25 datasets found
  1. Tax filers and dependants with income by total income, sex and age

    • www150.statcan.gc.ca
    • open.canada.ca
    • +2more
    Updated Jun 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2024). Tax filers and dependants with income by total income, sex and age [Dataset]. http://doi.org/10.25318/1110000801-eng
    Explore at:
    Dataset updated
    Jun 27, 2024
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Individuals; Tax filers and dependants by total income, sex and age groups (final T1 Family File; T1FF).

  2. Income of individuals by age group, sex and income source, Canada, provinces...

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +1more
    Updated May 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Income of individuals by age group, sex and income source, Canada, provinces and selected census metropolitan areas [Dataset]. http://doi.org/10.25318/1110023901-eng
    Explore at:
    Dataset updated
    May 1, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Income of individuals by age group, sex and income source, Canada, provinces and selected census metropolitan areas, annual.

  3. High income tax filers in Canada

    • www150.statcan.gc.ca
    • open.canada.ca
    • +1more
    Updated Oct 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2024). High income tax filers in Canada [Dataset]. http://doi.org/10.25318/1110005501-eng
    Explore at:
    Dataset updated
    Oct 28, 2024
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    This table presents income shares, thresholds, tax shares, and total counts of individual Canadian tax filers, with a focus on high income individuals (95% income threshold, 99% threshold, etc.). Income thresholds are based on national threshold values, regardless of selected geography; for example, the number of Nova Scotians in the top 1% will be calculated as the number of taxfiling Nova Scotians whose total income exceeded the 99% national income threshold. Different definitions of income are available in the table namely market, total, and after-tax income, both with and without capital gains.

  4. N

    Income Distribution by Quintile: Mean Household Income in Hopkinsville, KY...

    • neilsberg.com
    csv, json
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Income Distribution by Quintile: Mean Household Income in Hopkinsville, KY // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/hopkinsville-ky-median-household-income/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Kentucky, Hopkinsville
    Variables measured
    Income Level, Mean Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the mean household income for each of the five quintiles in Hopkinsville, KY, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

    Key observations

    • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 9,128, while the mean income for the highest quintile (20% of households with the highest income) is 152,024. This indicates that the top earners earn 17 times compared to the lowest earners.
    • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 253,430, which is 166.70% higher compared to the highest quintile, and 2776.40% higher compared to the lowest quintile.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income Levels:

    • Lowest Quintile
    • Second Quintile
    • Third Quintile
    • Fourth Quintile
    • Highest Quintile
    • Top 5 Percent

    Variables / Data Columns

    • Income Level: This column showcases the income levels (As mentioned above).
    • Mean Household Income: Mean household income, in 2023 inflation-adjusted dollars for the specific income level.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Hopkinsville median household income. You can refer the same here

  5. U.S. median household income 2023, by education of householder

    • statista.com
    Updated Sep 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. median household income 2023, by education of householder [Dataset]. https://www.statista.com/statistics/233301/median-household-income-in-the-united-states-by-education/
    Explore at:
    Dataset updated
    Sep 17, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    U.S. citizens with a professional degree had the highest median household income in 2023, at 172,100 U.S. dollars. In comparison, those with less than a 9th grade education made significantly less money, at 35,690 U.S. dollars. Household income The median household income in the United States has fluctuated since 1990, but rose to around 70,000 U.S. dollars in 2021. Maryland had the highest median household income in the United States in 2021. Maryland’s high levels of wealth is due to several reasons, and includes the state's proximity to the nation's capital. Household income and ethnicity The median income of white non-Hispanic households in the United States had been on the rise since 1990, but declining since 2019. While income has also been on the rise, the median income of Hispanic households was much lower than those of white, non-Hispanic private households. However, the median income of Black households is even lower than Hispanic households. Income inequality is a problem without an easy solution in the United States, especially since ethnicity is a contributing factor. Systemic racism contributes to the non-White population suffering from income inequality, which causes the opportunity for growth to stagnate.

  6. N

    Income Bracket Analysis by Age Group Dataset: Age-Wise Distribution of...

