02 (2023). United States COVID-19 vaccinations Data [Dataset]. https://www.kaggle.com/datasets/sandhyakrishnan02/united-states-covid19-vaccinations
    Explore at:
    zip(1455398 bytes)Available download formats
    Dataset updated
    Feb 7, 2023
    Authors
    SandhyaKrishnan02
    License

    Attribution-ShareAlike 3.0 (CC BY-SA 3.0)https://creativecommons.org/licenses/by-sa/3.0/
    License information was derived automatically

    Area covered
    United States
    Description

    State-by-state data on United States COVID-19 vaccinations data

    Acknowledgement and License

    All data are produced by Our World in Data are completely open access under the Creative Commons BY license. You have the permission to use, distribute, and reproduce these in any medium, provided the source and authors are credited. In the case of our vaccination dataset, please give the following citation:

    Mathieu, E., Ritchie, H., Ortiz-Ospina, E. et al. A global database of COVID-19 vaccinations. Nat Hum Behav (2021). https://doi.org/10.1038/s41562-021-01122-8

    Data Set Column Details

    location : name of the state or federal entity. date: date of the observation. total vaccinations: total number of doses administered. This is counted as a single dose, and may not equal the total number of people vaccinated, depending on the specific dose regime (e.g. people receive multiple doses). If a person receives one dose of the vaccine, this metric goes up by 1. If they receive a second dose, it goes up by 1 again. total vaccinations per hundred: total vaccinations per 100 people in the total population of the state. daily vaccinations raw: daily change in the total number of doses administered. It is only calculated for consecutive days. This is a raw measure provided for data checks and transparency, but we strongly recommend that any analysis on daily vaccination rates be conducted using daily vaccinations instead. daily vaccinations: new doses administered per day (7-day smoothed). For countries that don't report data on a daily basis, we assume that doses changed equally on a daily basis over any periods in which no data was reported. This produces a complete series of daily figures, which is then averaged over a rolling 7-day window. An example of how we perform this calculation can be found here. daily vaccinations per million: daily vaccinations per 1,000,000 people in the total population of the state. people vaccinated: total number of people who received at least one vaccine dose. If a person receives the first dose of a 2-dose vaccine, this metric goes up by 1. If they receive the second dose, the metric stays the same. people vaccinated per hundred: people vaccinated per 100 people in the total population of the state. people fully vaccinated: total number of people who received all doses prescribed by the initial vaccination protocol. If a person receives the first dose of a 2-dose vaccine, this metric stays the same. If they receive the second dose, the metric goes up by 1. people fully vaccinated per hundred: people fully vaccinated per 100 people in the total population of the state. total distributed: cumulative counts of COVID-19 vaccine doses recorded as shipped in CDC's Vaccine Tracking System. total distributed per hundred: cumulative counts of COVID-19 vaccine doses recorded as shipped in CDC's Vaccine Tracking System per 100 people in the total population of the state. share doses used: share of vaccination doses administered among those recorded as shipped in CDC's Vaccine Tracking System. total boosters: total number of COVID-19 vaccination booster doses administered (doses administered beyond the number prescribed by the initial vaccination protocol) total boosters per hundred: total boosters per 100 people in the total population.

    Time Span

    20th Dec 2020 to 28th Dec 2022

  6. o

    COVID-19 Vaccine Data in Ontario

    • data.ontario.ca
    • datasets.ai
    • +1more
    csv, txt, xlsx
    Updated Dec 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Health (2024). COVID-19 Vaccine Data in Ontario [Dataset]. https://data.ontario.ca/dataset/covid-19-vaccine-data-in-ontario
    Explore at:
    csv(40072), xlsx(20450), csv(1303887), csv(18214), csv(49841043), csv(101259), txt(8365), xlsx(21260), csv(7350)Available download formats
    Dataset updated
    Dec 13, 2024
    Dataset authored and provided by
    Health
    License

    https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario

    Time period covered
    Nov 14, 2024
    Area covered
    Ontario
    Description

    **Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool **

    As of January 26, 2023, the population counts are based on Statistics Canada’s 2021 estimates. The coverage methodology has been revised to calculate age based on the current date and deceased individuals are no longer included. The method used to count daily dose administrations has changed is now based on the date delivered versus the day entered into the data system. Historical data has been updated.

    Please note that Cases by Vaccination Status data will no longer be published as of June 30, 2022.

    Please note that case rates by vaccination status and age group data will no longer be published as of July 13, 2022.

    Please note that Hospitalization by Vaccination Status data will no longer be published as of June 30, 2022.

    Learn more about COVID-19 vaccines.

    Data includes:

    • daily and total doses administered
    • individuals with at least one dose
    • individuals fully vaccinated
    • total doses given to fully vaccinated individuals
    • vaccinations by age
    • percentage of age group
    • individuals with at least one dose, by PHU, by age group
    • individuals fully vaccinated, by PHU, by age group
    • COVID-19 cases by status: not fully vaccinated, fully vaccinated, vaccinated with booster
    • individuals in hospital due to COVID-19 (excluding ICU) by status: unvaccinated, partially vaccinated, fully vaccinated
    • individuals in ICU due to COVID-19 by status: unvaccinated, partially vaccinated, fully vaccinated, unknown
    • rate of COVID-19 cases per 100,000 by status and age group
    • rate per 100,000 (7-day average) by status and age group

    All data reflects totals from 8 p.m. the previous day.

    This dataset is subject to change.

    Additional notes

    • Data entry of vaccination records is still in progress, therefore the dosage data may not be a full representation of all vaccination doses administered in Ontario.
    • The data does not include dosage data where consent was not provided for vaccination records to be entered into the provincial CoVax system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information into CoVax.

    Hospitalizations and cases by vaccination status

    Hospitalizations

    • This is a new data collection and the data quality will continue to improve as hospitals continue to submit data.
    • In order to understand the vaccination status of patients currently hospitalized, a new data collection process was developed and this may cause discrepancies between other hospitalization numbers being collected using a different data collection process.
    • Data on patients in ICU are being collected from two different data sources with different extraction times and public reporting cycles. The existing data source (Critical Care Information System, CCIS) does not have vaccination status.
    • Historical data for hospitalizations by region may change over time as hospitals update previously entered data.
    • Due to incomplete weekend and holiday reporting, vaccination status data for hospital and ICU admissions is not updated on Sundays, Mondays and the day after holidays
    • Unvaccinated is defined as not having any dose, or between 0-13 days after administration of the first dose of a COVID-19 vaccine.
    • Partially vaccinated is defined as 14 days or more after the first dose of a 2-dose series COVID-19 vaccine, or between 0-13 days after administration of the second dose
    • Fully vaccinated is defined as 14 days or more after receipt of the second dose of a 2-dose series COVID-19 vaccine

    Cases

    • The cases by vaccination status may not match the daily COVID-19 case count because records with a missing or invalid health card number cannot be linked.
  7. Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status and...

