35 datasets found
  1. Global Covid-19 Data

    • kaggle.com
    zip
    Updated Dec 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Global Covid-19 Data [Dataset]. https://www.kaggle.com/datasets/thedevastator/global-covid-19-data
    Explore at:
    zip(15394324 bytes)Available download formats
    Dataset updated
    Dec 3, 2023
    Authors
    The Devastator
    Description

    Global Covid-19 Data

    Global Covid-19 data on cases, deaths, vaccinations, and more

    By Valtteri Kurkela [source]

    About this dataset

    The dataset is constantly updated and synced hourly to ensure up-to-date information. With over several columns available for analysis and exploration purposes, users can extract valuable insights from this extensive dataset.

    Some of the key metrics covered in the dataset include:

    1. Vaccinations: The dataset covers total vaccinations administered worldwide as well as breakdowns of people vaccinated per hundred people and fully vaccinated individuals per hundred people.

    2. Testing & Positivity: Information on total tests conducted along with new tests conducted per thousand people is provided. Additionally, details on positive rate (percentage of positive Covid-19 tests out of all conducted) are included.

    3. Hospital & ICU: Data on ICU patients and hospital patients are available along with corresponding figures normalized per million people. Weekly admissions to intensive care units and hospitals are also provided.

    4. Confirmed Cases: The number of confirmed Covid-19 cases globally is captured in both absolute numbers as well as normalized values representing cases per million people.

    5.Confirmed Deaths: Total confirmed deaths due to Covid-19 worldwide are provided with figures adjusted for population size (total deaths per million).

    6.Reproduction Rate: The estimated reproduction rate (R) indicates the contagiousness of the virus within a particular country or region.

    7.Policy Responses: Besides healthcare-related metrics, this comprehensive dataset includes policy responses implemented by countries or regions such as lockdown measures or travel restrictions.

    8.Other Variables of InterestThe data encompasses various socioeconomic factors that may influence Covid-19 outcomes including population density,membership in a continent,gross domestic product(GDP)per capita;

    For demographic factors: -Age Structure : percentage populations aged 65 and older,aged (70)older,median age -Gender-specific factors: Percentage of female smokers -Lifestyle-related factors: Diabetes prevalence rate and extreme poverty rate

    1. Excess Mortality: The dataset further provides insights into excess mortality rates, indicating the percentage increase in deaths above the expected number based on historical data.

    The dataset consists of numerous columns providing specific information for analysis, such as ISO code for countries/regions, location names,and units of measurement for different parameters.

    Overall,this dataset serves as a valuable resource for researchers, analysts, and policymakers seeking to explore various aspects related to Covid-19

    How to use the dataset

    Introduction:

    • Understanding the Basic Structure:

      • The dataset consists of various columns containing different data related to vaccinations, testing, hospitalization, cases, deaths, policy responses, and other key variables.
      • Each row represents data for a specific country or region at a certain point in time.
    • Selecting Desired Columns:

      • Identify the specific columns that are relevant to your analysis or research needs.
      • Some important columns include population, total cases, total deaths, new cases per million people, and vaccination-related metrics.
    • Filtering Data:

      • Use filters based on specific conditions such as date ranges or continents to focus on relevant subsets of data.
      • This can help you analyze trends over time or compare data between different regions.
    • Analyzing Vaccination Metrics:

      • Explore variables like total_vaccinations, people_vaccinated, and people_fully_vaccinated to assess vaccination coverage in different countries.
      • Calculate metrics such as people_vaccinated_per_hundred or total_boosters_per_hundred for standardized comparisons across populations.
    • Investigating Testing Information:

      • Examine columns such as total_tests, new_tests, and tests_per_case to understand testing efforts in various countries.
      • Calculate rates like tests_per_case to assess testing efficiency or identify changes in testing strategies over time.
    • Exploring Hospitalization and ICU Data:

      • Analyze variables like hosp_patients, icu_patients, and hospital_beds_per_thousand to understand healthcare systems' strain.
      • Calculate rates like icu_patients_per_million or hosp_patients_per_million for cross-country comparisons.
    • Assessing Covid-19 Cases and Deaths:

      • Analyze variables like total_cases, new_ca...
  2. Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status

    • data.virginia.gov
    • healthdata.gov
    • +1more
    csv, json, rdf, xsl
    Updated Jul 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status [Dataset]. https://data.virginia.gov/dataset/rates-of-covid-19-cases-or-deaths-by-age-group-and-vaccination-status
    Explore at:
    xsl, csv, rdf, jsonAvailable download formats
    Dataset updated
    Jul 20, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

    Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

    Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases

  3. New York State Statewide COVID-19 Fatalities by Age Group (Archived)

    • health.data.ny.gov
    • healthdata.gov
    csv, xlsx, xml
    Updated Oct 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York State Department of Health (2023). New York State Statewide COVID-19 Fatalities by Age Group (Archived) [Dataset]. https://health.data.ny.gov/Health/New-York-State-Statewide-COVID-19-Fatalities-by-Ag/du97-svf7
    Explore at:
    xml, csv, xlsxAvailable download formats
    Dataset updated
    Oct 6, 2023
    Dataset authored and provided by
    New York State Department of Health
    Area covered
    New York
    Description

    Note: Data elements were retired from HERDS on 10/6/23 and this dataset was archived.

    This dataset includes the cumulative number and percent of healthcare facility-reported fatalities for patients with lab-confirmed COVID-19 disease by reporting date and age group. This dataset does not include fatalities related to COVID-19 disease that did not occur at a hospital, nursing home, or adult care facility. The primary goal of publishing this dataset is to provide users with information about healthcare facility fatalities among patients with lab-confirmed COVID-19 disease.

    The information in this dataset is also updated daily on the NYS COVID-19 Tracker at https://www.ny.gov/covid-19tracker.

    The data source for this dataset is the daily COVID-19 survey through the New York State Department of Health (NYSDOH) Health Electronic Response Data System (HERDS). Hospitals, nursing homes, and adult care facilities are required to complete this survey daily. The information from the survey is used for statewide surveillance, planning, resource allocation, and emergency response activities. Hospitals began reporting for the HERDS COVID-19 survey in March 2020, while Nursing Homes and Adult Care Facilities began reporting in April 2020. It is important to note that fatalities related to COVID-19 disease that occurred prior to the first publication dates are also included.

