27 datasets found
  1. d

    Statistics on Obesity, Physical Activity and Diet (replaced by Statistics on...

    • digital.nhs.uk
    Updated May 5, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Statistics on Obesity, Physical Activity and Diet (replaced by Statistics on Public Health) [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/statistics-on-obesity-physical-activity-and-diet
    Explore at:
    Dataset updated
    May 5, 2020
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Apr 1, 2018 - Dec 31, 2019
    Description

    This report presents information on obesity, physical activity and diet drawn together from a variety of sources for England. More information can be found in the source publications which contain a wider range of data and analysis. Each section provides an overview of key findings, as well as providing links to relevant documents and sources. Some of the data have been published previously by NHS Digital. A data visualisation tool (link provided within the key facts) allows users to select obesity related hospital admissions data for any Local Authority (as contained in the data tables), along with time series data from 2013/14. Regional and national comparisons are also provided. The report includes information on: Obesity related hospital admissions, including obesity related bariatric surgery. Obesity prevalence. Physical activity levels. Walking and cycling rates. Prescriptions items for the treatment of obesity. Perception of weight and weight management. Food and drink purchases and expenditure. Fruit and vegetable consumption. Key facts cover the latest year of data available: Hospital admissions: 2018/19 Adult obesity: 2018 Childhood obesity: 2018/19 Adult physical activity: 12 months to November 2019 Children and young people's physical activity: 2018/19 academic year

  2. U

    Obesity in Adults

    • data.ubdc.ac.uk
    • data.wu.ac.at
    xls
    Updated Nov 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Greater London Authority (2023). Obesity in Adults [Dataset]. https://data.ubdc.ac.uk/dataset/obesity-adults
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Greater London Authority
    Description

    The spreadsheet contains regional level obesity trend data from the the HSE, BMI data from Understanding Society, and adjusted prevalence of underweight, healthy weight, overweight, and obesity by local authority from the Active People Survey.

    Understanding Society data shows the percentage of the population aged 10 and over by their Body Mass Index Classification, covering underweight, normal weight, overweight, and three classes of obesity.

    Questions on self-reported height and weight were added to the Sport England Active People Survey (APS) in January 2012 to provide data for monitoring excess weight (overweight including obesity, BMI ≥25kg/m2) in adults (age 16 and over) at local authority level for the Public Health Outcomes Framework (PHOF).

    Health Survey for England (HSE) results at a national level are available on the NHS Information Centre website.

    Other NHS indicators on obesity are available for Strategic Health Authorities (SHA).

    Relevant links: http://discover.ukdataservice.ac.uk/series/?sn=2000053

    http://www.noo.org.uk/visualisation/adult_obesity

  3. c

    Levels of obesity and inactivity related illnesses (physical illnesses):...

    • data.catchmentbasedapproach.org
    • hub.arcgis.com
    Updated Apr 7, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Levels of obesity and inactivity related illnesses (physical illnesses): Summary (England) [Dataset]. https://data.catchmentbasedapproach.org/items/76bef8a953c44f36b569c37d7bdec45e
    Explore at:
    Dataset updated
    Apr 7, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of physical illnesses that are linked with obesity and inactivity. Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to:- Asthma (in persons of all ages)- Cancer (in persons of all ages)- Chronic kidney disease (in adults aged 18+)- Coronary heart disease (in persons of all ages)- Diabetes mellitus (in persons aged 17+)- Hypertension (in persons of all ages)- Stroke and transient ischaemic attack (in persons of all ages)This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.For each of the above illnesses, the percentage of each MSOA’s population with that illness was estimated. This was achieved by calculating a weighted average based on:- The percentage of the MSOA area that was covered by each GP practice’s catchment area- Of the GPs that covered part of that MSOA: the percentage of patients registered with each GP that have that illnessThe estimated percentage of each MSOA’s population with each illness was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with each illness, within the relevant age range.For each illness, each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have that illnessB) the NUMBER of people within that MSOA who are estimated to have that illnessAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA predicted to have that illness, compared to other MSOAs. In other words, those are areas where a large number of people are predicted to suffer from an illness, and where those people make up a large percentage of the population, indicating there is a real issue with that illness within the population and the investment of resources to address that issue could have the greatest benefits.The scores for each of the 7 illnesses were added together then converted to a relative score between 1 – 0 (1 = worst, 0 = best), to give an overall score for each MSOA: a score close to 1 would indicate that an area has high predicted levels of all obesity/inactivity-related illnesses, and these are areas where the local population could benefit the most from interventions to address those illnesses. A score close to 0 would indicate very low predicted levels of obesity/inactivity-related illnesses and therefore interventions might not be required.LIMITATIONS1. GPs do not have catchments that are mutually exclusive from each other: they overlap, with some geographic areas being covered by 30+ practices. This dataset should be viewed in combination with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset to identify where there are areas that are covered by multiple GP practices but at least one of those GP practices did not provide data. Results of the analysis in these areas should be interpreted with caution, particularly if the levels of obesity/inactivity-related illnesses appear to be significantly lower than the immediate surrounding areas.2. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).3. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.4. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of obesity/inactivity-related illnesses, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of these illnesses. TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:- Health and wellbeing statistics (GP-level, England): Missing data and potential outliersDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  4. a