    • healthdata.gov
    • odgavaprod.ogopendata.com
    • +1more
    csv, xlsx, xml
    Updated Jun 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cdc.gov (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status and Second Booster Dose [Dataset]. https://healthdata.gov/CDC/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/4tut-jeki
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Jun 16, 2023
    Dataset provided by
    data.cdc.gov
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

    Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

    Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases

  8. Rates of COVID-19 Cases or Deaths by Age Group and Updated (Bivalent)...

    • data.virginia.gov
    • healthdata.gov
    • +1more
    csv, json, rdf, xsl
    Updated Jun 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2023). Rates of COVID-19 Cases or Deaths by Age Group and Updated (Bivalent) Booster Status [Dataset]. https://data.virginia.gov/dataset/rates-of-covid-19-cases-or-deaths-by-age-group-and-updated-bivalent-booster-status
    Explore at:
    csv, xsl, json, rdfAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Updated (Bivalent) Booster Status. Click 'More' for important dataset description and footnotes

    Webpage: https://covid.cdc.gov/covid-data-tracker/#rates-by-vaccine-status

    Dataset and data visualization details:

    These data were posted and archived on May 30, 2023 and reflect cases among persons with a positive specimen collection date through April 22, 2023, and deaths among persons with a positive specimen collection date through April 1, 2023. These data will no longer be updated after May 2023.

    Vaccination status: A person vaccinated with at least a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. A person vaccinated with a primary series and a monovalent booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably receiving a primary series of an FDA-authorized or approved vaccine and at least one additional dose of any monovalent FDA-authorized or approved COVID-19 vaccine on or after August 13, 2021. (Note: this definition does not distinguish between vaccine recipients who are immunocompromised and are receiving an additional dose versus those who are not immunocompromised and receiving a booster dose.) A person vaccinated with a primary series and an updated (bivalent) booster dose had SARS-CoV-2 RNA or antigen detected in a respiratory specimen collected ≥14 days after verifiably receiving a primary series of an FDA-authorized or approved vaccine and an additional dose of any bivalent FDA-authorized or approved vaccine COVID-19 vaccine on or after September 1, 2022. (Note: Doses with bivalent doses reported as first or second doses are classified as vaccinated with a bivalent booster dose.) People with primary series or a monovalent booster dose were combined in the “vaccinated without an updated booster” category.

    Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Per the interim guidance of the Council of State and Territorial Epidemiologists (CSTE), this should include persons whose death certificate lists COVID-19 disease or SARS-CoV-2 as the underlying cause of death or as a significant condition contributing to death. Rates of COVID-19 deaths by vaccination status are primarily reported based on when the patient was tested for COVID-19. In select jurisdictions, deaths are included that are not laboratory confirmed and are reported based on alternative dates (i.e., onset date for most; or date of death or report date, where onset date is unavailable). Deaths usually occur up to 30 days after COVID-19 diagnosis.

    Participating jurisdictions: Currently, these 24 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Colorado, District of Columbia, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (NY), North Carolina, Rhode Island, Tennessee, Texas, Utah, and West Virginia; 23 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 48% of the total U.S. population and all ten of the Health and Human Services Regions. This list will be

  9. d

    MD COVID-19 - Vaccination Percent Age Group Population

    • catalog.data.gov
    • opendata.maryland.gov
    • +1more
    Updated Jun 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    opendata.maryland.gov (2025). MD COVID-19 - Vaccination Percent Age Group Population [Dataset]. https://catalog.data.gov/dataset/md-covid-19-vaccination-percent-age-group-population
    Explore at:
    Dataset updated
    Jun 21, 2025
    Dataset provided by
    opendata.maryland.gov
    Description

    Regarding all Vaccination Data The date of Last Update is 4/21/2023. Additionally on 4/27/2023 several COVID-19 datasets were retired and no longer included in public COVID-19 data dissemination. See this link for more information https://imap.maryland.gov/pages/covid-data Summary The cumulative number of COVID-19 vaccinations percent age group population: 16-17; 18-49; 50-64; 65 Plus. Description COVID-19 - Vaccination Percent Age Group Population data layer is a collection of COVID-19 vaccinations that have been reported each day into ImmuNet. COVID-19 is a disease caused by a respiratory virus first identified in Wuhan, Hubei Province, China in December 2019. COVID-19 is a new virus that hasn't caused illness in humans before. Worldwide, COVID-19 has resulted in thousands of infections, causing illness and in some cases death. Cases have spread to countries throughout the world, with more cases reported daily. The Maryland Department of Health reports daily on COVID-19 cases by county. Terms of Use The Spatial Data, and the information therein, (collectively the Data) is provided as is without warranty of any kind, either expressed, implied, or statutory. The user assumes the entire risk as to quality and performance of the Data. No guarantee of accuracy is granted, nor is any responsibility for reliance thereon assumed. In no event shall the State of Maryland be liable for direct, indirect, incidental, consequential or special damages of any kind. The State of Maryland does not accept liability for any damages or misrepresentation caused by inaccuracies in the Data or as a result to changes to the Data, nor is there responsibility assumed to maintain the Data in any manner or form. The Data can be freely distributed as long as the metadata entry is not modified or deleted. Any data derived from the Data must acknowledge the State of Maryland in the metadata. This map is for planning purposes only. MEMA does not guarantee the accuracy of any forecast or predictive elements.

  10. D

    ARCHIVED: COVID-19 Cases by Vaccination Status Over Time

    • data.sfgov.org
    • healthdata.gov
    csv, xlsx, xml
    Updated Jun 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). ARCHIVED: COVID-19 Cases by Vaccination Status Over Time [Dataset]. https://data.sfgov.org/w/gqw3-444p/ikek-yizv?cur=UGbqTnrqBq5&from=1I49gBKMrdz
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Jun 28, 2023
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    On 6/28/2023, data on cases by vaccination status will be archived and will no longer update.

    A. SUMMARY This dataset represents San Francisco COVID-19 positive confirmed cases by vaccination status over time, starting January 1, 2021. Cases are included on the date the positive test was collected (the specimen collection date). Cases are counted in three categories: (1) all cases; (2) unvaccinated cases; and (3) completed primary series cases.

    1. All cases: Includes cases among all San Francisco residents regardless of vaccination status.

    2. Unvaccinated cases: Cases are considered unvaccinated if their positive COVID-19 test was before receiving any vaccine. Cases that are not matched to a COVID-19 vaccination record are considered unvaccinated.

    3. Completed primary series cases: Cases are considered completed primary series if their positive COVID-19 test was 14 days or more after they received their 2nd dose in a 2-dose COVID-19 series or the single dose of a 1-dose vaccine. These are also called “breakthrough cases.”