    The fatality numbers in this dataset are calculated by assigning age groups to each patient based on the patient age, then summing the patient fatalities within each age group, as of each reporting date. The statewide total fatality numbers are calculated by summing the number of fatalities across all age groups, by reporting date. The fatality percentages are calculated by dividing the number of fatalities in each age group by the statewide total number of fatalities, by reporting date. The fatality numbers represent the cumulative number of fatalities that have been reported as of each reporting date.

  4. Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status and...

    • healthdata.gov
    • odgavaprod.ogopendata.com
    • +1more
    csv, xlsx, xml
    Updated Jun 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cdc.gov (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status and Second Booster Dose [Dataset]. https://healthdata.gov/CDC/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/4tut-jeki
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Jun 16, 2023
    Dataset provided by
    data.cdc.gov
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

    Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

    Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases

  5. Estimated excess mortality (excluding COVID-19) during heat-periods, England...

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Oct 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2022). Estimated excess mortality (excluding COVID-19) during heat-periods, England (UKHSA) [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/estimatedexcessmortalityexcludingcovid19duringheatperiodsenglandukhsa
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Oct 7, 2022
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    England
    Description

    Provisional data on excess mortality (excluding COVID-19) during heat-periods in the 65 years and over age group estimates in England, including the estimated number of deaths where the death occurred within 28 days of a positive COVID-19 result and the mean central England temperature.

  6. d

    COVID-19 Outcomes by Vaccination Status - Historical

    • catalog.data.gov
    • data.cityofchicago.org
    • +2more
    Updated May 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2024). COVID-19 Outcomes by Vaccination Status - Historical [Dataset]. https://catalog.data.gov/dataset/covid-19-outcomes-by-vaccination-status
    Explore at:
    Dataset updated
    May 24, 2024
    Dataset provided by
    data.cityofchicago.org
    Description

    NOTE: This dataset has been retired and marked as historical-only. Weekly rates of COVID-19 cases, hospitalizations, and deaths among people living in Chicago by vaccination status and age. Rates for fully vaccinated and unvaccinated begin the week ending April 3, 2021 when COVID-19 vaccines became widely available in Chicago. Rates for boosted begin the week ending October 23, 2021 after booster shots were recommended by the Centers for Disease Control and Prevention (CDC) for adults 65+ years old and adults in certain populations and high risk occupational and institutional settings who received Pfizer or Moderna for their primary series or anyone who received the Johnson & Johnson vaccine. Chicago residency is based on home address, as reported in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE) and Illinois National Electronic Disease Surveillance System (I-NEDSS). Outcomes: • Cases: People with a positive molecular (PCR) or antigen COVID-19 test result from an FDA-authorized COVID-19 test that was reported into I-NEDSS. A person can become re-infected with SARS-CoV-2 over time and so may be counted more than once in this dataset. Cases are counted by week the test specimen was collected. • Hospitalizations: COVID-19 cases who are hospitalized due to a documented COVID-19 related illness or who are admitted for any reason within 14 days of a positive SARS-CoV-2 test. Hospitalizations are counted by week of hospital admission. • Deaths: COVID-19 cases who died from COVID-19-related health complications as determined by vital records or a public health investigation. Deaths are counted by week of death. Vaccination status: • Fully vaccinated: Completion of primary series of a U.S. Food and Drug Administration (FDA)-authorized or approved COVID-19 vaccine at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Boosted: Fully vaccinated with an additional or booster dose of any FDA-authorized or approved COVID-19 vaccine received at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Unvaccinated: No evidence of having received a dose of an FDA-authorized or approved vaccine prior to a positive test. CLARIFYING NOTE: Those who started but did not complete all recommended doses of an FDA-authorized or approved vaccine prior to a positive test (i.e., partially vaccinated) are excluded from this dataset. Incidence rates for fully vaccinated but not boosted people (Vaccinated columns) are calculated as total fully vaccinated but not boosted with outcome divided by cumulative fully vaccinated but not boosted at the end of each week. Incidence rates for boosted (Boosted columns) are calculated as total boosted with outcome divided by cumulative boosted at the end of each week. Incidence rates for unvaccinated (Unvaccinated columns) are calculated as total unvaccinated with outcome divided by total population minus cumulative boosted, fully, and partially vaccinated at the end of each week. All rates are multiplied by 100,000. Incidence rate ratios (IRRs) are calculated by dividing the weekly incidence rates among unvaccinated people by those among fully vaccinated but not boosted and boosted people. Overall age-adjusted incidence rates and IRRs are standardized using the 2000 U.S. Census standard population. Population totals are from U.S. Census Bureau American Community Survey 1-year estimates for 2019. All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. This dataset reflects data known to CDPH at the time when the dataset is updated each week. Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined. For all datasets related to COVID-19, see https://data.cityofchic

  7. COVID-19 Stats and Mobility Trends

    • kaggle.com
    zip
    Updated Mar 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Diogo Alex (2021). COVID-19 Stats and Mobility Trends [Dataset]. https://www.kaggle.com/datasets/diogoalex/covid19-stats-and-trends
    Explore at:
    zip(998511 bytes)Available download formats
    Dataset updated
    Mar 28, 2021
    Authors
    Diogo Alex
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    COVID-19 Stats & Trends

    Context

    This dataset seeks to provide insights into what has changed due to policies aimed at combating COVID-19 and evaluate the changes in community activities and its relation to reduced confirmed cases of COVID-19. The reports chart movement trends, compared to an expected baseline, over time (from 2020/02/15 to 2020/02/05) by geography (across 133 countries), as well as some other stats about the country that might help explain the evolution of the disease.