    • neilsberg.com
    csv, json
    Updated Feb 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Income Bracket Analysis by Age Group Dataset: Age-Wise Distribution of Maryland Household Incomes Across 16 Income Brackets // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/maryland-median-household-income-by-age/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 25, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Maryland
    Variables measured
    Number of households with income $200,000 or more, Number of households with income less than $10,000, Number of households with income between $15,000 - $19,999, Number of households with income between $20,000 - $24,999, Number of households with income between $25,000 - $29,999, Number of households with income between $30,000 - $34,999, Number of households with income between $35,000 - $39,999, Number of households with income between $40,000 - $44,999, Number of households with income between $45,000 - $49,999, Number of households with income between $50,000 - $59,999, and 6 more
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across 16 income brackets (mentioned above) following an initial analysis and categorization. Using this dataset, you can find out the total number of households within a specific income bracket along with how many households with that income bracket for each of the 4 age cohorts (Under 25 years, 25-44 years, 45-64 years and 65 years and over). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Maryland: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..

    Key observations

    • Upon closer examination of the distribution of households among age brackets, it reveals that there are 59,136(2.53%) households where the householder is under 25 years old, 756,729(32.35%) households with a householder aged between 25 and 44 years, 911,791(38.97%) households with a householder aged between 45 and 64 years, and 611,854(26.15%) households where the householder is over 65 years old.
    • In Maryland, the age group of 45 to 64 years stands out with both the highest median income and the maximum share of households. This alignment suggests a financially stable demographic, indicating an established community with stable careers and higher incomes.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • Less than $10,000
    • $10,000 to $14,999
    • $15,000 to $19,999
    • $20,000 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $59,999
    • $60,000 to $74,999
    • $75,000 to $99,999
    • $100,000 to $124,999
    • $125,000 to $149,999
    • $150,000 to $199,999
    • $200,000 or more

    Variables / Data Columns

    • Household Income: This column showcases 16 income brackets ranging from Under $10,000 to $200,000+ ( As mentioned above).
    • Under 25 years: The count of households led by a head of household under 25 years old with income within a specified income bracket.
    • 25 to 44 years: The count of households led by a head of household 25 to 44 years old with income within a specified income bracket.
    • 45 to 64 years: The count of households led by a head of household 45 to 64 years old with income within a specified income bracket.
    • 65 years and over: The count of households led by a head of household 65 years and over old with income within a specified income bracket.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Maryland median household income by age. You can refer the same here

  7. i

    Richest Zip Codes in Missouri

    • incomebyzipcode.com
    Updated Dec 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cubit Planning, Inc. (2024). Richest Zip Codes in Missouri [Dataset]. https://www.incomebyzipcode.com/missouri
    Explore at:
    Dataset updated
    Dec 18, 2024
    Dataset authored and provided by
    Cubit Planning, Inc.
    License

    https://www.incomebyzipcode.com/terms#TERMShttps://www.incomebyzipcode.com/terms#TERMS

    Area covered
    Missouri
    Description

    A dataset listing the richest zip codes in Missouri per the most current US Census data, including information on rank and average income.

  8. s

    Income Insights Canada

    • spotzi.com
    csv
    Updated Mar 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spotzi. Location Intelligence Dashboards for Businesses. (2023). Income Insights Canada [Dataset]. https://www.spotzi.com/en/data-catalog/datasets/income-insights/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Mar 9, 2023
    Dataset authored and provided by
    Spotzi. Location Intelligence Dashboards for Businesses.
    License

    https://www.spotzi.com/en/about/terms-of-service/https://www.spotzi.com/en/about/terms-of-service/

    Time period covered
    2021
    Area covered
    Canada
    Description

    This dataset offers a granular view of disposable income trends within Canada, and is available at the Dissemination Area level - enabling marketers to zoom in on micro-level trends within Canada's diverse regions. This level of precision allows for targeted campaigns that resonate with local audiences. Some key features of this dataset include income segmentation and shelter cost insights.

  9. N

    Income Distribution by Quintile: Mean Household Income in Cheboygan County,...