    Cancer (in persons of all ages): England

    • hub.arcgis.com
    • data.catchmentbasedapproach.org
    Updated Apr 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Cancer (in persons of all ages): England [Dataset]. https://hub.arcgis.com/maps/theriverstrust::cancer-in-persons-of-all-ages-england
    Explore at:
    Dataset updated
    Apr 6, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of cancer (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to cancer (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with cancer was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with cancer was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with cancer, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have cancerB) the NUMBER of people within that MSOA who are estimated to have cancerAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have cancer, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from cancer, and where those people make up a large percentage of the population, indicating there is a real issue with cancer within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of cancer, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of cancer.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.MSOA boundaries: © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021.Population data: Mid-2019 (June 30) Population Estimates for Middle Layer Super Output Areas in England and Wales. © Office for National Statistics licensed under the Open Government Licence v3.0. © Crown Copyright 2020.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital; © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021. © Crown Copyright 2020.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  5. w

    Child obesity and excess weight: small area level data

    • gov.uk
    Updated Mar 27, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Child obesity and excess weight: small area level data [Dataset]. https://www.gov.uk/government/statistics/child-obesity-and-excess-weight-small-area-level-data
    Explore at:
    Dataset updated
    Mar 27, 2019
    Dataset provided by
    GOV.UK
    Authors
    Public Health England
    Description

    Trend data for the prevalence of:

    • child excess weight (overweight including obesity) for school year 2010 to 2011, up to school year 2017 to 2018
    • child obesity from school year 2008 to 2009, up to school year 2017 to 2018

    The spreadsheets present 3 years of aggregated data from the National Child Measurement Programme (NCMP) for these 4 different geographies separately:

    • middle super output areas (MSOAs) - 2011
    • electoral wards - 2018
    • clinical commissioning groups (CCGs) - 2018
    • local authorities (LAs) and England - 2013

    Additional compressed zip file includes a text file with all of the data listed above in one file, accompanied by a metadata document. This file is specifically for those wishing to undertake further analysis of the data.