    Content

    1. Grocery & Pharmacy: Mobility trends for places like grocery markets, food warehouses, farmers' markets, specialty food shops, drug stores, and pharmacies.
    2. Parks: Mobility trends for places like national parks, public beaches, marinas, dog parks, plazas, and public gardens.
    3. Residential: Mobility trends for places of residence.
    4. Retail & Recreation: Mobility trends for places like restaurants, cafes, shopping centers, theme parks, museums, libraries, and movie theaters.
    5. Transit stations: Mobility trends for places like public transport hubs such as subway, bus, and train stations.
    6. Workplaces: Mobility trends for places of work.
    7. Total Cases: Total number of people infected with the SARS-CoV-2.
    8. Fatalities: Total number of deaths caused by CoV-19.
    9. Government Response Stringency Index: Additive score of nine indicators of government response to CoV-19: School closures, workplace closures, cancellation of public events, public information campaigns, stay at home policies, restrictions on internal movement, international travel controls, testing policy, and contact tracing.
    10. COVID-19 Testing: Total number of tests performed.
    11. Total Vaccinations: Total number of shots given.
    12. Total People Vaccinated: Total number of people given a shot.
    13. Total People Fully Vaccinated: Total number of people fully vaccinated (might require two shots of some vaccines).
    14. Population: Total number of inhabitants.
    15. Population Density per km2: Number of human inhabitants per square kilometer.
    16. Health System Index: Overall performance of the health system.
    17. Human Development Index (HDI): Summary index based on life expectancy at birth, expected years of schooling for children and mean years of schooling for adults, and GNI per capita.
    18. GDP (PPP) per capita: Gross Domestic Product (GDP) per capita based on Purchasing Power Parity (PPP), taking into account the relative cost of local goods, services and inflation rates of the country, rather than using international market exchange rates, which may distort the real differences in per capita income.
    19. Elderly Population (percentage): Percentage of the population above the age of 65 years old.

    References & Acknowledgements

    Bing COVID-19 data. Available at: https://github.com/microsoft/Bing-COVID-19-Data COVID-19 Community Mobility Report. Available at: https://www.google.com/covid19/mobility/ COVID-19: Government Response Stringency Index. Available at: https://ourworldindata.org/grapher/covid-stringency-index Coronavirus (COVID-19) Testing. Available at: https://github.com/owid/covid-19-data/blob/master/public/data/testing/covid-testing-all-observations.csv Coronavirus (COVID-19) Vaccination. Available at: https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/vaccinations/vaccinations.csv List of countries and dependencies by population. Available at: https://www.kaggle.com/tanuprabhu/population-by-country-2020 List of countries and dependencies by population density. Available at: https://www.kaggle.com/tanuprabhu/population-by-country-2020 List of countries by Human Development Index. Available at: http://hdr.undp.org/en/data Measuring Overall Health System Performance. Available at: https://www.who.int/healthinfo/paper30.pdf?ua=1 List of countries by GDP (PPP) per capita. Available at: https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD List of countries by age structure (65+). Available at: https://data.worldbank.org/indicator/SP.POP.65UP.TO.ZS

    Authors

    • Diogo Silva, up201706892@fe.up.pt
  8. O

    MD COVID-19 - Total Confirmed Deaths by Date of Death

    • opendata.maryland.gov
    • healthdata.gov
    • +4more
    csv, xlsx, xml
    Updated Oct 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maryland Department of Health Vital Statistics Administration, MDH VSA (2025). MD COVID-19 - Total Confirmed Deaths by Date of Death [Dataset]. https://opendata.maryland.gov/Health-and-Human-Services/MD-COVID-19-Total-Confirmed-Deaths-by-Date-of-Deat/65qq-j35q
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Oct 7, 2025
    Dataset authored and provided by
    Maryland Department of Health Vital Statistics Administration, MDH VSA
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    Maryland
    Description

    Note: Note: Starting October 10th, 2025 this dataset is deprecated and is no longer being updated. As of April 27, 2023 updates changed from daily to weekly.

    Summary The cumulative number of confirmed COVID-19 deaths among Maryland residents, by date of death.

    Description The MD COVID-19 - Total Confirmed Deaths by Date of Death data layer is a collection of the statewide confirmed COVID-19 related deaths that have been reported each day by the Vital Statistics Administration by date of death. A death is classified as confirmed if the person had a laboratory-confirmed positive COVID-19 test result. Some data on deaths may be unavailable due to the time lag between the death, typically reported by a hospital or other facility, and the submission of the complete death certificate. Probable deaths are available from the MD COVID-19 - Total Probable Deaths by Date of Death data layer.

    Terms of Use The Spatial Data, and the information therein, (collectively the "Data") is provided "as is" without warranty of any kind, either expressed, implied, or statutory. The user assumes the entire risk as to quality and performance of the Data. No guarantee of accuracy is granted, nor is any responsibility for reliance thereon assumed. In no event shall the State of Maryland be liable for direct, indirect, incidental, consequential or special damages of any kind. The State of Maryland does not accept liability for any damages or misrepresentation caused by inaccuracies in the Data or as a result to changes to the Data, nor is there responsibility assumed to maintain the Data in any manner or form. The Data can be freely distributed as long as the metadata entry is not modified or deleted. Any data derived from the Data must acknowledge the State of Maryland in the metadata.

  9. Trends in COVID-19 Cases and Deaths in the United States, by County-level...

    • data.cdc.gov
    • healthdata.gov
    • +1more
    csv, xlsx, xml
    Updated Jun 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2023). Trends in COVID-19 Cases and Deaths in the United States, by County-level Population Factors - ARCHIVED [Dataset]. https://data.cdc.gov/w/njmz-dpbc/tdwk-ruhb?cur=K0_qEbFad0O&from=gspC_chSyVH
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    Area covered
    United States
    Description

    Reporting of Aggregate Case and Death Count data was discontinued on May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    The surveillance case definition for COVID-19, a nationally notifiable disease, was first described in a position statement from the Council for State and Territorial Epidemiologists, which was later revised. However, there is some variation in how jurisdictions implemented these case definitions. More information on how CDC collects COVID-19 case surveillance data can be found at FAQ: COVID-19 Data and Surveillance.

    Aggregate Data Collection Process Since the beginning of the COVID-19 pandemic, data were reported from state and local health departments through a robust process with the following steps:

    • Aggregate county-level counts were obtained indirectly, via automated overnight web collection, or directly, via a data submission process.
    • If more than one official county data source existed, CDC used a comprehensive data selection process comparing each official county data source to retrieve the highest case and death counts, unless otherwise specified by the state.
    • A CDC data team reviewed counts for congruency prior to integration and set up alerts to monitor for discrepancies in the data.
    • CDC routinely compiled these data and post the finalized information on COVID Data Tracker.
    • County level data were aggregated to obtain state- and territory- specific totals.
    • Counting of cases and deaths is based on date of report and not on the date of symptom onset. CDC calculates rates in these data by using population estimates provided by the US Census Bureau Population Estimates Program (2019 Vintage).
    • COVID-19 aggregate case and death data are organized in a time series that includes cumulative number of cases and deaths as reported by a jurisdiction on a given date. New case and death counts are calculated as the week-to-week change in cumulative counts of cases and deaths reported (i.e., newly reported cases and deaths = cumulative number of cases/deaths reported this week minus the cumulative total reported the prior week.