    • neilsberg.com
    csv, json
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Income Distribution by Quintile: Mean Household Income in Cheboygan County, MI // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/cheboygan-county-mi-median-household-income/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Michigan, Cheboygan County
    Variables measured
    Income Level, Mean Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the mean household income for each of the five quintiles in Cheboygan County, MI, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

    Key observations

    • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 14,996, while the mean income for the highest quintile (20% of households with the highest income) is 193,369. This indicates that the top earners earn 13 times compared to the lowest earners.
    • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 337,648, which is 174.61% higher compared to the highest quintile, and 2251.59% higher compared to the lowest quintile.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income Levels:

    • Lowest Quintile
    • Second Quintile
    • Third Quintile
    • Fourth Quintile
    • Highest Quintile
    • Top 5 Percent

    Variables / Data Columns

    • Income Level: This column showcases the income levels (As mentioned above).
    • Mean Household Income: Mean household income, in 2023 inflation-adjusted dollars for the specific income level.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Cheboygan County median household income. You can refer the same here

  10. N

    Canadian County, OK households by income brackets: family, non-family, and...

    • neilsberg.com
    csv, json
    Updated Jan 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Canadian County, OK households by income brackets: family, non-family, and total, in 2022 inflation-adjusted dollars [Dataset]. https://www.neilsberg.com/research/datasets/8953dbb4-747c-11ee-949f-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jan 11, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Canadian County, Oklahoma
    Variables measured
    Income Level, All households, Family households, Non-Family households, Percent of All households, Percent of Family households, Percent of Non-Family households
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. It delineates income distributions across income brackets (mentioned above) following an initial analysis and categorization. The percentage of all, family and nonfamily households were collected by grouping data as applicable. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents a breakdown of households across various income brackets in Canadian County, OK, as reported by the U.S. Census Bureau. The Census Bureau classifies households into different categories, including total households, family households, and non-family households. Our analysis of U.S. Census Bureau American Community Survey data for Canadian County, OK reveals how household income distribution varies among these categories. The dataset highlights the variation in number of households with income, offering valuable insights into the distribution of Canadian County households based on income levels.

    Key observations

    • For Family Households: In Canadian County, the majority of family households, representing 16.38%, earn $75,000 to $99,999, showcasing a substantial share of the community families falling within this income bracket. Conversely, the minority of family households, comprising 0.94%, have incomes falling $200,000 or more, representing a smaller but still significant segment of the community.
    • For Non-Family Households: In Canadian County, the majority of non-family households, accounting for 13.11%, have income $50,000 to $59,999, indicating that a substantial portion of non-family households falls within this income bracket. On the other hand, the minority of non-family households, comprising 1.44%, earn $200,000 or more, representing a smaller, yet notable, portion of non-family households in the community.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Income Levels:

    • Less than $10,000
    • $10,000 to $14,999
    • $15,000 to $19,999
    • $20,000 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $59,999
    • $60,000 to $74,999
    • $75,000 to $99,999
    • $125,000 to $149,999
    • $150,000 to $199,999
    • $200,000 or more

    Variables / Data Columns

    • Income Level: The income level represents the income brackets ranging from Less than $10,000 to $200,000 or more in Canadian County, OK (As mentioned above).
    • All Households: Count of households for the specified income level
    • % All Households: Percentage of households at the specified income level relative to the total households in Canadian County, OK
    • Family Households: Count of family households for the specified income level
    • % Family Households: Percentage of family households at the specified income level relative to the total family households in Canadian County, OK
    • Non-Family Households: Count of non-family households for the specified income level
    • % Non-Family Households: Percentage of non-family households at the specified income level relative to the total non-family households in Canadian County, OK

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Canadian County median household income. You can refer the same here

  11. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +4more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  12. Census families by total income, family type and number of children

    • www150.statcan.gc.ca
    • datasets.ai
    • +2more
    Updated Jun 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2024). Census families by total income, family type and number of children [Dataset]. http://doi.org/10.25318/1110001301-eng
    Explore at:
    Dataset updated
    Jun 27, 2024
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Families of tax filers; Census families by total income, family type and number of children (final T1 Family File; T1FF).

