100+ datasets found
  1. 🎓 Elite College Admissions

    • kaggle.com
    Updated Jul 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    mexwell (2024). 🎓 Elite College Admissions [Dataset]. https://www.kaggle.com/datasets/mexwell/elite-college-admissions
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 31, 2024
    Dataset provided by
    Kaggle
    Authors
    mexwell
    Description

    We know that students at elite universities tend to be from high-income families, and that graduates are more likely to end up in high-status or high-income jobs. But very little public data has been available on university admissions practices. This dataset, collected by Opportunity Insights, gives extensive detail on college application and admission rates for 139 colleges and universities across the United States, including data on the incomes of students. How do admissions practices vary by institution, and are wealthy students overrepresented?

    Motivation

    Education equality is one of the most contested topics in society today. It can be defined and explored in many ways, from accessible education to disabled/low-income/rural students to the cross-generational influence of doctorate degrees and tenure track positions. One aspect of equality is the institutions students attend. Consider the “Ivy Plus” universities, which are all eight Ivy League schools plus MIT, Stanford, Duke, and Chicago. Although less than half of one percent of Americans attend Ivy-Plus colleges, they account for more than 10% of Fortune 500 CEOs, a quarter of U.S. Senators, half of all Rhodes scholars, and three-fourths of Supreme Court justices appointed in the last half-century.

    A 2023 study (Chetty et al, 2023) tried to understand how these elite institutions affect educational equality:

    Do highly selective private colleges amplify the persistence of privilege across generations by taking students from high-income families and helping them obtain high-status, high-paying leadership positions? Conversely, to what extent could such colleges diversify the socioeconomic backgrounds of society’s leaders by changing their admissions policies?

    To answer these questions, they assembled a dataset documenting the admission and attendance rate for 13 different income bins for 139 selective universities around the country. They were able to access and link not only student SAT/ACT scores and high school grades, but also parents’ income through their tax records, students’ post-college graduate school enrollment or employment (including earnings, employers, and occupations), and also for some selected colleges, their internal admission ratings for each student. This dataset covers students in the entering classes of 2010–2015, or roughly 2.4 million domestic students.

    They found that children from families in the top 1% (by income) are more than twice as likely to attend an Ivy-Plus college as those from middle-class families with comparable SAT/ACT scores, and two-thirds of this gap can be attributed to higher admission rates with similar scores, with the remaining third due to the differences in rates of application and matriculation (enrollment conditional on admission). This is not a shocking conclusion, but we can further explore elite college admissions by socioeconomic status to understand the differences between elite private colleges and public flagships admission practices, and to reflect on the privilege we have here and to envision what a fairer higher education system could look like.

    Data

    The data has been aggregated by university and by parental income level, grouped into 13 income brackets. The income brackets are grouped by percentile relative to the US national income distribution, so for instance the 75.0 bin represents parents whose incomes are between the 70th and 80th percentile. The top two bins overlap: the 99.4 bin represents parents between the 99 and 99.9th percentiles, while the 99.5 bin represents parents in the top 1%.

    Each row represents students’ admission and matriculation outcomes from one income bracket at a given university. There are 139 colleges covered in this dataset.

    The variables include an array of different college-level-income-binned estimates for things including attendance rate (both raw and reweighted by SAT/ACT scores), application rate, and relative attendance rate conditional on application, also with respect to specific test score bands for each college and in/out-of state. Colleges are categorized into six tiers: Ivy Plus, other elite schools (public and private), highly selective public/private, and selective public/private, with selectivity generally in descending order. It also notes whether a college is public and/or flagship, where “flagship” means public flagship universities. Furthermore, they also report the relative application rate for each income bin within specific test bands, which are 50-point bands that had the most attendees in each school tier/category.

    Several values are reported in “test-score-reweighted” form. These values control for SAT score: they are calculated separately for each SAT score value, then averaged with weights based on the distribution of SAT scores at the institution.

    Note that since private schools typically don’t differentiate between in-...

  2. College enrollment in public and private institutions in the U.S. 1965-2031

    • statista.com
    Updated Mar 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). College enrollment in public and private institutions in the U.S. 1965-2031 [Dataset]. https://www.statista.com/statistics/183995/us-college-enrollment-and-projections-in-public-and-private-institutions/
    Explore at:
    Dataset updated
    Mar 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    There were approximately 18.58 million college students in the U.S. in 2022, with around 13.49 million enrolled in public colleges and a further 5.09 million students enrolled in private colleges. The figures are projected to remain relatively constant over the next few years.