    On September 12, 2021, a new case definition of COVID-19 was introduced that includes criteria for enumerating new infections after previous probable or confirmed infections (also known as reinfections). A reinfection is defined as a confirmed positive PCR lab test more than 90 days after a positive PCR or antigen test. The first reinfection case was identified on December 7, 2021.

    Data is lagged by eight days, meaning the most recent specimen collection date included is eight days prior to today. All data updates daily as more information becomes available.

    B. HOW THE DATASET IS CREATED Case information is based on confirmed positive laboratory tests reported to the City. The City then completes quality assurance and other data verification processes. Vaccination data comes from the California Immunization Registry (CAIR2). The California Department of Public Health runs CAIR2. Individual-level case and vaccination data are matched to identify cases by vaccination status in this dataset. Case records are matched to vaccine records using first name, last name, date of birth, phone number, and email address.

    We include vaccination records from all nine Bay Area counties in order to improve matching rates. This allows us to identify breakthrough cases among people who moved to the City from other Bay Area counties after completing their vaccine series. Only cases among San Francisco residents are included.

    C. UPDATE PROCESS Updates automatically at 08:00 AM Pacific Time each day.

    D. HOW TO USE THIS DATASET Total San Francisco population estimates can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS). To identify total San Francisco population estimates, filter the view on “demographic_category_label” = “all ages”.

    Population estimates by vaccination status are derived from our publicly reported vaccination counts, which can be found at COVID-19 Vaccinations Given to SF Residents Over Time.

    The dataset includes new cases, 7-day average new cases, new case rates, 7-day average new case rates, percent of total cases, and 7-day average percent of total cases for each vaccination category.

    New cases are the count of cases where the positive tests were collected on that specific specimen collection date. The 7-day rolling average shows the trend in new cases. The rolling average is calculated by averaging the new cases for a particular day with the prior 6 days.

    New case rates are the count of new cases per 100,000 residents in each vaccination status group. The 7-day rolling average shows the trend in case rates. The rolling average is calculated by averaging the case rate for a particular day with the prior six days. Percent of total new cases shows the percent of all cases on each day that were among a particular vaccination status.

    Here is more information on how each case rate is calculated:

    1. The case rate for all cases is equal to the number of new cases among all residents divided by the estimated total resident population.

    2. Unvaccinated case rates are equal to the number of new cases among unvaccinated residents divided by the estimated number of unvaccinated residents. The estimated number of unvaccinated residents is calculated by subtracting the number of residents that have received at least one dose of a vaccine from the total estimated resident population.

    3. Completed primary series case rates are equal to the number of new cases among completed primary series residents divided by the estimated number of completed primary series residents. The estimated number of completed primary series residents is calculated by taking the number of residents who have completed their primary series over time and adding a 14-day delay to the “date_administered” column, to align with the definition of “Completed primary series cases” above.

    E. CHANGE LOG

    • 6/28/2023 - data on cases by vaccination status are no longer being updated. This data is currently through 6/20/2023 (as of 6/28/2023) and will not include any new data after this date.
    • 4/6/2023 - the State implemented system updates to improve the integrity of historical data.
    • 2/21/2023 - system updates to improve reliability and accuracy of cases data were implemented.
    • 1/31/2023 - updated “sf_population” column to reflect the 2020 Census Bureau American Community Survey (ACS) San Francisco Population estimates.
    • 1/31/2023 - renamed column “last_updated_at” to “data_as_of”.
    • 1/22/2022 - system updates to improve timeliness and accuracy of cases and deaths data were implemented.
    • 7/15/2022 - reinfections added to cases dataset. See section SUMMARY for more information on how reinfections are identified.
    • 7/15/2022 - references to “fully vaccinated” replaced with “completed primary series” in column “vaccination_status".
    • 7/15/2022 - rows with “partially vaccinated” in column “vaccination_status” removed from dataset.

  11. d

    ARCHIVED: COVID-19 Cases by Vaccination Status Over Time

    • catalog.data.gov
    Updated Mar 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.sfgov.org (2025). ARCHIVED: COVID-19 Cases by Vaccination Status Over Time [Dataset]. https://catalog.data.gov/dataset/covid-19-cases-by-vaccination-status-over-time
    Explore at:
    Dataset updated
    Mar 29, 2025
    Dataset provided by
    data.sfgov.org
    Description

    On 6/28/2023, data on cases by vaccination status will be archived and will no longer update. A. SUMMARY This dataset represents San Francisco COVID-19 positive confirmed cases by vaccination status over time, starting January 1, 2021. Cases are included on the date the positive test was collected (the specimen collection date). Cases are counted in three categories: (1) all cases; (2) unvaccinated cases; and (3) completed primary series cases. All cases: Includes cases among all San Francisco residents regardless of vaccination status. Unvaccinated cases: Cases are considered unvaccinated if their positive COVID-19 test was before receiving any vaccine. Cases that are not matched to a COVID-19 vaccination record are considered unvaccinated. Completed primary series cases: Cases are considered completed primary series if their positive COVID-19 test was 14 days or more after they received their 2nd dose in a 2-dose COVID-19 series or the single dose of a 1-dose vaccine. These are also called “breakthrough cases.” On September 12, 2021, a new case definition of COVID-19 was introduced that includes criteria for enumerating new infections after previous probable or confirmed infections (also known as reinfections). A reinfection is defined as a confirmed positive PCR lab test more than 90 days after a positive PCR or antigen test. The first reinfection case was identified on December 7, 2021. Data is lagged by eight days, meaning the most recent specimen collection date included is eight days prior to today. All data updates daily as more information becomes available. B. HOW THE DATASET IS CREATED Case information is based on confirmed positive laboratory tests reported to the City. The City then completes quality assurance and other data verification processes. Vaccination data comes from the California Immunization Registry (CAIR2). The California Department of Public Health runs CAIR2. Individual-level case and vaccination data are matched to identify cases by vaccination status in this dataset. Case records are matched to vaccine records using first name, last name, date of birth, phone number, and email address. We include vaccination records from all nine Bay Area counties in order to improve matching rates. This allows us to identify breakthrough cases among people who moved to the City from other Bay Area counties after completing their vaccine series. Only cases among San Francisco residents are included. C. UPDATE PROCESS Updates automatically at 08:00 AM Pacific Time each day. D. HOW TO USE THIS DATASET Total San Francisco population estimates can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS). To identify total San Francisco population estimates, filter the view on “demographic_category_label” = “all ages”. Population estimates by vaccination status are derived from our publicly reported vaccination counts, which can be found at COVID-19 Vaccinations Given to SF Residents Over Time. The dataset includes new cases, 7-day average new cases, new case rates, 7-day average new case rates, percent of total cases, and 7-day average percent of total cases for each vaccination category. New cases are the count of cases where the positive tests were collected on that specific specimen collection date. The 7-day rolling average shows the trend in new cases. The rolling average is calculated by averaging the new cases for a particular day with the prior 6 days. New case rates are the count of new cases per 100,000 residents in each vaccination status group. The 7-day rolling average shows the trend in case rates. The rolling average is calculated by averaging the case rate for a part

  12. COVID-19 World Vaccination Progress Data

    • kaggle.com
    zip
    Updated Jun 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    fedesoriano (2021). COVID-19 World Vaccination Progress Data [Dataset]. https://www.kaggle.com/datasets/fedesoriano/coronavirus-covid19-vaccinations-data/data
    Explore at:
    zip(4832380 bytes)Available download formats
    Dataset updated
    Jun 29, 2021
    Authors
    fedesoriano
    Area covered
    World
    Description

    How many people have received a coronavirus vaccine?