  6. Validation data (obesity, diabetes)

    • figshare.com
    txt
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Luca Maria Aiello (2023). Validation data (obesity, diabetes) [Dataset]. http://doi.org/10.6084/m9.figshare.7796672.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    figshare
    Authors
    Luca Maria Aiello
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This set of files contains public data used to validate the grocery data. All references to the original sources are provided below.CHILD OBESITYPeriodically, the English National Health Service (NHS) publishes statistics about various aspects of the health and habits of people living in England, including obesity. The NHS National Child Measurement (NCMP) measures the height and weight of children in Reception class (aged 4 to 5) and year 6 (aged 10 to 11), to assess overweight and obesity levels in children within primary schools. The program is carried out every year in England and statistics are produced at the level of Local Authority (that corresponds to Boroughs in London). We report the data for the school year 2015-2016 (file: child_obesity_london_borough_2015-2016.csv). For the school year 2013-2014, statistics in London are also available at ward-level (file: child_obesity_london_ward_2013-2014.csv)The files are comma-separated and contain the following fields: area_id: the id of the boroughnumber_reception_measured: number of children in reception year measurednumber_y6_measured: number of children in reception year measuredprevalence_overweight_reception: the prevalence (percentage) of overweight children in reception year prevalence_overweight_y6: the prevalence (percentage) of overweight children in year 6prevalence_obese_reception: the prevalence (percentage) of obese children in reception yearprevalence_obese_y6: the prevalence (percentage) of obese children in year 6ADULT OBESITYThe Active People Survey (APS) was a survey used to measure the number of adults taking part in sport across England and included two questions about the height and weight of participants. We report the results of the APS for the year 2012. Prevalence of underweight, healthy weight, overweight, and obese people at borough level are provided in the file london_obesity_borough_2012.csv.The file is comma-separated and contains the following fields: area_id: the id of the boroughnumber_measured: number of people who participated in the surveyprevalence_healthy_weight: the prevalence (percentage) of healthy-weight peopleprevalence_overweight: the prevalence (percentage) of overweight peopleprevalence_obese: the prevalence (percentage) of obese peopleBARIATRIC HOSPITALIZATIONThe NHS records and publishes an annual compendium report about the number of hospital admissions attributable to obesity or bariatric surgery (i.e., weight loss surgery used as a treatment for people who are very obese), and the number of prescription items provided in primary care for the treatment of obesity. The NHS provides both raw counts at the Local Authority level and numbers normalized by population living in those areas. In the file obesity_hospitalization_borough_2016.csv, we report the statistics for the year 2015 (measurements made between Jan 2015 and March 2016).The file is comma-separated and contains the following fields:area_id: the id of the boroughtotal_hospitalizations: total number of obesity-related hospitalizationstotal_bariatric: total number of hospitalizations for bariatric surgeryprevalence_hospitalizations: prevalence (percentage) of obesity-related hospitalizations prevalence_bariatric: prevalence (percentage) of bariatric surgery hospitalizations DIABETESThrough the Quality and Outcomes Framework, NHS Digital publishes annually the number of people aged 17+ on a register for diabetes at each GP practice in England. NHS also publishes the number of people living in a census area who are registered to any of the GP in England. Based on these two sources, an estimate is produced about the prevalence of diabetes in each area. The data (file diabetes_estimates_osward_2016.csv) was collected in 2016 at LSOA-level and published at ward-level.The file is comma-separated and contains the following fields:area_id: the id of the wardgp_patients: total number of GP patients gp_patients_diabetes: total number of GP patients with a diabetes diagnosisestimated_diabetes_prevalence: prevalence (percentage) of diabetesAREA MAPPINGMapping of Greater London postcodes into larger geographical aggregations. The file is comma-separated and contains the following fields:pcd: postcodelat: latitudelong: longitudeoa11: output arealsoa11: lower super output areamsoa11: medium super output areaosward: wardoslaua: borough

  7. Obesity Profile: November 2023 update

    • gov.uk
    Updated Nov 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for Health Improvement and Disparities (2023). Obesity Profile: November 2023 update [Dataset]. https://www.gov.uk/government/statistics/obesity-profile-november-2023-update
    Explore at:
    Dataset updated
    Nov 7, 2023
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Office for Health Improvement and Disparities
    Description

    The Obesity Profile displays data from the National Child Measurement Programme (NCMP) showing the prevalence of underweight, healthy weight, overweight, obesity, and severe obesity at upper and lower tier local authority, integrated care board (ICB), region, and England level over time; for children in reception (aged 4 to 5 years) and year 6 (aged 10 to 11 years).

    The Obesity Profile also presents inequalities in child obesity prevalence by sex, deprivation quintile and ethnic group for England, regions, and local authority areas.

    The child prevalence small area data topic displays trend data on the prevalence of overweight (including obesity) and obesity for Middle Super Output Areas (MSOAs) and electoral wards, with comparator data for local authorities and England. The prevalence estimates use 3 years of NCMP data combined to produce as robust an indicator as possible at small area level.

    This update also includes the publication of the national and regional patterns and trends in child obesity data slide packs showing the 2022 to 2023 NCMP data, it is available in the Reports data view of the Obesity Profile. 2022 to 2023 NCMP data was published by NHS England on 19 October 2023.