    What is the most expensive college in the U.S.? The overall number of higher education institutions in the U.S. totals around 4,000, and California is the state with the most. One important factor that students – and their parents – must consider before choosing a college is cost. With annual expenses totaling almost 78,000 U.S. dollars, Harvey Mudd College in California was the most expensive college for the 2021-2022 academic year. There are three major costs of college: tuition, room, and board. The difference in on-campus and off-campus accommodation costs is often negligible, but they can change greatly depending on the college town.

    The differences between public and private colleges Public colleges, also called state colleges, are mostly funded by state governments. Private colleges, on the other hand, are not funded by the government but by private donors and endowments. Typically, private institutions are  much more expensive. Public colleges tend to offer different tuition fees for students based on whether they live in-state or out-of-state, while private colleges have the same tuition cost for every student.

  3. US Highschool students dataset

    • kaggle.com
    zip
    Updated Apr 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    peter mushemi (2024). US Highschool students dataset [Dataset]. https://www.kaggle.com/datasets/petermushemi/us-highschool-students-dataset
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Apr 14, 2024
    Authors
    peter mushemi
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    The dataset is related to student data, from an educational research study focusing on student demographics, academic performance, and related factors. Here’s a general description of what each column likely represents:

    Sex: The gender of the student (e.g., Male, Female). Age: The age of the student. Name: The name of the student. State: The state where the student resides or where the educational institution is located. Address: Indicates whether the student lives in an urban or rural area. Famsize: Family size category (e.g., LE3 for families with less than or equal to 3 members, GT3 for more than 3). Pstatus: Parental cohabitation status (e.g., 'T' for living together, 'A' for living apart). Medu: Mother's education level (e.g., Graduate, College). Fedu: Father's education level (similar categories to Medu). Mjob: Mother's job type. Fjob: Father's job type. Guardian: The primary guardian of the student. Math_Score: Score obtained by the student in Mathematics. Reading_Score: Score obtained by the student in Reading. Writing_Score: Score obtained by the student in Writing. Attendance_Rate: The percentage rate of the student’s attendance. Suspensions: Number of times the student has been suspended. Expulsions: Number of times the student has been expelled. Teacher_Support: Level of support the student receives from teachers (e.g., Low, Medium, High). Counseling: Indicates whether the student receives counseling services (Yes or No). Social_Worker_Visits: Number of times a social worker has visited the student. Parental_Involvement: The level of parental involvement in the student's academic life (e.g., Low, Medium, High). GPA: The student’s Grade Point Average, a standard measure of academic achievement in schools.

    This dataset provides a comprehensive look at various factors that might influence a student's educational outcomes, including demographic factors, academic performance metrics, and support structures both at home and within the educational system. It can be used for statistical analysis to understand and improve student success rates, or for targeted interventions based on specific identified needs.