    This process was collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provided the most up-to-date numbers on cases and deaths by report date. Throughout data collection, CDC retrospectively updated counts to correct known data quality issues.

    Description This archived public use dataset focuses on the cumulative and weekly case and death rates per 100,000 persons within various sociodemographic factors across all states and their counties. All resulting data are expressed as rates calculated as the number of cases or deaths per 100,000 persons in counties meeting various classification criteria using the US Census Bureau Population Estimates Program (2019 Vintage).

    Each county within jurisdictions is classified into multiple categories for each factor. All rates in this dataset are based on classification of counties by the characteristics of their population, not individual-level factors. This applies to each of the available factors observed in this dataset. Specific factors and their corresponding categories are detailed below.

    Population-level factors Each unique population factor is detailed below. Please note that the “Classification” column describes each of the 12 factors in the dataset, including a data dictionary describing what each numeric digit means within each classification. The “Category” column uses numeric digits (2-6, depending on the factor) defined in the “Classification” column.

    Metro vs. Non-Metro – “Metro_Rural” Metro vs. Non-Metro classification type is an aggregation of the 6 National Center for Health Statistics (NCHS) Urban-Rural classifications, where “Metro” counties include Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro areas and “Non-Metro” counties include Micropolitan and Non-Core (Rural) areas. 1 – Metro, including “Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro” areas 2 – Non-Metro, including “Micropolitan, and Non-Core” areas

    Urban/rural - “NCHS_Class” Urban/rural classification type is based on the 2013 National Center for Health Statistics Urban-Rural Classification Scheme for Counties. Levels consist of:

    1 Large Central Metro
    2 Large Fringe Metro 3 Medium Metro 4 Small Metro 5 Micropolitan 6 Non-Core (Rural)

    American Community Survey (ACS) data were used to classify counties based on their age, race/ethnicity, household size, poverty level, and health insurance status distributions. Cut points were generated by using tertiles and categorized as High, Moderate, and Low percentages. The classification “Percent non-Hispanic, Native Hawaiian/Pacific Islander” is only available for “Hawaii” due to low numbers in this category for other available locations. This limitation also applies to other race/ethnicity categories within certain jurisdictions, where 0 counties fall into the certain category. The cut points for each ACS category are further detailed below:

    Age 65 - “Age65”

    1 Low (0-24.4%) 2 Moderate (>24.4%-28.6%) 3 High (>28.6%)

    Non-Hispanic, Asian - “NHAA”

    1 Low (<=5.7%) 2 Moderate (>5.7%-17.4%) 3 High (>17.4%)

    Non-Hispanic, American Indian/Alaskan Native - “NHIA”

    1 Low (<=0.7%) 2 Moderate (>0.7%-30.1%) 3 High (>30.1%)

    Non-Hispanic, Black - “NHBA”

    1 Low (<=2.5%) 2 Moderate (>2.5%-37%) 3 High (>37%)

    Hispanic - “HISP”

    1 Low (<=18.3%) 2 Moderate (>18.3%-45.5%) 3 High (>45.5%)

    Population in Poverty - “Pov”

    1 Low (0-12.3%) 2 Moderate (>12.3%-17.3%) 3 High (>17.3%)

    Population Uninsured- “Unins”

    1 Low (0-7.1%) 2 Moderate (>7.1%-11.4%) 3 High (>11.4%)

    Average Household Size - “HH”

    1 Low (1-2.4) 2 Moderate (>2.4-2.6) 3 High (>2.6)

    Community Vulnerability Index Value - “CCVI” COVID-19 Community Vulnerability Index (CCVI) scores are from Surgo Ventures, which range from 0 to 1, were generated based on tertiles and categorized as:

    1 Low Vulnerability (0.0-0.4) 2 Moderate Vulnerability (0.4-0.6) 3 High Vulnerability (0.6-1.0)

    Social Vulnerability Index Value – “SVI" Social Vulnerability Index (SVI) scores (vintage 2020), which also range from 0 to 1, are from CDC/ASTDR’s Geospatial Research, Analysis & Service Program. Cut points for CCVI and SVI scores were generated based on tertiles and categorized as:

    1 Low Vulnerability (0-0.333) 2 Moderate Vulnerability (0.334-0.666) 3 High Vulnerability (0.667-1)

  10. Coronavirus (COVID-19) related deaths by occupation, England and Wales

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Jan 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2021). Coronavirus (COVID-19) related deaths by occupation, England and Wales [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/causesofdeath/datasets/coronaviruscovid19relateddeathsbyoccupationenglandandwales
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jan 25, 2021
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Provisional counts of the number of deaths and age-standardised mortality rates involving the coronavirus (COVID-19), by occupational groups, for deaths registered between 9 March and 28 December 2020 in England and Wales. Figures are provided for males and females.

  11. O

    Nursing Homes with Residents Positive for COVID-19, April - June 2020 -...

    • data.ct.gov
    • datasets.ai
    • +1more
    csv, xlsx, xml
    Updated Jun 22, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health (2020). Nursing Homes with Residents Positive for COVID-19, April - June 2020 - Archive [Dataset]. https://data.ct.gov/Health-and-Human-Services/Nursing-Homes-with-Residents-Positive-for-COVID-19/wyn3-qphu
    Explore at:
    xml, csv, xlsxAvailable download formats
    Dataset updated
    Jun 22, 2020
    Dataset authored and provided by
    Department of Public Health
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Nursing homes with residents positive for COVID-19 from 4/22/2020 to 6/19/2020.

    Starting in July 2020, this dataset will no longer be updated and will be replaced by the CMS COVID-19 Nursing Home Dataset, available at the following link: https://data.ct.gov/Health-and-Human-Services/CMS-COVID-19-Nursing-Home-Dataset/w8wc-65i5.