    The Obesity Profile also includes indicators on the prevalence of overweight and obesity in adults as well as contextual indicators for several topic areas that are determinants of or related to child and adult obesity.

  8. c

    Asthma (in persons of all ages): England

    • data.catchmentbasedapproach.org
    • hub.arcgis.com
    Updated Apr 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Asthma (in persons of all ages): England [Dataset]. https://data.catchmentbasedapproach.org/datasets/asthma-in-persons-of-all-ages-england
    Explore at:
    Dataset updated
    Apr 6, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of asthma (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to asthma (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with asthma was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with asthma was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with asthma, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have asthmaB) the NUMBER of people within that MSOA who are estimated to have asthmaAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have asthma, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from asthma, and where those people make up a large percentage of the population, indicating there is a real issue with asthma within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of asthma, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of asthma.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  9. c

    Diabetes mellitus (in persons aged 17 and over): England

    • data.catchmentbasedapproach.org
    Updated Apr 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Diabetes mellitus (in persons aged 17 and over): England [Dataset]. https://data.catchmentbasedapproach.org/datasets/theriverstrust::diabetes-mellitus-in-persons-aged-17-and-over-england/about
    Explore at:
    Dataset updated
    Apr 7, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of diabetes mellitus in persons (aged 17+). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to diabetes mellitus in persons (aged 17+).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (aged 17+) with diabetes mellitus was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with diabetes mellitus was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with depression, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have diabetes mellitusB) the NUMBER of people within that MSOA who are estimated to have diabetes mellitusAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have diabetes mellitus, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from diabetes mellitus, and where those people make up a large percentage of the population, indicating there is a real issue with diabetes mellitus within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of diabetes mellitus, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of diabetes mellitus.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  10. c

    Hypertension (in persons of all ages): England

    • data.catchmentbasedapproach.org
    • hub.arcgis.com
    Updated Apr 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Hypertension (in persons of all ages): England [Dataset]. https://data.catchmentbasedapproach.org/items/f61addc903ee44ac9f0e12d130143564
    Explore at:
    Dataset updated
    Apr 7, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of hypertension (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to hypertension (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with hypertension was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with hypertension was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with hypertension , within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have hypertension B) the NUMBER of people within that MSOA who are estimated to have hypertension An average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have hypertension , compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from hypertension, and where those people make up a large percentage of the population, indicating there is a real issue with hypertension within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of hypertension, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of hypertension .TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  11. b

    Percent Obese in year 6 - WMCA

    • cityobservatory.birmingham.gov.uk
    csv, excel, geojson +1
    Updated Mar 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Percent Obese in year 6 - WMCA [Dataset]. https://cityobservatory.birmingham.gov.uk/explore/dataset/percent-obese-in-year-6-wmca/
    Explore at:
    csv, geojson, json, excelAvailable download formats
    Dataset updated
    Mar 3, 2025
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    This is the percentage of year 6 children who are living with obesity and includes children who are living with severe obesity.

    The BMI classification of each child is derived by calculating the child's BMI centile and assigning the BMI classification. Obese is defined as a BMI centile greater than or equal to the 95th centile. Severely obese is defined as a BMI centile greater than or equal to 99.6 (This BMI classification is a subset of the "Obese" classification).

    The results are derived from the postcode of the school. Measurement of children's heights and weights, without shoes and coats and in normal, light, indoor clothing, was overseen by healthcare professionals and undertaken in school by trained staff. Measurements could be taken at any time during the academic year. Some children could be over one year older than others in the same school year at the point of measurement. This does not impact upon a child's BMI classification since BMI centile results are adjusted for age.

    The National Child Measurement Programme (NCMP) collects height and weight measurements of children in reception (aged 4-5 years) and year 6 (aged 10-11 years) primarily in mainstream state-maintained schools in England. Local authorities are mandated to collect data from mainstream state-maintained schools but collection of data from special schools (schools for pupils with special educational needs and pupil referral units) and independent schools is encouraged.

    Data is Powered by LG Inform Plus and automatically checked for new data on the 3rd of each month.

  12. c

    Excess weight in children, England (three year average: academic years...