  4. o

    University SET data, with faculty and courses characteristics

    • openicpsr.org
    Updated Sep 12, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Under blind review in refereed journal (2021). University SET data, with faculty and courses characteristics [Dataset]. http://doi.org/10.3886/E149801V1
    Explore at:
    Dataset updated
    Sep 12, 2021
    Authors
    Under blind review in refereed journal
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This paper explores a unique dataset of all the SET ratings provided by students of one university in Poland at the end of the winter semester of the 2020/2021 academic year. The SET questionnaire used by this university is presented in Appendix 1. The dataset is unique for several reasons. It covers all SET surveys filled by students in all fields and levels of study offered by the university. In the period analysed, the university was entirely in the online regime amid the Covid-19 pandemic. While the expected learning outcomes formally have not been changed, the online mode of study could have affected the grading policy and could have implications for some of the studied SET biases. This Covid-19 effect is captured by econometric models and discussed in the paper. The average SET scores were matched with the characteristics of the teacher for degree, seniority, gender, and SET scores in the past six semesters; the course characteristics for time of day, day of the week, course type, course breadth, class duration, and class size; the attributes of the SET survey responses as the percentage of students providing SET feedback; and the grades of the course for the mean, standard deviation, and percentage failed. Data on course grades are also available for the previous six semesters. This rich dataset allows many of the biases reported in the literature to be tested for and new hypotheses to be formulated, as presented in the introduction section. The unit of observation or the single row in the data set is identified by three parameters: teacher unique id (j), course unique id (k) and the question number in the SET questionnaire (n ϵ {1, 2, 3, 4, 5, 6, 7, 8, 9} ). It means that for each pair (j,k), we have nine rows, one for each SET survey question, or sometimes less when students did not answer one of the SET questions at all. For example, the dependent variable SET_score_avg(j,k,n) for the triplet (j=Calculus, k=John Smith, n=2) is calculated as the average of all Likert-scale answers to question nr 2 in the SET survey distributed to all students that took the Calculus course taught by John Smith. The data set has 8,015 such observations or rows. The full list of variables or columns in the data set included in the analysis is presented in the attached filesection. Their description refers to the triplet (teacher id = j, course id = k, question number = n). When the last value of the triplet (n) is dropped, it means that the variable takes the same values for all n ϵ {1, 2, 3, 4, 5, 6, 7, 8, 9}.Two attachments:- word file with variables description- Rdata file with the data set (for R language).Appendix 1. Appendix 1. The SET questionnaire was used for this paper. Evaluation survey of the teaching staff of [university name] Please, complete the following evaluation form, which aims to assess the lecturer’s performance. Only one answer should be indicated for each question. The answers are coded in the following way: 5- I strongly agree; 4- I agree; 3- Neutral; 2- I don’t agree; 1- I strongly don’t agree. Questions 1 2 3 4 5 I learnt a lot during the course. ○ ○ ○ ○ ○ I think that the knowledge acquired during the course is very useful. ○ ○ ○ ○ ○ The professor used activities to make the class more engaging. ○ ○ ○ ○ ○ If it was possible, I would enroll for the course conducted by this lecturer again. ○ ○ ○ ○ ○ The classes started on time. ○ ○ ○ ○ ○ The lecturer always used time efficiently. ○ ○ ○ ○ ○ The lecturer delivered the class content in an understandable and efficient way. ○ ○ ○ ○ ○ The lecturer was available when we had doubts. ○ ○ ○ ○ ○ The lecturer treated all students equally regardless of their race, background and ethnicity. ○ ○

  5. s

    Data from an International Multi-Centre Study of Statistics and Mathematics...

    • eprints.soton.ac.uk
    Updated Sep 13, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Terry, Jenny; Field, Andy P.; Graf, Erich (2023). Data from an International Multi-Centre Study of Statistics and Mathematics Anxieties and Related Variables in University Students (the SMARVUS Dataset) [Dataset]. http://doi.org/10.17605/OSF.IO/MHG94
    Explore at:
    Dataset updated
    Sep 13, 2023
    Dataset provided by
    University of Southampton
    Authors
    Terry, Jenny; Field, Andy P.; Graf, Erich
    Description

    This large, international dataset contains survey responses from N = 12,570 students from 100 universities in 35 countries, collected in 21 languages. We measured anxieties (statistics, mathematics, test, trait, social interaction, performance, creativity, intolerance of uncertainty, and fear of negative evaluation), self-efficacy, persistence, and the cognitive reflection test, and collected demographics, previous mathematics grades, self-reported and official statistics grades, and statistics module details. Data reuse potential is broad, including testing links between anxieties and statistics/mathematics education factors, and examining instruments’ psychometric properties across different languages and contexts. Note that the pre-registration can be found here: https://osf.io/xs5wf

  6. N

    University Park, TX Age Cohorts Dataset: Children, Working Adults, and...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). University Park, TX Age Cohorts Dataset: Children, Working Adults, and Seniors in University Park - Population and Percentage Analysis // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/4baa2772-f122-11ef-8c1b-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    University Park, Texas
    Variables measured
    Population Over 65 Years, Population Under 18 Years, Population Between 18 and 64 Years, Percent of Total Population for Age Groups
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age cohorts. For age cohorts we divided it into three buckets Children ( Under the age of 18 years), working population ( Between 18 and 64 years) and senior population ( Over 65 years). For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the University Park population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of University Park. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.

    Key observations

    The largest age group was 18 to 64 years with a poulation of 15,573 (62.03% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age cohorts:

    • Under 18 years
    • 18 to 64 years
    • 65 years and over

    Variables / Data Columns

    • Age Group: This column displays the age cohort for the University Park population analysis. Total expected values are 3 groups ( Children, Working Population and Senior Population).
    • Population: The population for the age cohort in University Park is shown in the following column.
    • Percent of Total Population: The population as a percent of total population of the University Park is shown in the following column.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for University Park Population by Age. You can refer the same here

  7. N

    University Place, WA Age Cohorts Dataset: Children, Working Adults, and...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). University Place, WA Age Cohorts Dataset: Children, Working Adults, and Seniors in University Place - Population and Percentage Analysis // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/4baa2812-f122-11ef-8c1b-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    University Place, Washington
    Variables measured
    Population Over 65 Years, Population Under 18 Years, Population Between 18 and 64 Years, Percent of Total Population for Age Groups
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age cohorts. For age cohorts we divided it into three buckets Children ( Under the age of 18 years), working population ( Between 18 and 64 years) and senior population ( Over 65 years). For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the University Place population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of University Place. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.