    Methods: 1) Laboratory-confirmed case counts are based upon data reported via the FLIS web portal. Nursing homes were asked to provide cumulative totals of residents with laboratory confirmed covid. This includes residents currently in-house, in the hospital, or who are deceased. Residents were excluded if they tested positive prior to initial admission to the nursing home. 2) The cumulative number of deaths among nursing home residents is based upon data reported by the Office of the Chief Medical Examiner. For public health surveillance, COVID-19-associated deaths include persons who tested positive for COVID-19 around the time of death (laboratory-confirmed) and persons whose death certificate lists COVID-19 disease as a cause of death or a significant condition contributing to death (probable).

    Limitations: 1) As of the week of 5/10/20, Point Prevalence Survey testing is being offered to all asymptomatic nursing home residents to inform infection prevention efforts. Point prevalence surveys will be conducted over a period of several weeks. Some nursing homes had adequate testing resources available to conduct surveys prior to this date. Differences in survey timing will impact the number of positive results that a nursing home reports. 2) Cumulative totals of residents testing positive are being collected rather than individual resident data. Thus we cannot verify the counts, de-duplicate, and/or verify whether there is a record of a positive lab test. This may result in either under- or over-counting. 3) The number of COVID-19 positive residents and the number of confirmed deaths among residents are tabulated from different data sources. Due to the timing of availability of test results for deceased residents, it is not appropriate to calculate the percent of cases who died due to COVID-19 at any particular facility based upon this data. 4) The count of deaths reported for 4/14 are not included in this dataset, as they were not broken out by laboratory-confirmed or probable. They can be viewed in the DPH Report here: https://portal.ct.gov/-/media/Coronavirus/CTDPHCOVID19summary4162020.pdf?la=en

  12. Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status and...

    • healthdata.gov
    csv, xlsx, xml
    Updated Feb 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status and Booster Dose - ct65-fqt5 - Archive Repository [Dataset]. https://healthdata.gov/dataset/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/xtuj-2xn3
    Explore at:
    csv, xml, xlsxAvailable download formats
    Dataset updated
    Feb 23, 2023
    Description

    This dataset tracks the updates made on the dataset "Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status and Booster Dose" as a repository for previous versions of the data and metadata.

  13. d

    Standardised excess mortality levels during the COVID-19 outbreak

    • datasets.ai
    8
    Updated Apr 28, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Plateforme ouverte des données publiques françaises (2020). Standardised excess mortality levels during the COVID-19 outbreak [Dataset]. https://datasets.ai/datasets/5ea7eaf11739179063ca0847
    Explore at:
    8Available download formats
    Dataset updated
    Apr 28, 2020
    Dataset authored and provided by
    Plateforme ouverte des données publiques françaises
    Description

    The actions of Public Health France

    Public Health France’s mission is to improve and protect the health of populations. During the health crisis linked to the COVID-19 epidemic, Public Health France is responsible for monitoring and understanding the dynamics of the epidemic, anticipating the various scenarios and implementing actions to prevent and limit the transmission of this virus on the national territory.

    Description of the dataset

    This dataset describes the level of standardised excess mortality during the COVID-19 outbreak, at the departmental and regional level.

    The level of excess mortality is described for two age categories: — for all ages; — for persons over 65 years of age.

    Method of calculating levels

    The data are derived from the administrative part of the death certificate, collected by the civil registry offices of the municipalities having a dematerialised transmission with INSEE. The observed number of deaths is compared to an expected number, estimated from a statistical model established by the EuroMomo consortium and used by 24 countries or regions in Europe.

    The estimation of excess deaths is based on the calculation of a standardised indicator (Z-score), which makes it possible to compare excesses between different geographical levels or age groups.

    The Z-score is calculated by the formula: (observed number — expected number)/standard deviation of expected number.

    The five categories of excess are defined as follows: — No excess: standardised Death Indicator (Z-score) < 2 — Moderate excess of death: standardised Death Indicator (Z-score) between 2 and 4.99 — High excess of death: standardised Death Indicator (Z-score) between 5 and 6.99: — Very high excess of death: standardised Death Indicator (Z-score) between 7 and 11.99: Exceptional excess of standardised death indicator of death (Z-score) greater than 12

    Limits of the calculation method

    The estimated excesses are established on a set of 3000 municipalities for which Santé publique France has a long history of data. These 3000 municipalities account for 77 % of national mortality, varying from 63 % to 96 % depending on the regions and from 42 % to 98 % depending on the departments.

    Taking into account the legal deadlines for declaring a death to civil status and the time taken by the civil registry office to enter the information, a period between the occurrence of the death and the arrival of the information at Santé publique France is observed. This period can be extended punctually (public holidays, extended weekends, bridges, school holidays, very strong epidemic period, confinement). Mortality data are considered consolidated within 30 days.

  14. Updating ethnic contrasts in deaths involving the coronavirus (COVID-19),...

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Feb 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Updating ethnic contrasts in deaths involving the coronavirus (COVID-19), England [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/updatingethniccontrastsindeathsinvolvingthecoronaviruscovid19england
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Feb 22, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Age-standardised mortality rates (ASMRs) for deaths involving COVID-19 by ethnic group, England.

  15. COVID-19 World Vaccination Progress Data

    • kaggle.com
    zip
    Updated Jun 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    fedesoriano (2021). COVID-19 World Vaccination Progress Data [Dataset]. https://www.kaggle.com/datasets/fedesoriano/coronavirus-covid19-vaccinations-data/data
    Explore at:
    zip(4832380 bytes)Available download formats
    Dataset updated
    Jun 29, 2021
    Authors
    fedesoriano
    Area covered
    World
    Description

    How many people have received a coronavirus vaccine?

    Tracking COVID-19 vaccination rates is crucial to understand the scale of protection against the virus, and how this is distributed across the global population.

    A global, aggregated database on COVID-19 vaccination rates is essential to monitor progress, but it is unfortunately not yet available. This dataset provides the last weekly update of vaccination rates.