    Tracking COVID-19 vaccination rates is crucial to understand the scale of protection against the virus, and how this is distributed across the global population.

    A global, aggregated database on COVID-19 vaccination rates is essential to monitor progress, but it is unfortunately not yet available. This dataset provides the last weekly update of vaccination rates.

    Last update

    June 2021

    Content

    Colums description: 1. iso_code: ISO 3166-1 alpha-3 – three-letter country codes 2. continent: Continent of the geographical location 3. location: Geographical location 4. date: Date of observation 5. total_cases: Total confirmed cases of COVID-19 6. new_cases: New confirmed cases of COVID-19 7. new_cases_smoothed: New confirmed cases of COVID-19 (7-day smoothed) 8. total_deaths: Total deaths attributed to COVID-19 9. new_deaths: New deaths attributed to COVID-19 10. new_deaths_smoothed: New deaths attributed to COVID-19 (7-day smoothed) 11. total_cases_per_million: Total confirmed cases of COVID-19 per 1,000,000 people 12. new_cases_per_million: New confirmed cases of COVID-19 per 1,000,000 people 13. new_cases_smoothed_per_million: New confirmed cases of COVID-19 (7-day smoothed) per 1,000,000 people 14. total_deaths_per_million: Total deaths attributed to COVID-19 per 1,000,000 people 15. new_deaths_per_million: New deaths attributed to COVID-19 per 1,000,000 people 16. new_deaths_smoothed_per_million: New deaths attributed to COVID-19 (7-day smoothed) per 1,000,000 people 17. reproduction_rate: Real-time estimate of the effective reproduction rate (R) of COVID-19. See http://trackingr-env.eba-9muars8y.us-east-2.elasticbeanstalk.com/FAQ 18. icu_patients: Number of COVID-19 patients in intensive care units (ICUs) on a given day 19. icu_patients_per_million: Number of COVID-19 patients in intensive care units (ICUs) on a given day per 1,000,000 people 20. hosp_patients: Number of COVID-19 patients in hospital on a given day 21. hosp_patients_per_million: Number of COVID-19 patients in hospital on a given day per 1,000,000 people 22. weekly_icu_admissions: Number of COVID-19 patients newly admitted to intensive care units (ICUs) in a given week 23. weekly_icu_admissions_per_million: Number of COVID-19 patients newly admitted to intensive care units (ICUs) in a given week per 1,000,000 people 24. weekly_hosp_admissions: Number of COVID-19 patients newly admitted to hospitals in a given week 25. weekly_hosp_admissions_per_million: Number of COVID-19 patients newly admitted to hospitals in a given week per 1,000,000 people 26. total_tests: Total tests for COVID-19 27. new_tests: New tests for COVID-19 28. new_tests_smoothed: New tests for COVID-19 (7-day smoothed). For countries that don't report testing data on a daily basis, we assume that testing changed equally on a daily basis over any periods in which no data was reported. This produces a complete series of daily figures, which is then averaged over a rolling 7-day window 29. total_tests_per_thousand: Total tests for COVID-19 per 1,000 people 30. new_tests_per_thousand: New tests for COVID-19 per 1,000 people 31. new_tests_smoothed_per_thousand: New tests for COVID-19 (7-day smoothed) per 1,000 people 32. tests_per_case: Tests conducted per new confirmed case of COVID-19, given as a rolling 7-day average (this is the inverse of positive_rate) 33. positive_rate: The share of COVID-19 tests that are positive, given as a rolling 7-day average (this is the inverse of tests_per_case) 34. tests_units: Units used by the location to report its testing data 35. total_vaccinations: Number of COVID-19 vaccination doses administered 36. total_vaccinations_per_hundred: Number of COVID-19 vaccination doses administered per 100 people 37. stringency_index: Government Response Stringency Index: composite measure based on 9 response indicators including school closures, workplace closures, and travel bans, rescaled to a value from 0 to 100 (100 = strictest response) 38. population: Population in 2020 39. population_density: Number of people divided by land area, measured in square kilometers, most recent year available 40. median_age: Median age of the population, UN projection for 2020 41. aged_65_older: Share of the population that is 65 years and older, most recent year available 42. aged_70_older: Share of the population that is 70 years and older in 2015 43. gdp_per_capita: Gross domestic product at purchasing power parity (constant 2011 international dollars), most recent year available 44. extreme_poverty: Share of the population living in extreme poverty, most recent year available since 2010 45. cardiovasc_death_rate: Death rate from cardiovascular disease in 2017 (annual number of deaths per 100,000 people) 46. diabetes_prevalence: Diabetes prevalence (% of population aged 20 to 79) in 2017 47. female...

  13. O

    COVID-19 Vaccinations by Race/Ethnicity and Age - ARCHIVED

    • data.ct.gov
    • catalog.data.gov
    • +1more
    csv, xlsx, xml
    Updated Feb 9, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health (2023). COVID-19 Vaccinations by Race/Ethnicity and Age - ARCHIVED [Dataset]. https://data.ct.gov/Health-and-Human-Services/COVID-19-Vaccinations-by-Race-Ethnicity-and-Age-AR/4z97-pa4q
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Feb 9, 2023
    Dataset authored and provided by
    Department of Public Health
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    NOTE: As of 2/16/2023 this table is no longer being updated. For information on COVID-19 Updated (Bivalent) Booster Coverage, go to https://data.ct.gov/Health-and-Human-Services/COVID-19-Updated-Bivalent-Booster-Coverage-By-Race/8267-bg4w.

    Important change as of June 1, 2022

    As of June 1, 2022, we will be using 2020 DPH provisional census estimates* to calculate vaccine coverage percentages by age at the state level. 2020 estimates will replace the 2019 estimates that have been used. Caution should be taken when making comparisons of percentages calculated using the 2019 and 2020 census estimates since observed difference may result from the shift in the denominator. The age groups in the state-level data tables will also be changing as a result of the switch to the new denominator.