    • data.catchmentbasedapproach.org
    • hub.arcgis.com
    Updated Mar 31, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Excess weight in children, England (three year average: academic years 2016-19) [Dataset]. https://data.catchmentbasedapproach.org/datasets/theriverstrust::excess-weight-in-children-england-three-year-average-academic-years-2016-19/about
    Explore at:
    Dataset updated
    Mar 31, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYIdentifies Middle Layer Super Output Areas (MSOAs) with the greatest levels of excess weight in children (as measured in children in Reception and Year 6 respectively: three year average between academic years 2016/17, 2017/18, 2018/19).Although this layer is symbolised based on an overall score for excess weight, the underlying data, including the raw data for Reception and Year 6 children respectively, is included in the dataset.ANALYSIS METHODOLOGYThe following analysis was carried out using data for Reception and Year 6 children independently:Each MSOA was given a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the NUMBER of children in that year group with excess weight and;B) the PERCENTAGE of children in that year group with excess weight.An average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of children with excess weight, compared to other MSOAs, within that year group. In other words, those are areas where a large number of children have excess weight, and where those children make up a large percentage of the population of that age group, suggesting there is a real issue with childhood obesity in that area that needs addressing.The scores for the Reception and Year 6 analyses were added together then converted to relative scores between 1- 0 (1 = high levels of excess weight in children in both Reception and Year 6, 0 = very low levels of excess weight in either school year). The greater the total score, the greater the levels of excess weight in children within the local population, and the greater the benefits that could be achieved by investing in measures to reduce this issue in those areas.The data overall scores for Reception and Year 6 children, respectively, can be viewed via the following datasets:Excess weight in Reception children, England (three year average: academic years 2016-19)Excess weight in Year 6 children, England (three year average: academic years 2016-19)DATA SOURCESNational Child Measurement Programme: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. MSOA boundaries: © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021.COPYRIGHT NOTICEBased on data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.; © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021. Data analysed and published by Ribble Rivers Trust © 2021.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  13. b

    Percentage Obese in reception year - WMCA

    • cityobservatory.birmingham.gov.uk
    csv, excel, geojson +1
    Updated Mar 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Percentage Obese in reception year - WMCA [Dataset]. https://cityobservatory.birmingham.gov.uk/explore/dataset/percentage-obese-in-reception-year-wmca/
    Explore at:
    geojson, json, excel, csvAvailable download formats
    Dataset updated
    Mar 3, 2025
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    This is the percentage of reception year children who are living with obesity and includes children who are living with severe obesity.

    The BMI classification of each child is derived by calculating the child's BMI centile and assigning the BMI classification. Obese is defined as a BMI centile greater than or equal to the 95th centile. Severely obese is defined as a BMI centile greater than or equal to 99.6 (This BMI classification is a subset of the "Obese" classification).

    The results are derived from the postcode of the school. Measurement of children's heights and weights, without shoes and coats and in normal, light, indoor clothing, was overseen by healthcare professionals and undertaken in school by trained staff. Measurements could be taken at any time during the academic year. Some children could be over one year older than others in the same school year at the point of measurement. This does not impact upon a child's BMI classification since BMI centile results are adjusted for age.

    The National Child Measurement Programme (NCMP) collects height and weight measurements of children in reception (aged 4-5 years) and year 6 (aged 10-11 years) primarily in mainstream state-maintained schools in England. Local authorities are mandated to collect data from mainstream state-maintained schools but collection of data from special schools (schools for pupils with special educational needs and pupil referral units) and independent schools is encouraged.

    Data is Powered by LG Inform Plus and automatically checked for new data on the 3rd of each month.