    Key observations

    The largest age group was 18 to 64 years with a poulation of 20,200 (57.96% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age cohorts:

    • Under 18 years
    • 18 to 64 years
    • 65 years and over

    Variables / Data Columns

    • Age Group: This column displays the age cohort for the University Place population analysis. Total expected values are 3 groups ( Children, Working Population and Senior Population).
    • Population: The population for the age cohort in University Place is shown in the following column.
    • Percent of Total Population: The population as a percent of total population of the University Place is shown in the following column.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for University Place Population by Age. You can refer the same here

  8. d

    Number of Students in Public Colleges and Universities by College and Gender...

    • data.gov.qa
    csv, excel, json
    Updated May 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Number of Students in Public Colleges and Universities by College and Gender [Dataset]. https://www.data.gov.qa/explore/dataset/education-statistics-number-of-students-in-public-colleges-and-universities-by-college-and-gender/
    Explore at:
    csv, json, excelAvailable download formats
    Dataset updated
    May 26, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset provides information on the number of students enrolled in public colleges and universities in Qatar, categorized by college and gender. It includes various colleges such as Education, Arts and Sciences, Sharia and Islamic Studies, Engineering, Business and Economics, and Law. This dataset helps in analyzing the distribution of male and female students across different academic disciplines in public higher education institutions in Qatar.

  9. d

    Number of Students in Private Colleges and Universities by Educational...

    • data.gov.qa
    • qatar.opendatasoft.com
    csv, excel, json
    Updated May 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Number of Students in Private Colleges and Universities by Educational Institution, Nationality, and Gender [Dataset]. https://www.data.gov.qa/explore/dataset/education-statistics-number-of-students-in-private-colleges-and-universities-by-educational/
    Explore at:
    excel, csv, jsonAvailable download formats
    Dataset updated
    May 26, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset provides the number of students enrolled in private colleges and universities in Qatar, categorized by educational institution, nationality, and gender. The data includes institutions such as Education City Universities, Hamad Bin Khalifa University, and Lusail University. It allows for the analysis of student enrollment trends across different institutions, nationalities (Qatari and Non-Qatari), and genders. This dataset is useful for understanding the distribution of students in Qatar's higher education institutions, as well as the participation of male and female students within these institutions.

  10. Data from: Indian Students Abroad

    • kaggle.com
    Updated Jan 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Indian Students Abroad [Dataset]. https://www.kaggle.com/datasets/thedevastator/number-of-indian-students-studying-abroad-in-201
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 5, 2023
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    Description

    Indian Students Abroad

    Country-wise Statistics

    By Harish Kumar Garg [source]

    About this dataset

    This dataset is about the number of Indian students studying abroad in different countries and the detailed information about different nations where Indian students are present. The data has been complied from the Ministry Of External Affairs to answer a question from the Member of Parliament regarding how many students from India are studying in foreign countries and which country. This dataset includes two fields, Country Name and Number of Indians Studying Abroad as of Mar 2017, giving a unique opportunity to track student mobility across various nations around the world. With this valuable data about student mobility, we can gain insights into how educational opportunities for Indian students have increased over time as well as look at trends in international education throughout different regions. From comparison among countries with similar academic opportunities to tracking regional popularity among study destinations, this dataset provides important context for studying student migration patterns. We invite everyone to explore this data further and use it to draw meaningful conclusions!

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    How to use this dataset?

    The data has two columns – Country Name and Number of Indians studying there as of March 2017. It also includes a third column, Percentage, which gives an indication about the proportion of Indian students enrolled in each country relative to total number enrolled abroad globally.

    To get started with your exploration, you can visualize the data against various parameters like geographical region or language speaking as it may provide more clarity about motives/reasons behind student’s choice. You can also group countries on basis of research opportunities available, cost consideration etc.,to understand deeper into all aspects that motivate Indians to explore further studies outside India.