  13. i

    Richest Zip Codes in West Virginia

    • incomebyzipcode.com
    Updated Dec 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cubit Planning, Inc. (2024). Richest Zip Codes in West Virginia [Dataset]. https://www.incomebyzipcode.com/westvirginia
    Explore at:
    Dataset updated
    Dec 18, 2024
    Dataset authored and provided by
    Cubit Planning, Inc.
    License

    https://www.incomebyzipcode.com/terms#TERMShttps://www.incomebyzipcode.com/terms#TERMS

    Area covered
    West Virginia
    Description

    A dataset listing the richest zip codes in West Virginia per the most current US Census data, including information on rank and average income.

  14. k

    Average Salary in Germany 2025

    • kummuni.com
    html
    Updated Apr 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KUMMUNI (2025). Average Salary in Germany 2025 [Dataset]. https://kummuni.com/whats-the-average-salary-in-germany
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Apr 30, 2025
    Dataset authored and provided by
    KUMMUNI
    License

    https://kummuni.com/terms/https://kummuni.com/terms/

    Area covered
    Germany
    Variables measured
    Minimum wage, Median salary, Average net salary, Average gross salary (with bonuses), Average gross salary (without bonuses)
    Description

    A structured overview of the average, net, median, and minimum wage in Germany for 2025. This dataset combines original market research conducted by KUMMUNI GmbH with publicly available data from the German Federal Statistical Office. It includes values with and without bonuses, hourly minimum wage, and take-home pay after tax.

  15. KGCW 2023 Challenge @ ESWC 2023

    • zenodo.org
    • investigacion.usc.gal
    application/gzip
    Updated Apr 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dylan Van Assche; Dylan Van Assche; David Chaves-Fraga; David Chaves-Fraga; Anastasia Dimou; Anastasia Dimou; Umutcan Şimşek; Umutcan Şimşek; Ana Iglesias; Ana Iglesias (2024). KGCW 2023 Challenge @ ESWC 2023 [Dataset]. http://doi.org/10.5281/zenodo.7837289
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Apr 15, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Dylan Van Assche; Dylan Van Assche; David Chaves-Fraga; David Chaves-Fraga; Anastasia Dimou; Anastasia Dimou; Umutcan Şimşek; Umutcan Şimşek; Ana Iglesias; Ana Iglesias
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Knowledge Graph Construction Workshop 2023: challenge

    Knowledge graph construction of heterogeneous data has seen a lot of uptake
    in the last decade from compliance to performance optimizations with respect
    to execution time. Besides execution time as a metric for comparing knowledge
    graph construction, other metrics e.g. CPU or memory usage are not considered.
    This challenge aims at benchmarking systems to find which RDF graph
    construction system optimizes for metrics e.g. execution time, CPU,
    memory usage, or a combination of these metrics.

    Task description

    The task is to reduce and report the execution time and computing resources
    (CPU and memory usage) for the parameters listed in this challenge, compared
    to the state-of-the-art of the existing tools and the baseline results provided
    by this challenge. This challenge is not limited to execution times to create
    the fastest pipeline, but also computing resources to achieve the most efficient
    pipeline.

    We provide a tool which can execute such pipelines end-to-end. This tool also
    collects and aggregates the metrics such as execution time, CPU and memory
    usage, necessary for this challenge as CSV files. Moreover, the information
    about the hardware used during the execution of the pipeline is available as
    well to allow fairly comparing different pipelines. Your pipeline should consist
    of Docker images which can be executed on Linux to run the tool. The tool is
    already tested with existing systems, relational databases e.g. MySQL and
    PostgreSQL, and triplestores e.g. Apache Jena Fuseki and OpenLink Virtuoso
    which can be combined in any configuration. It is strongly encouraged to use
    this tool for participating in this challenge. If you prefer to use a different
    tool or our tool imposes technical requirements you cannot solve, please contact
    us directly.

    Part 1: Knowledge Graph Construction Parameters

    These parameters are evaluated using synthetic generated data to have more
    insights of their influence on the pipeline.