    Last update

    June 2021

    Content

    Colums description: 1. iso_code: ISO 3166-1 alpha-3 – three-letter country codes 2. continent: Continent of the geographical location 3. location: Geographical location 4. date: Date of observation 5. total_cases: Total confirmed cases of COVID-19 6. new_cases: New confirmed cases of COVID-19 7. new_cases_smoothed: New confirmed cases of COVID-19 (7-day smoothed) 8. total_deaths: Total deaths attributed to COVID-19 9. new_deaths: New deaths attributed to COVID-19 10. new_deaths_smoothed: New deaths attributed to COVID-19 (7-day smoothed) 11. total_cases_per_million: Total confirmed cases of COVID-19 per 1,000,000 people 12. new_cases_per_million: New confirmed cases of COVID-19 per 1,000,000 people 13. new_cases_smoothed_per_million: New confirmed cases of COVID-19 (7-day smoothed) per 1,000,000 people 14. total_deaths_per_million: Total deaths attributed to COVID-19 per 1,000,000 people 15. new_deaths_per_million: New deaths attributed to COVID-19 per 1,000,000 people 16. new_deaths_smoothed_per_million: New deaths attributed to COVID-19 (7-day smoothed) per 1,000,000 people 17. reproduction_rate: Real-time estimate of the effective reproduction rate (R) of COVID-19. See http://trackingr-env.eba-9muars8y.us-east-2.elasticbeanstalk.com/FAQ 18. icu_patients: Number of COVID-19 patients in intensive care units (ICUs) on a given day 19. icu_patients_per_million: Number of COVID-19 patients in intensive care units (ICUs) on a given day per 1,000,000 people 20. hosp_patients: Number of COVID-19 patients in hospital on a given day 21. hosp_patients_per_million: Number of COVID-19 patients in hospital on a given day per 1,000,000 people 22. weekly_icu_admissions: Number of COVID-19 patients newly admitted to intensive care units (ICUs) in a given week 23. weekly_icu_admissions_per_million: Number of COVID-19 patients newly admitted to intensive care units (ICUs) in a given week per 1,000,000 people 24. weekly_hosp_admissions: Number of COVID-19 patients newly admitted to hospitals in a given week 25. weekly_hosp_admissions_per_million: Number of COVID-19 patients newly admitted to hospitals in a given week per 1,000,000 people 26. total_tests: Total tests for COVID-19 27. new_tests: New tests for COVID-19 28. new_tests_smoothed: New tests for COVID-19 (7-day smoothed). For countries that don't report testing data on a daily basis, we assume that testing changed equally on a daily basis over any periods in which no data was reported. This produces a complete series of daily figures, which is then averaged over a rolling 7-day window 29. total_tests_per_thousand: Total tests for COVID-19 per 1,000 people 30. new_tests_per_thousand: New tests for COVID-19 per 1,000 people 31. new_tests_smoothed_per_thousand: New tests for COVID-19 (7-day smoothed) per 1,000 people 32. tests_per_case: Tests conducted per new confirmed case of COVID-19, given as a rolling 7-day average (this is the inverse of positive_rate) 33. positive_rate: The share of COVID-19 tests that are positive, given as a rolling 7-day average (this is the inverse of tests_per_case) 34. tests_units: Units used by the location to report its testing data 35. total_vaccinations: Number of COVID-19 vaccination doses administered 36. total_vaccinations_per_hundred: Number of COVID-19 vaccination doses administered per 100 people 37. stringency_index: Government Response Stringency Index: composite measure based on 9 response indicators including school closures, workplace closures, and travel bans, rescaled to a value from 0 to 100 (100 = strictest response) 38. population: Population in 2020 39. population_density: Number of people divided by land area, measured in square kilometers, most recent year available 40. median_age: Median age of the population, UN projection for 2020 41. aged_65_older: Share of the population that is 65 years and older, most recent year available 42. aged_70_older: Share of the population that is 70 years and older in 2015 43. gdp_per_capita: Gross domestic product at purchasing power parity (constant 2011 international dollars), most recent year available 44. extreme_poverty: Share of the population living in extreme poverty, most recent year available since 2010 45. cardiovasc_death_rate: Death rate from cardiovascular disease in 2017 (annual number of deaths per 100,000 people) 46. diabetes_prevalence: Diabetes prevalence (% of population aged 20 to 79) in 2017 47. female...

  16. Data from: Coronavirus (COVID-19) Deaths

    • kaggle.com
    zip
    Updated May 29, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Misal Raj (2021). Coronavirus (COVID-19) Deaths [Dataset]. https://www.kaggle.com/misalraj/coronavirus-covid19-deaths
    Explore at:
    zip(8613443 bytes)Available download formats
    Dataset updated
    May 29, 2021
    Authors
    Misal Raj
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Context

    Complete COVID-19 dataset is a collection of the COVID-19 data maintained by Our World in Data. It is updated daily and includes data on confirmed cases, deaths, hospitalizations, testing, and vaccinations as well as other variables of potential interest.

    Content

    The variables represent all data related to confirmed cases, deaths, hospitalizations, and testing, as well as other variables of potential interest.
    the columns are: iso_code, continent, location, date, total_cases, new_cases, new_cases_smoothed, total_deaths, new_deaths, new_deaths_smoothed, total_cases_per_million, new_cases_per_million, new_cases_smoothed_per_million, total_deaths_per_million, new_deaths_per_million, new_deaths_smoothed_per_million, reproduction_rate, icu_patients, icu_patients_per_million, hosp_patients, hosp_patients_per_million, weekly_icu_admissions, weekly_icu_admissions_per_million, weekly_hosp_admissions, weekly_hosp_admissions_per_million, total_tests, new_tests, total_tests_per_thousand, new_tests_per_thousand, new_tests_smoothed, new_tests_smoothed_per_thousand, positive_rate, tests_per_case, tests_units, total_vaccinations, people_vaccinated, people_fully_vaccinated, new_vaccinations, new_vaccinations_smoothed, total_vaccinations_per_hundred, people_vaccinated_per_hundred, people_fully_vaccinated_per_hundred, new_vaccinations_smoothed_per_million, stringency_index, population, population_density, median_age, aged_65_older, aged_70_older, gdp_per_capita, extreme_poverty, cardiovasc_death_rate, diabetes_prevalence, female_smokers, male_smokers, handwashing_facilities, hospital_beds_per_thousand, life_expectancy, human_development_index

    Acknowledgements/ Data Source

    https://systems.jhu.edu/research/public-health/ncov/ https://www.ecdc.europa.eu/en/publications-data/download-data-hospital-and-icu-admission-rates-and-current-occupancy-covid-19 https://coronavirus.data.gov.uk/details/healthcare https://covid19tracker.ca/ https://healthdata.gov/dataset/covid-19-reported-patient-impact-and-hospital-capacity-state-timeseries https://ourworldindata.org/coronavirus-testing#our-checklist-for-covid-19-testing-data

  17. H

    The geographic latitude-associated anti-COVID capacity index : an...