    Additionally you can use this dataset for benchmarking purpose with other regional / international peer groups or aggregate regional / global reports with aim towards making better decisions or policies aiming greater outreach & support while targeting foreign universities/colleges for educational promotion activities that highlights engaging elements aimed at attracting more potential students from India aspiring higher international education experience abroad!

    Research Ideas

    • Using this dataset, educational institutions in India can set up international exchange programs with universities in other countries to facilitate and support Indian students studying abroad.
    • Higher Education Institutions can also understand the current trend of Indian students sourcing for opportunities to study abroad and use this data to build specialized short-term courses in collaboration with universities from different countries that cater to the needs of students who are interested in moving abroad permanently or even temporarily for higher studies.

    • Policy makers could use this data to assess the current trends and develop policies that aim at incentivizing international exposure among young professionals by commissioning fellowships or scholarships with an aim of exposing them to different problem sets around the world thereby making their profile more attractive while they look for better job opportunities globally

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    Unknown License - Please check the dataset description for more information.

    Columns

    File: final_data.csv | Column name | Description | |:--------------------------|:-------------------------------------------------------------------------------------------------------------------------------| | Country | Name of the country where Indian students are studying. (String) | | No of Indian Students | Number of Indian students studying in the country. (Integer) | | Percentage | Percentage of Indian students studying in the country compared to the total number of Indian students studying abroad. (Float) |

    Acknowledgements

    If you use this dataset in your research, please credit ...

  11. a

    US Department of Education College Scorecard 2015-2016

    • livingatlas-dcdev.opendata.arcgis.com
    Updated Aug 8, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS StoryMaps (2018). US Department of Education College Scorecard 2015-2016 [Dataset]. https://livingatlas-dcdev.opendata.arcgis.com/datasets/Story::us-department-of-education-college-scorecard-2015-2016/api
    Explore at:
    Dataset updated
    Aug 8, 2018
    Dataset authored and provided by
    ArcGIS StoryMaps
    Area covered
    Description

    This dataset consists of a selection of variables extracted from the U.S. Department of Education's College Scorecard 2015/2016. For the original, raw data visit the College Scorecard webpage. This dataset includes variables about institution types, proportion of degree types awarded, student enrollments and demographics, and a number of price and revenue variables. For 2005-2006 data, see here.Note: Data is not uniformly available for all schools on all variables. Variables for which there is no data (NULL), or where data is suppressed for reasons of privacy, are indicated by 999999999.

    ATTRIBUTE DESCRIPTION EXAMPLE

    ID2 1

    UNITIDUnit ID for institution 100654

    OPEID 8-digit OPE ID for institution 100200

    OPEID6 6-digit OPE ID for institution 1002

    State FIPS

    1

    State

    AL

    Zip

    35762

    City

    Normal

    Institution Name

    Alabama A & M University

    Institution Type 1 Public 2 Private nonprofit 3 Private for-profit 1

    Institution Level 1 4-year 2 2-year 3 Less-than-2-year 1

    In Operation 1 true 0 false 1

    Main Campus 1 true 0 false 1

    Branches Count of the number of branches 1

    Popular Degree 1 Predominantly certificate-degree granting 2 Predominantly associate's-degree granting 3 Predominantly bachelor's-degree granting 4 Entirely graduate-degree granting 3

    Highest Degree 0 Non-degree-granting 1 Certificate degree 2 Associate degree 3 Bachelor's degree 4 Graduate degree 4

    PCIP01 Percentage of degrees awarded in Agriculture, Agriculture Operations, And Related Sciences. 0.0446

    PCIP03 Percentage of degrees awarded in Natural Resources And Conservation. 0.0023

    PCIP04 Percentage of degrees awarded in Architecture And Related Services. 0.0094

    PCIP05 Percentage of degrees awarded in Area, Ethnic, Cultural, Gender, And Group Studies. 0

    PCIP09 Percentage of degrees awarded in Communication, Journalism, And Related Programs. 0

    PCIP10 Percentage of degrees awarded in Communications Technologies/Technicians And Support Services. 0.0164

    PCIP11 Percentage of degrees awarded in Computer And Information Sciences And Support Services. 0.0634

    PCIP12 Percentage of degrees awarded in Personal And Culinary Services. 0

    PCIP13 Percentage of degrees awarded in Education. 0.1268

    PCIP14 Percentage of degrees awarded in Engineering. 0.1432

    PCIP15 Percentage of degrees awarded in Engineering Technologies And Engineering-Related Fields. 0.0587

    PCIP16 Percentage of degrees awarded in Foreign Languages, Literatures, And Linguistics. 0