  14. d

    Health Survey for England

    • digital.nhs.uk
    pdf, xlsx
    Updated Dec 13, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Health Survey for England [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/health-survey-for-england
    Explore at:
    pdf(2.1 MB), xlsx(311.9 kB), pdf(228.6 kB), xlsx(185.8 kB), pdf(615.8 kB), xlsx(221.0 kB), pdf(514.8 kB), xlsx(261.8 kB), xlsx(337.1 kB), pdf(418.0 kB), pdf(416.3 kB), pdf(498.4 kB), pdf(384.7 kB), pdf(497.0 kB), pdf(660.7 kB), xlsx(131.7 kB), xlsx(176.2 kB), xlsx(130.2 kB), pdf(495.8 kB), xlsx(249.8 kB), pdf(589.7 kB), pdf(678.4 kB), pdf(4.2 MB), xlsx(607.0 kB), pdf(645.4 kB)Available download formats
    Dataset updated
    Dec 13, 2017
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Jan 1, 2016 - Dec 31, 2016
    Area covered
    England
    Description

    The Health Survey for England series was designed to monitor trends in the nation's health; estimating the proportion of people in England who have specified health conditions, and the prevalence of risk factors and behaviours associated with these conditions. The surveys provide regular information that cannot be obtained from other sources. The surveys have been carried out since 1994 by the Joint Health Surveys Unit of NatCen Social Research and the Research Department of Epidemiology and Public Health at UCL. Each survey in the series includes core questions, e.g. about alcohol and smoking, and measurements (such as blood pressure, height and weight, and analysis of blood and saliva samples), and modules of questions on topics that vary from year to year. The trend tables show data for available years between 1993 and 2016 for adults (defined as age 16 and over) and for children. The survey samples cover the population living in private households in England. In 2016 the sample contained 8,011 adults and 2,056 children and 5,049 adults and 1,117 children had a nurse visit. We would very much like your feedback about whether some proposed changes to the publications would be helpful and if the publications meet your needs. This will help us shape the design of future publications to ensure they remain informative and useful. Please answer our reader feedback survey on Citizen Space which is open until 18 June 2018.

  15. b

    Reception prevalence of obesity (including severe obesity), 3 years data...

    • cityobservatory.birmingham.gov.uk
    csv, excel, geojson +1
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Reception prevalence of obesity (including severe obesity), 3 years data combined - Birmingham Wards [Dataset]. https://cityobservatory.birmingham.gov.uk/explore/dataset/reception-prevalence-of-obesity-including-severe-obesity-3-years-data-combined-birmingham-wards/
    Explore at:
    geojson, json, excel, csvAvailable download formats
    Dataset updated
    Mar 3, 2025
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    Birmingham
    Description

    Proportion of children aged 4 to 5 years classified as living with obesity. For population monitoring purposes, a child’s body mass index (BMI) is classed as overweight or obese where it is on or above the 85th centile or 95th centile, respectively, based on the British 1990 (UK90) growth reference data. The population monitoring cut offs for overweight and obesity are lower than the clinical cut offs (91st and 98th centiles for overweight and obesity) used to assess individual children; this is to capture children in the population in the clinical overweight or obesity BMI categories and those who are at high risk of moving into the clinical overweight or clinical obesity categories. This helps ensure that adequate services are planned and delivered for the whole population.

    Rationale There is concern about the rise of childhood obesity and the implications of obesity persisting into adulthood. The risk of obesity in adulthood and risk of future obesity-related ill health are greater as children get older. Studies tracking child obesity into adulthood have found that the probability of children who are overweight or living with obesity becoming overweight or obese adults increases with age[1,2,3]. The health consequences of childhood obesity include: increased blood lipids, glucose intolerance, Type 2 diabetes, hypertension, increases in liver enzymes associated with fatty liver, exacerbation of conditions such as asthma and psychological problems such as social isolation, low self-esteem, teasing and bullying.

    It is important to look at the prevalence of weight status across all weight/BMI categories to understand the whole picture and the movement of the population between categories over time.

    The National Institute of Health and Clinical Excellence have produced guidelines to tackle obesity in adults and children - http://guidance.nice.org.uk/CG43.

    1 Guo SS, Chumlea WC. Tracking of body mass index in children in relation to overweight in adulthood. The American Journal of Clinical Nutrition 1999;70(suppl): 145S-8S.

    2 Serdula MK, Ivery D, Coates RJ, Freedman DS, Williamson DF, Byers T. Do obese children become obese adults? A review of the literature. Preventative Medicine 1993;22:167-77.

    3 Starc G, Strel J. Tracking excess weight and obesity from childhood to young adulthood: a 12-year prospective cohort study in Slovenia. Public Health Nutrition 2011;14:49-55.