    • DPH Provisional State and County Characteristics Estimates April 1, 2020. Hayes L, Abdellatif E, Jiang Y, Backus K (2022) Connecticut DPH Provisional April 1, 2020 State Population Estimates by 18 age groups, sex, and 6 combined race and ethnicity groups. Connecticut Department of Public Health, Health Statistics & Surveillance, SAR, Hartford, CT.

    This table shows the number and percent of people that have initiated COVID-19 vaccination, are fully vaccinated and had additional dose 1 by race / ethnicity and age group.

    All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. The age groups in the state-level data tables will also be changing as a result of the switch to the new denominator.

    Population size estimates are based on 2019 DPH census estimates until 5/26/2022. From 6/1/2022, 2020 DPH provisional census estimates are used.

    In the data shown here, a person who has received at least one dose of COVID-19 vaccine is considered to have initiated vaccination. A person is considered fully vaccinated if he/she has completed a primary vaccination series by receiving 2 doses of the Pfizer, Novavax or Moderna vaccines or 1 dose of the Johnson & Johnson vaccine. The fully vaccinated are a subset of the people who have received at least one dose.

    A person who completed a Pfizer, Moderna, Novavax or Johnson & Johnson primary series (as defined above) and then had an additional monovalent dose of COVID-19 vaccine is considered to have had additional dose 1. The additional dose may be Pfizer, Moderna, Novavax or Johnson & Johnson and may be a different type from the primary series. For people who had a primary Pfizer or Moderna series, additional dose 1 was counted starting August 18th, 2021. For people with a Johnson & Johnson primary series additional dose 1 was counted starting October 22nd, 2021. For most people, additional dose 1 is a booster. However, additional dose 1 may represent a supplement to the primary series for a people who is moderately or severely immunosuppressed. Bivalent booster administrations are not included in the additional dose 1 calculations.

    The percent with at least one dose many be over-estimated, and the percent fully vaccinated and with additional dose 1 may be under-estimated because of vaccine administration records for individuals that cannot be linked because of differences in how names or date of birth are reported.

    Race and ethnicity data may be self-reported or taken from an existing electronic health care record. Reported race and ethnicity information is used to create a single race/ethnicity variable. People with Hispanic ethnicity are classified as Hispanic regardless of reported race. People with a missing ethnicity are classified as non-Hispanic. People with more than one race are classified as multiple races.

    A vaccine coverage percentage cannot be calculated for people classified as NH Other race or NH Unknown race since there are not population size estimates for these groups. Data quality assurance activities suggest that in at least some cases NH Other may represent a missing value. Vaccine coverage estimates in specific race/ethnicity groups may be underestimated as result of the classification of records as NH Unknown Race or NH Other Race.

    Connecticut COVID-19 Vaccine Program providers are required to report information on all COVID-19 vaccine doses administered to CT WiZ, the Connecticut Immunization Information System. This includes doses given to residents of CT and to residents of other states vaccinated in CT. Data on doses administered to CT residents out-of-state are being added to CT WiZ jurisdiction-by-jurisdiction. Doses administered by some Federal entities (including Department of Defense, Department of Correction, Department of Veteran’s Affairs, Indian Health Service) are not yet reported to CT WiZ. Data reported here reflect the vaccination records reported to CT WiZ. However, once CT residents who have received doses in each jurisdiction are added to CT WiZ, the records for residents of that jurisdiction vaccinated in CT are removed. For example, when CT residents vaccinated in NYC were added, NYC residents vaccinated in CT were removed.

    Note: This dataset takes the place of the original "COVID-19 Vaccinations by Race/Ethnicity" dataset (https://data.ct.gov/Health-and-Human-Services/COVID-19-Vaccinations-by-Race-Ethnicity/xkga-ifz3 ), which will not be updated after 5/20/2021 and “COVID-19 Vaccinations by Race / Ethnicity” dataset (https://data.ct.gov/Health-and-Human-Services/COVID-19-Vaccinations-by-Race-Ethnicity/ybkg-w5x2), which will not be updated after 10/20/2021.

  14. COVID 19 Dataset

    • kaggle.com
    zip
    Updated Oct 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rhona Rose Cortez (2024). COVID 19 Dataset [Dataset]. https://www.kaggle.com/datasets/rhonarosecortez/covid-19-dataset
    Explore at:
    zip(10774892 bytes)Available download formats
    Dataset updated
    Oct 23, 2024
    Authors
    Rhona Rose Cortez
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description:

    This comprehensive dataset provides global information on both COVID-19 related deaths and vaccinations from January 5, 2020, to August 4, 2024. It consists of two parts: one tracking COVID-19 cases, deaths, and population statistics, and another monitoring vaccination progress worldwide. This dataset allows for an in-depth analysis of the pandemic’s spread, fatality rates, and the effectiveness of vaccination campaigns across various countries and regions.

    Researchers and data analysts can use this dataset to study trends, compare countries, and evaluate public health responses throughout the COVID-19 pandemic.

    Includes:

    CovidDeaths Dataset: Records of total cases, deaths, and population.

    CovidVaccinations Dataset: Records of daily vaccination counts and cumulative totals.

    Use Cases:

    Analyzing death rates relative to confirmed cases. Examining the percentage of population affected by COVID-19. Evaluating vaccination rates and coverage across different regions. This dataset is ideal for data exploration, statistical analysis, and visualizations related to the COVID-19 pandemic.

  15. d

    COVID-19 Updated (Bivalent) Vaccination Coverage By Race/Ethnicity and Age...

    • catalog.data.gov
    • data.ct.gov
    Updated Sep 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). COVID-19 Updated (Bivalent) Vaccination Coverage By Race/Ethnicity and Age Group - ARCHIVED [Dataset]. https://catalog.data.gov/dataset/covid-19-updated-bivalent-booster-coverage-by-race-ethnicity-and-age-group-age-5
    Explore at:
    Dataset updated
    Sep 15, 2023
    Dataset provided by
    data.ct.gov
    Description