    • dataverse.harvard.edu
    • dataone.org
    Updated Feb 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mourad Errasfa (2023). The geographic latitude-associated anti-COVID capacity index : an epidemiologic, demographic, and climate-based parameter negatively correlated with the COVID-19 death tolls [Dataset]. http://doi.org/10.7910/DVN/AXNZUA
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 6, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Mourad Errasfa
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    During the first two year of the Covid-19 pandemic, deaths tolls differed from a country to another. In a previous research work on 39 countries, we have found that some population’s characteristics were either negatively (birth rate/mortality rate, fertility rate) or positively (cancer score, Alzheimer disease score, percent of people above 65 years old, levels of alcohol intake) correlated with Covid-19 mortality. We also found that low levels of climate factors (average annual temperature, average hours of sunshine, average annual level of UV index) were positively correlated with Covid-19 deaths numbers as well. In the present study, we have developped an anti-Covid Capacity index that takes into account all the above mentioned parameters. The polynomial analysis of the anti-Covid Capacity and its corresponding geographic latitude of each country has generated a bell-shaped curve, with a high coefficient of determination (R2= 0.78). Lower anti-Covid capacity values were recorded in countries of low and high latitudes, respectively. Instead, plotting covid-19 deaths numbers against geographic latitude levels has generated an inverted bell-shaped curve, with higher deaths numbers at low and high latitudes, respectively. The analysis by a simple linear regression has shown that Covid-19 deaths numbers were significantly (p= 2,40 x 10-9) and negatively correlated to the anti-Covid Capacity index values. Our data demonstrate that the negative prepandemic human conditions, and the low scores of both annual temperature and UV index in many countries were the key factors behind high Covid-19 mortality, and they can be expressed as a simple index of anti-Covid capacity of a country that can predict the death-associated severity of Covid-19 disease, and thus, according to a country’s geographic latitude.

  18. COVID-19 dataset by Our World in Data

    • kaggle.com
    zip
    Updated Sep 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    YuryBolkonsky (2020). COVID-19 dataset by Our World in Data [Dataset]. https://www.kaggle.com/bolkonsky/covid19
    Explore at:
    zip(1453120 bytes)Available download formats
    Dataset updated
    Sep 20, 2020
    Authors
    YuryBolkonsky
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data on COVID-19 (coronavirus) by Our World in Data

    Our complete COVID-19 dataset is a collection of the COVID-19 data maintained by Our World in Data. It is updated daily and includes data on confirmed cases, deaths, and testing, as well as other variables of potential interest.

    🗂️ Download our complete COVID-19 dataset : CSV | XLSX | JSON

    We will continue to publish up-to-date data on confirmed cases, deaths, and testing, throughout the duration of the COVID-19 pandemic.

    Our data sources

    • Confirmed cases and deaths: our data comes from the European Centre for Disease Prevention and Control (ECDC). We discuss how and when the ECDC collects and publishes this data here. The cases & deaths dataset is updated daily. *Note: the number of cases or deaths reported by any institution—including the ECDC, the WHO, Johns Hopkins and others—on a given day does not necessarily represent the actual number on that date. This is because of the long reporting chain that exists between a new case/death and its inclusion in statistics. This also means that negative values in cases and deaths can sometimes appear when a country sends a correction to the ECDC, because it had previously overestimated the number of cases/deaths. Alternatively, large changes can sometimes (although rarely) be made to a country's entire time series if the ECDC decides (and has access to the necessary data) to correct values retrospectively.*
    • Testing for COVID-19: this data is collected by the Our World in Data team from official reports; you can find further details in our post on COVID-19 testing, including our checklist of questions to understand testing data, information on geographical and temporal coverage, and detailed country-by-country source information. The testing dataset is updated around twice a week.
    • Other variables: this data is collected from a variety of sources (United Nations, World Bank, Global Burden of Disease, Blavatnik School of Government, etc.). More information is available in our codebook.

    The complete Our World in Data COVID-19 dataset

    Our complete COVID-19 dataset is available in CSV, XLSX, and JSON formats, and includes all of our historical data on the pandemic up to the date of publication.

    The CSV and XLSX files follow a format of 1 row per location and date. The JSON version is split by country ISO code, with static variables and an array of daily records.

    The variables represent all of our main data related to confirmed cases, deaths, and testing, as well as other variables of potential interest.

    As of 10 September 2020, the columns are: iso_code, continent, location, date, total_cases, new_cases, new_cases_smoothed, total_deaths, new_deaths, new_deaths_smoothed, total_cases_per_million, new_cases_per_million, new_cases_smoothed_per_million, total_deaths_per_million, new_deaths_per_million, new_deaths_smoothed_per_million, total_tests, new_tests, new_tests_smoothed, total_tests_per_thousand, new_tests_per_thousand, new_tests_smoothed_per_thousand, tests_per_case, positive_rate, tests_units, stringency_index, population, population_density, median_age, aged_65_older, aged_70_older, gdp_per_capita, extreme_poverty, cardiovasc_death_rate, diabetes_prevalence, female_smokers, male_smokers, handwashing_facilities, hospital_beds_per_thousand, life_expectancy, human_development_index

    A full codebook is made available, with a description and source for each variable in the dataset.

    Additional files and information

    If you are interested in the individual files that make up the complete dataset, or more detailed information, other files can be found in the subfolders:

  19. COVID-19 Country Level Timeseries

    • kaggle.com
    zip
    Updated Mar 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arpan Das (2020). COVID-19 Country Level Timeseries [Dataset]. https://www.kaggle.com/arpandas65/covid19-country-level-timeseries
    Explore at:
    zip(60020 bytes)Available download formats
    Dataset updated
    Mar 29, 2020
    Authors
    Arpan Das
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    Context

    Amidst the COVID-19 outbreak, the world is facing great crisis in every way. The value and things we built as a human race are going through tremendous challenges. It is a very small effort to bring curated data set on Novel Corona Virus to accelerate the forecasting and analytical experiments to cope up with this critical situation. It will help to visualize the country level out break and to keep track on regularly added new incidents.

    COVID-19 Country Level Timeseries Dataset

    This Dataset contains country wise public domain time series information on COVID-19 outbreak. The Data is sorted alphabetically on Country name and Date of Observation.