    PCIP19 Percentage of degrees awarded in Family And Consumer Sciences/Human Sciences. 0.0188

    PCIP22 Percentage of degrees awarded in Legal Professions And Studies. 0

    PCIP23 Percentage of degrees awarded in English Language And Literature/Letters. 0.0235

    PCIP24 Percentage of degrees awarded in Liberal Arts And Sciences, General Studies And Humanities. 0.0423

    PCIP25 Percentage of degrees awarded in Library Science. 0

    PCIP26 Percentage of degrees awarded in Biological And Biomedical Sciences. 0.1009

    PCIP27 Percentage of degrees awarded in Mathematics And Statistics. 0.0094

    PCIP29 Percentage of degrees awarded in Military Technologies And Applied Sciences. 0

    PCIP30 Percentage of degrees awarded in Multi/Interdisciplinary Studies. 0

    PCIP31 Percentage of degrees awarded in Parks, Recreation, Leisure, And Fitness Studies. 0

    PCIP38 Percentage of degrees awarded in Philosophy And Religious Studies. 0

    PCIP39 Percentage of degrees awarded in Theology And Religious Vocations. 0

    PCIP40 Percentage of degrees awarded in Physical Sciences. 0.0188

    PCIP41 Percentage of degrees awarded in Science Technologies/Technicians. 0

    PCIP42 Percentage of degrees awarded in Psychology. 0.0282

    PCIP43 Percentage of degrees awarded in Homeland Security, Law Enforcement, Firefighting And Related Protective Services. 0.0282

    PCIP44 Percentage of degrees awarded in Public Administration And Social Service Professions. 0.0516

    PCIP45 Percentage of degrees awarded in Social Sciences. 0.0399

    PCIP46 Percentage of degrees awarded in Construction Trades. 0

    PCIP47 Percentage of degrees awarded in Mechanic And Repair Technologies/Technicians. 0

    PCIP48 Percentage of degrees awarded in Precision Production. 0

    PCIP49 Percentage of degrees awarded in Transportation And Materials Moving. 0

    PCIP50 Percentage of degrees awarded in Visual And Performing Arts. 0.0258

    PCIP51 Percentage of degrees awarded in Health Professions And Related Programs. 0

    PCIP52 Percentage of degrees awarded in Business, Management, Marketing, And Related Support Services. 0.1479

    PCIP54 Percentage of degrees awarded in History. 0

    Admission Rate

    0.6538

    Average RetentionRate of retention averaged between full-time and part-time students. 0.4428

    Retention, Full-Time Students

    0.5779

    Retention, Part-Time Students

    0.3077

    Completion Rate

    0.1104

    Enrollment Number of enrolled students 4505

    Male Students Percentage of the student body that is male. 0.4617

    Female Students Percentage of the student body that is female. 0.5383

    White Percentage of the student body that identifies as white. 0.034

    Black Percentage of the student body that identifies as African American. 0.9216

    Hispanic Percentage of the student body that identifies as Hispanic or Latino. 0.0058

    Asian Percentage of the student body that identifies as Asian. 0.0018

    American Indian and Alaskan Native Percentage of the student body that identifies as American Indian or Alaskan Native. 0.0022

    Native Hawaiian and Pacific Islander Percentage of the student body that identifies as Native Hawaiian or Pacific islander. 0.0018

    Two or More Races Percentage of the student body that identifies as two or more races. 0

    Non-Resident Aliens Percentage of the student body that are non-resident aliens. 0.0062

    Race Unknown Percentage of the student body for whom racial identity is unknown. 0.0266

    Percent Parents no HS Diploma Percentage of parents of students whose highest level of education is less than high school. 0.019298937

    Percent Parents HS Diploma Percentage of parents of students whose highest level of education is high school 0.369436786

    Percent Parents Post-Secondary Ed. Percentage of parents of students whose highest level of education is college or above. 0.611264277

    Title IV Students Percentage of student body identified as Title IV 743

    HCM2 Cash Monitoring Schools identified by the Department of Ed for Higher Cash Monitoring Level 2 0

    Net Price

    13435

    Cost of Attendance

    20809

    In-State Tuition and Fees

    9366

    Out-of-State Tuition and Fees

    17136

    Tuition and Fees (Program) Tuition and fees for program-year schools NULL

    Tution Revenue per Full-Time Student

    9657

    Expenditures per Full-Time Student

    7941

    Average Faculty Salary

    7017

    Percent of Students with Federal Loan

    0.8159

    Share of Students with Federal Loan

    0.896382157

    Share of Students with Pell Grant

    0.860906217

    Median Loan Principal Amount upon Entering Repayment

    14600

    Median Debt for Completed Students Median debt for student who completed a course of study 35000