    These tables will stop being updated after June 1, 2023. COVID-19 vaccination reporting is expected to resume when a new COVID-19 vaccination formulation is authorized. As 4/22/2023, CDC recommends bivalent vaccine for everyone regardless of age and whether or not the person has had prior monovalent vaccine. This table shows the cumulative number and percentage of people who have received an updated (bivalent) COVID-19 vaccination by race/ethnicity and age group for people 5 years and over. • Data are reported weekly on Thursday and include doses administered to Saturday of the previous week. • All data in this report are preliminary. Data for previous weeks may be changed because of delays in reporting, deduplication, or correction of errors. • The table groups people based on their current age and excludes people known to be deceased. • The analyses here are based on data reported to CT WiZ which is the immunization information system for CT. Connecticut COVID-19 Vaccine Program providers are required to report to CT WiZ all COVID-19 doses administered in CT including to CT residents and to residents of other jurisdictions. CT Wiz also receives records on CT residents vaccinated in other jurisdictions and by federal entities which share data with CT WiZ electronically (currently: RI, NJ, New York City, DE, Philadelphia, NV, Indian Health Service, Department of Veterans Affairs (doses administered since 11/2022)). Electronic data exchange is being added jurisdiction-by-jurisdiction. Once a jurisdiction is added to CT WiZ, the records for residents of that jurisdiction vaccinated in CT are removed. For example, when CT residents vaccinated in NYC were added, NYC residents vaccinated in CT were removed. • Population size estimates used to calculate cumulative percentages are based on 2020 DPH provisional census estimates*. • Race and ethnicity data may be self-reported or taken from an existing electronic health care record. Reported race and ethnicity information is used to create a single race/ethnicity variable. People with Hispanic ethnicity are classified as Hispanic regardless of reported race. People with a missing ethnicity are classified as non-Hispanic. People with more than one race are classified as multiple races. A vaccine coverage percentage cannot be calculated for people classified as NH (non-Hispanic) Other race or NH Unknown race since there are no population size estimates for these groups. Data quality assurance activities suggest that in at least some cases NH Other may represent a missing value. Vaccine coverage estimates in specific race/ethnicity groups may be underestimated as result of the classification of records as NH Unknown Race or NH Other Race. • Cumulative percentage estimates have been capped at 100%. Observed percentages may be higher than 100% for multiple reasons, inaccuracies in the census denominators or reporting errors. DPH Provisional State and County Characteristics Estimates April 1, 2020. Hayes L, Abdellatif E, Jiang Y, Backus K (2022) Connecticut DPH Provisional April 1, 2020, State Population Estimates by 18 age groups, sex, and 6 combined race and ethnicity groups. Connecticut Department of Public Health, Health Statistics & Surveillance, SAR, Hartford, CT.

  16. e

    Coronavirus (COVID-19) Vaccine Roll Out

    • data.europa.eu
    • ckan.publishing.service.gov.uk
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Greater London Authority, Coronavirus (COVID-19) Vaccine Roll Out [Dataset]. https://data.europa.eu/data/datasets/coronavirus-covid-19-vaccine-roll-out~~1?locale=en
    Explore at:
    Dataset authored and provided by
    Greater London Authority
    Description

    Vaccinations in London Between 8 December 2020 and 15 September 2021 5,838,305 1st doses and 5,232,885 2nd doses have been administered to London residents.

    Differences in vaccine roll out between London and the Rest of England London Rest of England Priority Group Vaccinations given Percentage vaccinated Vaccinations given Percentage vaccinated Group 1 Older Adult Care Home Residents 21,883 95% 275,964 96% Older Adult Care Home Staff 29,405 85% 381,637 88% Group 2 80+ years 251,021 83% 2,368,284 93% Health Care Worker 174,944 99% 1,139,243 100%* Group 3 75 - 79 years 177,665 90% 1,796,408 99% Group 4 70 - 74 years 252,609 90% 2,454,381 97% Clinically Extremely Vulnerable 278,967 88% 1,850,485 95% Group 5 65 - 69 years 285,768 90% 2,381,250 97% Group 6 At Risk or Carer (Under 65) 983,379 78% 6,093,082 88% Younger Adult Care Home Residents 3,822 92% 30,321 93% Group 7 60 - 64 years 373,327 92% 2,748,412 98% Group 8 55 - 59 years 465,276 91% 3,152,412 97% Group 9 50 - 54 years 510,132 90% 3,141,219 95% Data as at 15 September 2021 for age based groups and as at 12 September 2021 for non-age based groups * The number who have received their first dose exceeds the latest official estimate of the population for this group There is considerable uncertainty in the population denominators used to calculate the percentage vaccinated. Comparing implied vaccination rates for multiple sources of denominators provides some indication of uncertainty in the true values. Confidence is higher where the results from multiple sources agree more closely. Because the denominator sources are not fully independent of one another, users should interpret the range of values across sources as indicating the minimum range of uncertainty in the true value. The following datasets can be used to estimate vaccine uptake by age group for London:

    ONS 2020 mid-year estimates (MYE). This is the population estimate used for age groups throughout the rest of the analysis.
    
    
    Number of people ages 18 and over on the National Immunisation Management Service (NIMS)
    
    
    ONS Public Health Data Asset (PHDA) dataset. This is a linked dataset combining the 2011 Census, the General Practice Extraction Service (GPES) data for pandemic planning and research and the Hospital Episode Statistics (HES). This data covers a subset of the population.
    

    Vaccine roll out in London by Ethnic Group Understanding how vaccine uptake varies across different ethnic groups in London is complicated by two issues:

    Ethnicity information for recipients is unavailable for a very large number of the vaccinations that have been delivered. As a result, estimates of vaccine uptake by ethnic group are highly sensitive to the assumptions about and treatment of the Unknown group in calculations of rates.

    For vaccinations given to people aged 50 and over in London nearly 10% do not have ethnicity information available,

    The accuracy of available population denominators by ethnic group is limited. Because ethnicity information is not captured in official estimates of births, deaths, and migration, the available population denominators typically rely on projecting forward patterns captured in the 2011 Census. Subsequent changes to these patterns, particularly with respect to international migration, leads to increasing uncertainty in the accuracy of denominators sources as we move further away from 2011.

    Comparing estimated population sizes and implied vaccination rates for multiple sources of denominators provides some indication of uncertainty in the true values. Confidence is higher where the results from multiple sources agree more closely. Because the denominator sources are not fully independent of one another, users should interpret the range of values across sources as indicating the minimum range of uncertainty in the true value. The following population estimates are available by Ethnic group for London:

    GLA Ethnic group population projections - 2016 as at 2021
    
    
    ONS Population Denominators produced for Race Disparity Audit as at 2018
    
    
    ETHPOP population projections produced by the University of Leeds as at 2020
    

    Antibody prevalence estimates As part of the ONS Coronavirus (COVID-19) Infection Survey ONS publish a modelled estimate of the percent of the adult population testing positive for antibodies to Coronavirus by region. Antibodies can be generated by vaccination or previous infection.

    Vaccine effects on cases, hospitalisations and deaths When the vaccine roll out began in December 2020 coronavirus cases, hospital admissions and deaths were rising steeply. The peak of infections came in London in early January 2021, before reducing during the national lockdown and as the vaccine roll out progressed. As the vaccine roll out began in older age groups the effect of vaccinations can be separated from the effect of national lockdown by comparing changes in cases, admissions and deaths

  17. Deaths by vaccination status, England

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Aug 25, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Deaths by vaccination status, England [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/deathsbyvaccinationstatusengland
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Aug 25, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Age-standardised mortality rates for deaths involving coronavirus (COVID-19), non-COVID-19 deaths and all deaths by vaccination status, broken down by age group.