    Column Descriptions

    The data set contains the following columns:
    ObservationDate: The date on which the incidents are observed country: Country of the Outbreak Confirmed: Number of confirmed cases till observation date Deaths: Number of death cases till observation date Recovered: Number of recovered cases till observation date New Confirmed: Number of new confirmed cases on observation date New Deaths: Number of New death cases on observation date New Recovered: Number of New recovered cases on observation date latitude: Latitude of the affected country longitude: Longitude of the affected country

    Acknowledgements

    This data set is a cleaner version of the https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset data set with added geo location information and regularly added incident counts. I would like to thank this great effort by SRK.

    Original Data Source

    Johns Hopkins University MoBS lab - https://www.mobs-lab.org/2019ncov.html World Health Organization (WHO): https://www.who.int/ DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia. BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/ National Health Commission of the People’s Republic of China (NHC): http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html Macau Government: https://www.ssm.gov.mo/portal/ Taiwan CDC: https://sites.google.com/cdc.gov.tw/2019ncov/taiwan?authuser=0 US CDC: https://www.cdc.gov/coronavirus/2019-ncov/index.html Government of Canada: https://www.canada.ca/en/public-health/services/diseases/coronavirus.html Australia Government Department of Health: https://www.health.gov.au/news/coronavirus-update-at-a-glance European Centre for Disease Prevention and Control (ECDC): https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases Ministry of Health Singapore (MOH): https://www.moh.gov.sg/covid-19 Italy Ministry of Health: http://www.salute.gov.it/nuovocoronavirus

  20. Coronavirus and vaccination rates in people aged 18 years and over by...

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Mar 10, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Coronavirus and vaccination rates in people aged 18 years and over by socio-demographic characteristic, region and local authority, England [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healthinequalities/datasets/coronavirusandvaccinationratesinpeopleaged18yearsandoverbysociodemographiccharacteristicandregionengland
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 10, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Coronavirus (COVID-19) vaccination rates for people aged 18 years and over in England. Estimates by socio-demographic characteristic, region and local authority.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
The Devastator (2023). Global Covid-19 Data [Dataset]. https://www.kaggle.com/datasets/thedevastator/global-covid-19-data
Organization logo

Global Covid-19 Data

Global Covid-19 data on cases, deaths, vaccinations, and more

Explore at:
322 scholarly articles cite this dataset (View in Google Scholar)
zip(15394324 bytes)Available download formats
Dataset updated
Dec 3, 2023
Authors
The Devastator
Description

Global Covid-19 Data

Global Covid-19 data on cases, deaths, vaccinations, and more

By Valtteri Kurkela [source]

About this dataset

The dataset is constantly updated and synced hourly to ensure up-to-date information. With over several columns available for analysis and exploration purposes, users can extract valuable insights from this extensive dataset.

Some of the key metrics covered in the dataset include:

  1. Vaccinations: The dataset covers total vaccinations administered worldwide as well as breakdowns of people vaccinated per hundred people and fully vaccinated individuals per hundred people.

  2. Testing & Positivity: Information on total tests conducted along with new tests conducted per thousand people is provided. Additionally, details on positive rate (percentage of positive Covid-19 tests out of all conducted) are included.

  3. Hospital & ICU: Data on ICU patients and hospital patients are available along with corresponding figures normalized per million people. Weekly admissions to intensive care units and hospitals are also provided.

  4. Confirmed Cases: The number of confirmed Covid-19 cases globally is captured in both absolute numbers as well as normalized values representing cases per million people.

5.Confirmed Deaths: Total confirmed deaths due to Covid-19 worldwide are provided with figures adjusted for population size (total deaths per million).

6.Reproduction Rate: The estimated reproduction rate (R) indicates the contagiousness of the virus within a particular country or region.

7.Policy Responses: Besides healthcare-related metrics, this comprehensive dataset includes policy responses implemented by countries or regions such as lockdown measures or travel restrictions.

8.Other Variables of InterestThe data encompasses various socioeconomic factors that may influence Covid-19 outcomes including population density,membership in a continent,gross domestic product(GDP)per capita;

For demographic factors: -Age Structure : percentage populations aged 65 and older,aged (70)older,median age -Gender-specific factors: Percentage of female smokers -Lifestyle-related factors: Diabetes prevalence rate and extreme poverty rate

  1. Excess Mortality: The dataset further provides insights into excess mortality rates, indicating the percentage increase in deaths above the expected number based on historical data.

The dataset consists of numerous columns providing specific information for analysis, such as ISO code for countries/regions, location names,and units of measurement for different parameters.

Overall,this dataset serves as a valuable resource for researchers, analysts, and policymakers seeking to explore various aspects related to Covid-19

How to use the dataset

Introduction:

  • Understanding the Basic Structure:

    • The dataset consists of various columns containing different data related to vaccinations, testing, hospitalization, cases, deaths, policy responses, and other key variables.
    • Each row represents data for a specific country or region at a certain point in time.
  • Selecting Desired Columns:

    • Identify the specific columns that are relevant to your analysis or research needs.
    • Some important columns include population, total cases, total deaths, new cases per million people, and vaccination-related metrics.
  • Filtering Data:

    • Use filters based on specific conditions such as date ranges or continents to focus on relevant subsets of data.
    • This can help you analyze trends over time or compare data between different regions.
  • Analyzing Vaccination Metrics:

    • Explore variables like total_vaccinations, people_vaccinated, and people_fully_vaccinated to assess vaccination coverage in different countries.
    • Calculate metrics such as people_vaccinated_per_hundred or total_boosters_per_hundred for standardized comparisons across populations.
  • Investigating Testing Information:

    • Examine columns such as total_tests, new_tests, and tests_per_case to understand testing efforts in various countries.
    • Calculate rates like tests_per_case to assess testing efficiency or identify changes in testing strategies over time.
  • Exploring Hospitalization and ICU Data:

    • Analyze variables like hosp_patients, icu_patients, and hospital_beds_per_thousand to understand healthcare systems' strain.
    • Calculate rates like icu_patients_per_million or hosp_patients_per_million for cross-country comparisons.
  • Assessing Covid-19 Cases and Deaths:

    • Analyze variables like total_cases, new_ca...
Search
Clear search
Close search
Google apps
Main menu