    Median Debt for Incompleted Students Median debt for student who did not complete a course of study 9500

    Median Debt for Family Income $0K-$30K Median debt for students of families with less thank $30,000 income 14457

    Median Debt for Family Income $30K-$75K Median debt for students of families with $30,000-$75,000 income 15000

    Median Debt for Family Income over $75K Median debt for students of families with over $75,000 income 14250

    Median Debt Female Students

    16000

    Median Debt Male Students

    13750

    Median Debt 1st Gen. Students Median debt for first generation college student 14307.5

    Median Debt Not 1st Gen. Students Median debt for not first generation college students 14953

    Cumulative Loan Debt Greater than 90% of Students (90th Percentile)

    48750

    Cumulative Loan Debt Greater than 75% of Students (75th Percentile)

    32704

    Cumulative Loan Debt Greater than 25% of Students (25th Percentile)

    5500

    Cumulative Loan Debt Greater than 10% of Students (10th Percentile)

    3935.5

    Accrediting Agency

    Southern Association of Colleges and Schools Commission on Colleges

    Website

    www.aamu.edu/

    Price Calculator

    www2.aamu.edu/scripts/netpricecalc/npcalc.htm

    Latitude

    34.783368

    Longitude

    -86.568502

  12. g

    Statistics on the number of students enrolled by public institution under...

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics on the number of students enrolled by public institution under the supervision of the Ministry of Higher Education (excluding dual university-CPGE enrolments) [Dataset]. https://gimi9.com/dataset/eu_1e764f3de77a60a62c60b5dcc5fdbafabaf80716/
    Explore at:
    Description

    This dataset offers a set of statistics on the number of students enrolled from 2006-07 to 2022-23 per public institution under the supervision of the French Ministry of Higher Education: universities, Technology Universities, Large Institutions, COMUE, Normal Graduate Schools, Central Schools, INSA, Other Engineering Schools... Unless otherwise noted, the indicators proposed in this dataset do not take into account double CPGE registrations The number of students enrolled in parallel in IFSI (Institutes for Nursing Training) is not taken into account in the number of institutions. **** The data are taken from the Student Monitoring Information System (SISE). Registrations are observed on January 15, except for the University of New Caledonia, which has additional time to take into account the Southern calendar. Each line of this dataset provides an institution’s statistics for one academic year. This game unitely declines a set of variables on the student (sex, baccalaureate, age at the baccalaureate, national attractiveness, international attractiveness) and the training he mainly follows (cursus LMD, type of diploma, diploma, major discipline, discipline and disciplinary sector). The geographical data provided in this game relate to the seat of the institution and not the actual location of the training followed by the student. Cross-sectional and more detailed data are available in the dataset “Staff of students enrolled in public institutions under the supervision of the Ministry of Higher Education](https://data.enseignementsup-recherche.gouv.fr/explore/dataset/fr-esr-sise-effectifs-d-etudiants-inscrits-esr-public/)”. National Framework of Training and Conventions EPSCP-CPGE: impacts on measured workforce changes Two regulatory provisions impact developments from 2018-19 onwards and create statistical breaks: - The new National Training Framework (CNF), put in place for Bachelor’s degrees. The CNF significantly reduces the number of diploma titles. Some of these titles have become more precise, leading to an easier ranking by discipline: this is the case for science licences, less frequently classified in “Plurisciences”, but more in “fundamental sciences and applications” or “sciences of nature and life”. On the other hand, other titles are more general, particularly in literary disciplines (e.g. license mention Humanities) and are more frequently classified as “plurilettres, languages, humanities”. - The progressive implementation of agreements between high schools with preparatory classes for the Grandes écoles (CPGE) and the public institutions of a scientific, cultural and professional nature (EPSCP), of which universities belong, significantly increases the number of LMD license registrations from this year onwards, even if double enrolments were already possible and effective before. University enrolments include these double registrations. These two developments mainly impact the workforce detailed by discipline in L1, which hosts the vast majority of new entrants. The impact on total staff is more marginal. Developments taking into account double listings are at constant regulatory scope. — In 2015-2016 the 2014-15 data for these institutions were renewed: University of New Caledonia, ENS Cachan, ENS Rennes. For more information on this dataset, see dataset documentation.