    Definition of numerator Number of children in reception (aged 4 to 5 years) with a valid height and weight measured by the NCMP with a BMI classified as living with obesity or severe obesity (BMI on or above 95th centile of the UK90 growth reference).

    Definition of denominator Number of children in reception (aged 4 to 5 years) with a valid height and weight measured by the NCMP.

    Caveats Data for local authorities may not match that published by NHS England which are based on the local authority of the school attended by the child or based on the local authority that submitted the data. There is a strong correlation between deprivation and child obesity prevalence and users of these data may wish to examine the pattern in their local area. Users may wish to produce thematic maps and charts showing local child obesity prevalence. When presenting data in charts or maps it is important, where possible, to consider the confidence intervals (CIs) around the figures. This analysis supersedes previously published data for small area geographies and historically published data should not be compared to the latest publication. Estimated data published in this fingertips tool is not comparable with previously published data due to changes in methods over the different years of production. These methods changes include; moving from estimated numbers at ward level to actual numbers; revision of geographical boundaries (including ward boundary changes and conversion from 2001 MSOA boundaries to 2011 boundaries); disclosure control methodology changes. The most recently published data applies the same methods across all years of data. There is the potential for error in the collection, collation and interpretation of the data (bias may be introduced due to poor response rates and selective opt out of children with a high BMI for age/sex which it is not possible to control for). There is not a good measure of response bias and the degree of selective opt out, but participation rates (the proportion of eligible school children who were measured) may provide a reasonable proxy; the higher the participation rate, the less chance there is for selective opt out, though this is not a perfect method of assessment. Participation rates for each local authority are available in the https://fingertips.phe.org.uk/profile/national-child-measurement-programme/data#page/4/gid/8000022/ of this profile.

  16. Data from: Family food datasets

    • gov.uk
    Updated Oct 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Environment, Food & Rural Affairs (2024). Family food datasets [Dataset]. https://www.gov.uk/government/statistical-data-sets/family-food-datasets
    Explore at:
    Dataset updated
    Oct 17, 2024
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Environment, Food & Rural Affairs
    Description

    These family food datasets contain more detailed information than the ‘Family Food’ report and mainly provide statistics from 2001 onwards. The UK household purchases and the UK household expenditure spreadsheets include statistics from 1974 onwards. These spreadsheets are updated annually when a new edition of the ‘Family Food’ report is published.

    The ‘purchases’ spreadsheets give the average quantity of food and drink purchased per person per week for each food and drink category. The ‘nutrient intake’ spreadsheets give the average nutrient intake (eg energy, carbohydrates, protein, fat, fibre, minerals and vitamins) from food and drink per person per day. The ‘expenditure’ spreadsheets give the average amount spent in pence per person per week on each type of food and drink. Several different breakdowns are provided in addition to the UK averages including figures by region, income, household composition and characteristics of the household reference person.

    UK (updated with new FYE 2023 data)

    countries and regions (CR) (updated with FYE 2022 data)

    equivalised income decile group (EID) (updated with FYE 2022 data)

  17. b

    NI 056 - Obesity in primary school age children in Year 6

    • brightstripe.co.uk
    • data.europa.eu
    • +1more
    xls
    Updated Jan 7, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Housing, Communities and Local Government (2014). NI 056 - Obesity in primary school age children in Year 6 [Dataset]. https://www.brightstripe.co.uk/dataset/52fbd6a6-265c-48cf-8885-4c763562265e/ni-056-obesity-in-primary-school-age-children-in-year-6.html
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jan 7, 2014
    Dataset authored and provided by
    Ministry of Housing, Communities and Local Government
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    Northern Ireland
    Description

    Percentage of primary school age children in Year 6 who are obese, with height and weight recorded.