    Data

    • Number of data records: scaling the data size vertically by the number of records with a fixed number of data properties (10K, 100K, 1M, 10M records).
    • Number of data properties: scaling the data size horizontally by the number of data properties with a fixed number of data records (1, 10, 20, 30 columns).
    • Number of duplicate values: scaling the number of duplicate values in the dataset (0%, 25%, 50%, 75%, 100%).
    • Number of empty values: scaling the number of empty values in the dataset (0%, 25%, 50%, 75%, 100%).
    • Number of input files: scaling the number of datasets (1, 5, 10, 15).

    Mappings

    • Number of subjects: scaling the number of subjects with a fixed number of predicates and objects (1, 10, 20, 30 TMs).
    • Number of predicates and objects: scaling the number of predicates and objects with a fixed number of subjects (1, 10, 20, 30 POMs).
    • Number of and type of joins: scaling the number of joins and type of joins (1-1, N-1, 1-N, N-M)

    Part 2: GTFS-Madrid-Bench

    The GTFS-Madrid-Bench provides insights in the pipeline with real data from the
    public transport domain in Madrid.

    Scaling

    • GTFS-1 SQL
    • GTFS-10 SQL
    • GTFS-100 SQL
    • GTFS-1000 SQL

    Heterogeneity

    • GTFS-100 XML + JSON
    • GTFS-100 CSV + XML
    • GTFS-100 CSV + JSON
    • GTFS-100 SQL + XML + JSON + CSV

    Example pipeline

    The ground truth dataset and baseline results are generated in different steps
    for each parameter:

    1. The provided CSV files and SQL schema are loaded into a MySQL relational database.
    2. Mappings are executed by accessing the MySQL relational database to construct a knowledge graph in N-Triples as RDF format.
    3. The constructed knowledge graph is loaded into a Virtuoso triplestore, tuned according to the Virtuoso documentation.
    4. The provided SPARQL queries are executed on the SPARQL endpoint exposed by Virtuoso.

    The pipeline is executed 5 times from which the median execution time of each
    step is calculated and reported. Each step with the median execution time is
    then reported in the baseline results with all its measured metrics.
    Query timeout is set to 1 hour and knowledge graph construction timeout
    to 24 hours. The execution is performed with the following tool: https://github.com/kg-construct/challenge-tool,
    you can adapt the execution plans for this example pipeline to your own needs.

    Each parameter has its own directory in the ground truth dataset with the
    following files:

    • Input dataset as CSV.
    • Mapping file as RML.
    • Queries as SPARQL.
    • Execution plan for the pipeline in metadata.json.

    Datasets

    Knowledge Graph Construction Parameters

    The dataset consists of:

    • Input dataset as CSV for each parameter.
    • Mapping file as RML for each parameter.
    • SPARQL queries to retrieve the results for each parameter.
    • Baseline results for each parameter with the example pipeline.
    • Ground truth dataset for each parameter generated with the example pipeline.

    Format

    All input datasets are provided as CSV, depending on the parameter that is being
    evaluated, the number of rows and columns may differ. The first row is always
    the header of the CSV.

    GTFS-Madrid-Bench

    The dataset consists of:

    • Input dataset as CSV with SQL schema for the scaling and a combination of XML,
    • CSV, and JSON is provided for the heterogeneity.
    • Mapping file as RML for both scaling and heterogeneity.
    • SPARQL queries to retrieve the results.
    • Baseline results with the example pipeline.
    • Ground truth dataset generated with the example pipeline.

    Format

    CSV datasets always have a header as their first row.
    JSON and XML datasets have their own schema.

    Evaluation criteria

    Submissions must evaluate the following metrics:

    • Execution time of all the steps in the pipeline. The execution time of a step is the difference between the begin and end time of a step.
    • CPU time as the time spent in the CPU for all steps of the pipeline. The CPU time of a step is the difference between the begin and end CPU time of a step.
    • Minimal and maximal memory consumption for each step of the pipeline. The minimal and maximal memory consumption of a step is the minimum and maximum calculated of the memory consumption during the execution of a step.