  18. Coronavirus (COVID-19) In-depth Dataset

    • kaggle.com
    zip
    Updated May 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pranjal Verma (2021). Coronavirus (COVID-19) In-depth Dataset [Dataset]. https://www.kaggle.com/pranjalverma08/coronavirus-covid19-indepth-dataset
    Explore at:
    zip(9882078 bytes)Available download formats
    Dataset updated
    May 29, 2021
    Authors
    Pranjal Verma
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    Context

    Covid-19 Data collected from various sources on the internet. This dataset has daily level information on the number of affected cases, deaths, and recovery from the 2019 novel coronavirus. Please note that this is time-series data and so the number of cases on any given day is the cumulative number.

    Content

    The dataset includes 28 files scrapped from various data sources mainly the John Hopkins GitHub repository, the ministry of health affairs India, worldometer, and Our World in Data website. The details of the files are as follows

    • countries-aggregated.csv A simple and cleaned data with 5 columns with self-explanatory names. -covid-19-daily-tests-vs-daily-new-confirmed-cases-per-million.csv A time-series data of daily test conducted v/s daily new confirmed case per million. Entity column represents Country name while code represents ISO code of the country. -covid-contact-tracing.csv Data depicting government policies adopted in case of contact tracing. 0 -> No tracing, 1-> limited tracing, 2-> Comprehensive tracing. -covid-stringency-index.csv The nine metrics used to calculate the Stringency Index are school closures; workplace closures; cancellation of public events; restrictions on public gatherings; closures of public transport; stay-at-home requirements; public information campaigns; restrictions on internal movements; and international travel controls. The index on any given day is calculated as the mean score of the nine metrics, each taking a value between 0 and 100. A higher score indicates a stricter response (i.e. 100 = strictest response). -covid-vaccination-doses-per-capita.csv A total number of vaccination doses administered per 100 people in the total population. This is counted as a single dose, and may not equal the total number of people vaccinated, depending on the specific dose regime (e.g. people receive multiple doses). -covid-vaccine-willingness-and-people-vaccinated-by-country.csv Survey who have not received a COVID vaccine and who are willing vs. unwilling vs. uncertain if they would get a vaccine this week if it was available to them. -covid_india.csv India specific data containing the total number of active cases, recovered and deaths statewide. -cumulative-deaths-and-cases-covid-19.csv A cumulative data containing death and daily confirmed cases in the world. -current-covid-patients-hospital.csv Time series data containing a count of covid patients hospitalized in a country -daily-tests-per-thousand-people-smoothed-7-day.csv Daily test conducted per 1000 people in a running week average. -face-covering-policies-covid.csv Countries are grouped into five categories: 1->No policy 2->Recommended 3->Required in some specified shared/public spaces outside the home with other people present, or some situations when social distancing not possible 4->Required in all shared/public spaces outside the home with other people present or all situations when social distancing not possible 5->Required outside the home at all times regardless of location or presence of other people -full-list-cumulative-total-tests-per-thousand-map.csv Full list of total tests conducted per 1000 people. -income-support-covid.csv Income support captures if the government is covering the salaries or providing direct cash payments, universal basic income, or similar, of people who lose their jobs or cannot work. 0->No income support, 1->covers less than 50% of lost salary, 2-> covers more than 50% of the lost salary. -internal-movement-covid.csv Showing government policies in restricting internal movements. Ranges from 0 to 2 where 2 represents the strictest. -international-travel-covid.csv Showing government policies in restricting international movements. Ranges from 0 to 2 where 2 represents the strictest. -people-fully-vaccinated-covid.csv Contains the count of fully vaccinated people in different countries. -people-vaccinated-covid.csv Contains the total count of vaccinated people in different countries. -positive-rate-daily-smoothed.csv Contains the positivity rate of various countries in a week running average. -public-gathering-rules-covid.csv Restrictions are given based on the size of public gatherings as follows: 0->No restrictions 1 ->Restrictions on very large gatherings (the limit is above 1000 people) 2 -> gatherings between 100-1000 people 3 -> gatherings between 10-100 people 4 -> gatherings of less than 10 people -school-closures-covid.csv School closure during Covid. -share-people-fully-vaccinated-covid.csv Share of people that are fully vaccinated. -stay-at-home-covid.csv Countries are grouped into four categories: 0->No measures 1->Recommended not to leave the house 2->Required to not leave the house with exceptions for daily exercise, grocery shopping, and ‘essent...
  19. Preliminary 2024-2025 U.S. COVID-19 Burden Estimates

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    csv, xlsx, xml
    Updated Sep 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD). (2025). Preliminary 2024-2025 U.S. COVID-19 Burden Estimates [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Preliminary-2024-2025-U-S-COVID-19-Burden-Estimate/ahrf-yqdt
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Sep 26, 2025
    Dataset provided by
    National Center for Immunization and Respiratory Diseases
    Authors
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD).
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    This dataset represents preliminary estimates of cumulative U.S. COVID-19 disease burden for the 2024-2025 period, including illnesses, outpatient visits, hospitalizations, and deaths. The weekly COVID-19-associated burden estimates are preliminary and based on continuously collected surveillance data from patients hospitalized with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. The data come from the Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET), a surveillance platform that captures data from hospitals that serve about 10% of the U.S. population. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of COVID-19 -associated burden that have occurred since October 1, 2024.

    Note: Data are preliminary and subject to change as more data become available. Rates for recent COVID-19-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.