  18. d

    Data from: National Child Measurement Programme

    • digital.nhs.uk
    pdf, xls
    Updated Dec 11, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2013). National Child Measurement Programme [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/national-child-measurement-programme
    Explore at:
    pdf(1.5 MB), pdf(185.3 kB), xls(559.6 kB), pdf(108.9 kB)Available download formats
    Dataset updated
    Dec 11, 2013
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Sep 1, 2012 - Aug 31, 2013
    Area covered
    England
    Description

    This report summarises the key findings from the Government's National Child Measurement Programme (NCMP) for England, 2012-13 school year. The report provides high-level analysis of the prevalence of 'underweight', 'healthy weight', 'overweight', 'obese' and 'overweight and obese combined' children, in Reception (typically aged 4-5 years) and Year 6 (typically aged 10-11 years), measured in state schools in England in the school year 2012-13. Public Health England's Obesity Knowledge and Intelligence Team (PHE Obesity K&I), previously the National Obesity Observatory (NOO), publish a detailed annual NCMP report which contains additional specific analyses not included in the HSCIC summary report. This report is expected to be published in early 2014. The anonymised national data set will also be made available to Public Health Observatories (PHOs) to allow regional and local analysis of the data. In addition, PHE Obesity K&I include NCMP data in an online data tool that enables the user to examine patterns and trends at local authority level. This interactive data tool will be updated with the 2012/13 NCMP data in early January 2014. See 'Look up results for your area' on the right hand side to access this tool.

  19. a

    Chronic kidney disease (in adults aged 18 and over): England

    • hub.arcgis.com
    • data.catchmentbasedapproach.org
    Updated Apr 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Chronic kidney disease (in adults aged 18 and over): England [Dataset]. https://hub.arcgis.com/maps/theriverstrust::chronic-kidney-disease-in-adults-aged-18-and-over-england
    Explore at:
    Dataset updated
    Apr 7, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of chronic kidney disease in adults (aged 18+). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to chronic kidney disease in adults (aged 18+).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (aged 18+) with chronic kidney disease was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with chronic kidney disease was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with chronic kidney disease, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have chronic kidney diseaseB) the NUMBER of people within that MSOA who are estimated to have chronic kidney diseaseAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have chronic kidney disease, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from chronic kidney disease, and where those people make up a large percentage of the population, indicating there is a real issue with chronic kidney disease within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of chronic kidney disease, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of chronic kidney disease.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  20. a

    Coronary heart disease (in persons of all ages): England

    • hub.arcgis.com
    • data.catchmentbasedapproach.org
    Updated Apr 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Coronary heart disease (in persons of all ages): England [Dataset]. https://hub.arcgis.com/maps/832de0122e4b4bba9ff69cadc1bf53c4_0/about
    Explore at:
    Dataset updated
    Apr 7, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of coronary heart disease (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to coronary heart disease (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with coronary heart disease was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with coronary heart disease was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with coronary heart disease, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have coronary heart diseaseB) the NUMBER of people within that MSOA who are estimated to have coronary heart diseaseAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have coronary heart disease, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from coronary heart disease, and where those people make up a large percentage of the population, indicating there is a real issue with coronary heart disease within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of coronary heart disease, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of coronary heart disease.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2020). Statistics on Obesity, Physical Activity and Diet (replaced by Statistics on Public Health) [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/statistics-on-obesity-physical-activity-and-diet

Statistics on Obesity, Physical Activity and Diet (replaced by Statistics on Public Health)

Statistics on Obesity, Physical Activity and Diet, England, 2020

Explore at:
163 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
May 5, 2020
License

https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

Time period covered
Apr 1, 2018 - Dec 31, 2019
Description

This report presents information on obesity, physical activity and diet drawn together from a variety of sources for England. More information can be found in the source publications which contain a wider range of data and analysis. Each section provides an overview of key findings, as well as providing links to relevant documents and sources. Some of the data have been published previously by NHS Digital. A data visualisation tool (link provided within the key facts) allows users to select obesity related hospital admissions data for any Local Authority (as contained in the data tables), along with time series data from 2013/14. Regional and national comparisons are also provided. The report includes information on: Obesity related hospital admissions, including obesity related bariatric surgery. Obesity prevalence. Physical activity levels. Walking and cycling rates. Prescriptions items for the treatment of obesity. Perception of weight and weight management. Food and drink purchases and expenditure. Fruit and vegetable consumption. Key facts cover the latest year of data available: Hospital admissions: 2018/19 Adult obesity: 2018 Childhood obesity: 2018/19 Adult physical activity: 12 months to November 2019 Children and young people's physical activity: 2018/19 academic year

Search
Clear search
Close search
Google apps
Main menu