    Expected output

    Duplicate values

    ScaleNumber of Triples
    0 percent2000000 triples
    25 percent1500020 triples
    50 percent1000020 triples
    75 percent500020 triples
    100 percent20 triples

    Empty values

    ScaleNumber of Triples
    0 percent2000000 triples
    25 percent1500000 triples
    50 percent1000000 triples
    75 percent500000 triples
    100 percent0 triples

    Mappings

    ScaleNumber of Triples
    1TM + 15POM1500000 triples
    3TM + 5POM1500000 triples
    5TM + 3POM 1500000 triples
    15TM + 1POM1500000 triples

    Properties

    ScaleNumber of Triples
    1M rows 1 column1000000 triples
    1M rows 10 columns10000000 triples
    1M rows 20 columns20000000 triples
    1M rows 30 columns30000000 triples

    Records

    ScaleNumber of Triples
    10K rows 20 columns200000 triples
    100K rows 20 columns2000000 triples
    1M rows 20 columns20000000 triples
    10M rows 20 columns200000000 triples

    Joins

    1-1 joins

    ScaleNumber of Triples
    0 percent0 triples
    25 percent125000 triples
    50 percent250000 triples
    75 percent375000 triples
    100 percent500000 triples

    1-N joins

    ScaleNumber of Triples
    1-10 0 percent0 triples
    1-10 25 percent125000 triples
    1-10 50 percent250000 triples
    1-10 75 percent375000

  16. i

    Richest Zip Codes in Rhode Island

    • incomebyzipcode.com
    Updated Dec 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cubit Planning, Inc. (2024). Richest Zip Codes in Rhode Island [Dataset]. https://www.incomebyzipcode.com/rhodeisland
    Explore at:
    Dataset updated
    Dec 18, 2024
    Dataset authored and provided by
    Cubit Planning, Inc.
    License

    https://www.incomebyzipcode.com/terms#TERMShttps://www.incomebyzipcode.com/terms#TERMS

    Area covered
    Rhode Island
    Description

    A dataset listing the richest zip codes in Rhode Island per the most current US Census data, including information on rank and average income.

  17. Cost of living index in the U.S. 2024, by state

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Cost of living index in the U.S. 2024, by state [Dataset]. https://www.statista.com/statistics/1240947/cost-of-living-index-usa-by-state/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    United States
    Description

    West Virginia and Kansas had the lowest cost of living across all U.S. states, with composite costs being half of those found in Hawaii. This was according to a composite index that compares prices for various goods and services on a state-by-state basis. In West Virginia, the cost of living index amounted to **** — well below the national benchmark of 100. Virginia— which had an index value of ***** — was only slightly above that benchmark. Expensive places to live included Hawaii, Massachusetts, and California. Housing costs in the U.S. Housing is usually the highest expense in a household’s budget. In 2023, the average house sold for approximately ******* U.S. dollars, but house prices in the Northeast and West regions were significantly higher. Conversely, the South had some of the least expensive housing. In West Virginia, Mississippi, and Louisiana, the median price of the typical single-family home was less than ******* U.S. dollars. That makes living expenses in these states significantly lower than in states such as Hawaii and California, where housing is much pricier. What other expenses affect the cost of living? Utility costs such as electricity, natural gas, water, and internet also influence the cost of living. In Alaska, Hawaii, and Connecticut, the average monthly utility cost exceeded *** U.S. dollars. That was because of the significantly higher prices for electricity and natural gas in these states.

  18. N

    Little Falls, NY households by income brackets: family, non-family, and...

    • neilsberg.com
    csv, json
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Little Falls, NY households by income brackets: family, non-family, and total, in 2023 inflation-adjusted dollars [Dataset]. https://www.neilsberg.com/insights/little-falls-ny-median-household-income/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Little Falls, New York
    Variables measured
    Income Level, All households, Family households, Non-Family households, Percent of All households, Percent of Family households, Percent of Non-Family households
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across income brackets (mentioned above) following an initial analysis and categorization. The percentage of all, family and nonfamily households were collected by grouping data as applicable. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents a breakdown of households across various income brackets in Little Falls, NY, as reported by the U.S. Census Bureau. The Census Bureau classifies households into different categories, including total households, family households, and non-family households. Our analysis of U.S. Census Bureau American Community Survey data for Little Falls, NY reveals how household income distribution varies among these categories. The dataset highlights the variation in number of households with income, offering valuable insights into the distribution of Little Falls households based on income levels.