    References

    1. Reed C, Chaves SS, Daily Kirley P, et al. Estimating influenza disease burden from population-based surveillance data in the United States. PLoS One. 2015;10(3):e0118369. https://doi.org/10.1371/journal.pone.0118369 
    2. Rolfes, MA, Foppa, IM, Garg, S, et al. Annual estimates of the burden of seasonal influenza in the United States: A tool for strengthening influenza surveillance and preparedness. Influenza Other Respi Viruses. 2018; 12: 132– 137. https://doi.org/10.1111/irv.12486
    3. Tokars JI, Rolfes MA, Foppa IM, Reed C. An evaluation and update of methods for estimating the number of influenza cases averted by vaccination in the United States. Vaccine. 2018;36(48):7331-7337. doi:10.1016/j.vaccine.2018.10.026 
    4. Collier SA, Deng L, Adam EA, Benedict KM, Beshearse EM, Blackstock AJ, Bruce BB, Derado G, Edens C, Fullerton KE, Gargano JW, Geissler AL, Hall AJ, Havelaar AH, Hill VR, Hoekstra RM, Reddy SC, Scallan E, Stokes EK, Yoder JS, Beach MJ. Estimate of Burden and Direct Healthcare Cost of Infectious Waterborne Disease in the United States. Emerg Infect Dis. 2021 Jan;27(1):140-149. doi: 10.3201/eid2701.190676. PMID: 33350905; PMCID: PMC7774540.
    5. Reed C, Kim IK, Singleton JA,  et al. Estimated influenza illnesses and hospitalizations averted by vaccination–United States, 2013-14 influenza season. MMWR Morb Mortal Wkly Rep. 2014 Dec 12;63(49):1151-4. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6349a2.htm 
    6. Reed C, Angulo FJ, Swerdlow DL, et al. Estimates of the Prevalence of Pandemic (H1N1) 2009, United States, April–July 2009. Emerg Infect Dis. 2009;15(12):2004-2007. https://dx.doi.org/10.3201/eid1512.091413
    7. Devine O, Pham H, Gunnels B, et al. Extrapolating Sentinel Surveillance Information to Estimate National COVID-19 Hospital Admission Rates: A Bayesian Modeling Approach. Influenza and Other Respiratory Viruses. https://onlinelibrary.wiley.com/doi/10.1111/irv.70026. Volume18, Issue10. October 2024.
    8. https://www.cdc.gov/covid/php/covid-net/index.html">COVID-NET | COVID-19 | CDC 
    9. https://www.cdc.gov/covid/hcp/clinical-care/systematic-review-process.html 
    10. https://academic.oup.com/pnasnexus/article/1/3/pgac079/6604394?login=false">Excess natural-cause deaths in California by cause and setting: March 2020 through February 2021 | PNAS Nexus | Oxford Academic (oup.com)
    11. Kruschke, J. K. 2011. Doing Bayesian data analysis: a tutorial with R and BUGS. Elsevier, Amsterdam, Section 3.3.5.

  20. g

    Deaths Involving COVID-19 by Vaccination Status

    • gimi9.com
    • datasets.ai
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Deaths Involving COVID-19 by Vaccination Status [Dataset]. https://gimi9.com/dataset/ca_1375bb00-6454-4d3e-a723-4ae9e849d655/
    Explore at:
    Description

    This dataset reports the daily reported number of the 7-day moving average rates of Deaths involving COVID-19 by vaccination status and by age group. Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak. Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool Data includes: * Date on which the death occurred * Age group * 7-day moving average of the last seven days of the death rate per 100,000 for those not fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those vaccinated with at least one booster ##Additional notes As of June 16, all COVID-19 datasets will be updated weekly on Thursdays by 2pm. As of January 12, 2024, data from the date of January 1, 2024 onwards reflect updated population estimates. This update specifically impacts data for the 'not fully vaccinated' category. On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023. CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags. The data does not include vaccination data for people who did not provide consent for vaccination records to be entered into the provincial COVaxON system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information in COVaxON. “Not fully vaccinated” category includes people with no vaccine and one dose of double-dose vaccine. “People with one dose of double-dose vaccine” category has a small and constantly changing number. The combination will stabilize the results. Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts. Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different. Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the Deaths involving COVID-19 reported. Rates for the most recent days are subject to reporting lags All data reflects totals from 8 p.m. the previous day. This dataset is subject to change.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
City of Chicago (2023). COVID-19 Outcomes by Vaccination Status - Historical [Dataset]. https://data.cityofchicago.org/w/6irb-gasv/3q3f-6823?cur=5qF1eMNwCRr

COVID-19 Outcomes by Vaccination Status - Historical

Explore at:
csv, xml, xlsxAvailable download formats
Dataset updated
Dec 13, 2023
Dataset authored and provided by
City of Chicago
Description

NOTE: This dataset has been retired and marked as historical-only.

Weekly rates of COVID-19 cases, hospitalizations, and deaths among people living in Chicago by vaccination status and age.

Rates for fully vaccinated and unvaccinated begin the week ending April 3, 2021 when COVID-19 vaccines became widely available in Chicago. Rates for boosted begin the week ending October 23, 2021 after booster shots were recommended by the Centers for Disease Control and Prevention (CDC) for adults 65+ years old and adults in certain populations and high risk occupational and institutional settings who received Pfizer or Moderna for their primary series or anyone who received the Johnson & Johnson vaccine.

Chicago residency is based on home address, as reported in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE) and Illinois National Electronic Disease Surveillance System (I-NEDSS).

Outcomes: • Cases: People with a positive molecular (PCR) or antigen COVID-19 test result from an FDA-authorized COVID-19 test that was reported into I-NEDSS. A person can become re-infected with SARS-CoV-2 over time and so may be counted more than once in this dataset. Cases are counted by week the test specimen was collected. • Hospitalizations: COVID-19 cases who are hospitalized due to a documented COVID-19 related illness or who are admitted for any reason within 14 days of a positive SARS-CoV-2 test. Hospitalizations are counted by week of hospital admission. • Deaths: COVID-19 cases who died from COVID-19-related health complications as determined by vital records or a public health investigation. Deaths are counted by week of death.

Vaccination status: • Fully vaccinated: Completion of primary series of a U.S. Food and Drug Administration (FDA)-authorized or approved COVID-19 vaccine at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Boosted: Fully vaccinated with an additional or booster dose of any FDA-authorized or approved COVID-19 vaccine received at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Unvaccinated: No evidence of having received a dose of an FDA-authorized or approved vaccine prior to a positive test.

CLARIFYING NOTE: Those who started but did not complete all recommended doses of an FDA-authorized or approved vaccine prior to a positive test (i.e., partially vaccinated) are excluded from this dataset.

Incidence rates for fully vaccinated but not boosted people (Vaccinated columns) are calculated as total fully vaccinated but not boosted with outcome divided by cumulative fully vaccinated but not boosted at the end of each week. Incidence rates for boosted (Boosted columns) are calculated as total boosted with outcome divided by cumulative boosted at the end of each week. Incidence rates for unvaccinated (Unvaccinated columns) are calculated as total unvaccinated with outcome divided by total population minus cumulative boosted, fully, and partially vaccinated at the end of each week. All rates are multiplied by 100,000.

Incidence rate ratios (IRRs) are calculated by dividing the weekly incidence rates among unvaccinated people by those among fully vaccinated but not boosted and boosted people.

Overall age-adjusted incidence rates and IRRs are standardized using the 2000 U.S. Census standard population.

Population totals are from U.S. Census Bureau American Community Survey 1-year estimates for 2019.

All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. This dataset reflects data known to CDPH at the time when the dataset is updated each week.

Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined.

For all datasets related to COVID-19, see https://data.cityofchicago.org/browse?limitTo=datasets&sortBy=alpha&tags=covid-19.

Data Source: Illinois' National Electronic Disease Surveillance System (I-NEDSS), Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE), U.S. Census Bureau American Community Survey

Search
Clear search
Close search
Google apps
Main menu