    Key observations

    • For Family Households: In Little Falls, the majority of family households, representing 18.7%, earn $75,000 to $99,999, showcasing a substantial share of the community families falling within this income bracket. Conversely, the minority of family households, comprising 0.0%, have incomes falling $100,000 to $124,999, representing a smaller but still significant segment of the community.
    • For Non-Family Households: In Little Falls, the majority of non-family households, accounting for 14.5%, have income $50,000 to $59,999, indicating that a substantial portion of non-family households falls within this income bracket. On the other hand, the minority of non-family households, comprising 0.47%, earn $100,000 to $124,999, representing a smaller, yet notable, portion of non-family households in the community.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income Levels:

    • Less than $10,000
    • $10,000 to $14,999
    • $15,000 to $19,999
    • $20,000 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $59,999
    • $60,000 to $74,999
    • $75,000 to $99,999
    • $125,000 to $149,999
    • $150,000 to $199,999
    • $200,000 or more

    Variables / Data Columns

    • Income Level: The income level represents the income brackets ranging from Less than $10,000 to $200,000 or more in Little Falls, NY (As mentioned above).
    • All Households: Count of households for the specified income level
    • % All Households: Percentage of households at the specified income level relative to the total households in Little Falls, NY
    • Family Households: Count of family households for the specified income level
    • % Family Households: Percentage of family households at the specified income level relative to the total family households in Little Falls, NY
    • Non-Family Households: Count of non-family households for the specified income level
    • % Non-Family Households: Percentage of non-family households at the specified income level relative to the total non-family households in Little Falls, NY

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Little Falls median household income. You can refer the same here

  19. Population by country of birth and nationality (Discontinued after June...

    • ons.gov.uk
    • cy.ons.gov.uk
    xls
    Updated Sep 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2021). Population by country of birth and nationality (Discontinued after June 2021) [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/internationalmigration/datasets/populationoftheunitedkingdombycountryofbirthandnationality
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Sep 25, 2021
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    UK residents by broad country of birth and citizenship groups, broken down by UK country, local authority, unitary authority, metropolitan and London boroughs, and counties. Estimates from the Annual Population Survey.

  20. N

    Municipal Property Tax Rates

    • data.novascotia.ca
    • open.canada.ca
    • +1more
    application/rdfxml +5
    Updated Mar 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Municipal Property Tax Rates [Dataset]. https://data.novascotia.ca/Municipalities/Municipal-Property-Tax-Rates/ure8-3w7m
    Explore at:
    csv, application/rdfxml, xml, application/rssxml, tsv, jsonAvailable download formats
    Dataset updated
    Mar 5, 2025
    License

    http://novascotia.ca/opendata/licence.asphttp://novascotia.ca/opendata/licence.asp

    Description

    Municipal property taxes are set by the council of each municipality and help fund a variety of municipal services and programs provided by the municipality. There are two different types of tax rates: residential and commercial. All tax rates are applied per $100 of taxable property assessment value. Municipal tax revenue is calculated by multiplying the property assessment value by the applicable tax rate per $100 of assessment value.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Government of Canada, Statistics Canada (2024). Tax filers and dependants with income by total income, sex and age [Dataset]. http://doi.org/10.25318/1110000801-eng
Organization logo

Tax filers and dependants with income by total income, sex and age

1110000801

Explore at:
Dataset updated
Jun 27, 2024
Dataset provided by
Statistics Canadahttps://statcan.gc.ca/en
Area covered
Canada
Description

Individuals; Tax filers and dependants by total income, sex and age groups (final T1 Family File; T1FF).

Search
Clear search
Close search
Google apps
Main menu