  13. p

    Trends in White Student Percentage (2013-2023): Kids Community College...

    • publicschoolreview.com
    Updated Dec 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Public School Review (2022). Trends in White Student Percentage (2013-2023): Kids Community College Charter vs. Florida vs. Orange School District [Dataset]. https://www.publicschoolreview.com/kids-community-college-charter-profile
    Explore at:
    Dataset updated
    Dec 19, 2022
    Dataset authored and provided by
    Public School Review
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset tracks annual white student percentage from 2013 to 2023 for Kids Community College Charter vs. Florida and Orange School District

  14. p

    Trends in Asian Student Percentage (2013-2023): Kids Community College...

    • publicschoolreview.com
    Updated Dec 19, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Public School Review (2022). Trends in Asian Student Percentage (2013-2023): Kids Community College Charter vs. Florida vs. Orange School District [Dataset]. https://www.publicschoolreview.com/kids-community-college-charter-profile
    Explore at:
    Dataset updated
    Dec 19, 2022
    Dataset authored and provided by
    Public School Review
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset tracks annual asian student percentage from 2013 to 2023 for Kids Community College Charter vs. Florida and Orange School District

  15. f

    Data set.

    • plos.figshare.com
    bin
    Updated Jun 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Diane M. Quinn; Amy Canevello; Jennifer K. Crocker (2023). Data set. [Dataset]. http://doi.org/10.1371/journal.pone.0286709.s006
    Explore at:
    binAvailable download formats
    Dataset updated
    Jun 5, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Diane M. Quinn; Amy Canevello; Jennifer K. Crocker
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Rising rates of depression among adolescents raise many questions about the role of depressive symptoms in academic outcomes for college students and their roommates. In the current longitudinal study, we follow previously unacquainted roommate dyads over their first year in college (N = 245 dyads). We examine the role of depressive symptoms of incoming students and their roommates on their GPAs and class withdrawals (provided by university registrars) at the end of the Fall and Spring semesters. We test contagion between the roommates on both academic outcomes and depressive symptoms over time. Finally, we examine the moderating role of relationship closeness. Whereas students’ own initial levels of depressive symptoms predicted their own lower GPA and more course withdrawals, they did not directly predict the academic outcomes of their roommates. For roommates who form close relationships, there was evidence of contagion of both GPAs and depressive symptoms at the end of Fall and Spring semesters. Finally, a longitudinal path model showed that as depressive symptoms spread from the student to their roommate, the roommate’s GPA decreased. The current work sheds light on a common college experience with implications for the role of interventions to increase the academic and mental health of college students.

  16. SPD24 - Student Performance Data revised Features

    • kaggle.com
    Updated Aug 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DatasetEngineer (2024). SPD24 - Student Performance Data revised Features [Dataset]. http://doi.org/10.34740/kaggle/dsv/9083250
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 1, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    DatasetEngineer
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Student Performance Dataset 2024 Overview This dataset comprises detailed information about high school students in China, collected from various universities and schools. It is designed to analyze the factors influencing student performance, well-being, and engagement. The data includes a wide range of features such as demographic details, academic performance, health status, parental support, and more. The participating institutions include prominent universities such as Tsinghua University, Peking University, Fudan University, Shanghai Jiao Tong University, and Zhejiang University.

    Dataset Description Features Student ID: Unique identifier for each student. Gender: Gender of the student (Male/Female). Age: Age of the student. Grade Level: The grade level of the student (e.g., 9, 10, 11, 12). Attendance Rate: The percentage of days the student attended school. Study Hours: Average number of hours the student spends studying daily. Parental Education Level: The highest level of education attained by the student's parents. Parental Involvement: The level of parental involvement in the student's education (High, Medium, Low). Extracurricular Activities: Whether the student participates in extracurricular activities (Yes/No). Socioeconomic Status: Socioeconomic status of the student's family (High, Medium, Low). Previous Academic Performance: Previous academic performance level (High, Medium, Low). Class Participation: The level of participation in class (High, Medium, Low). Health Status: General health status of the student (Good, Average, Poor). Access to Learning Resources: Whether the student has access to necessary learning resources (Yes/No). Internet Access: Whether the student has access to the internet (Yes/No). Learning Style: Preferred learning style of the student (Visual, Auditory, Kinesthetic). Teacher-Student Relationship: Quality of the relationship between the student and teachers (Positive, Neutral, Negative). Peer Influence: Influence of peers on the student's behavior and performance (Positive, Neutral, Negative). Motivation Level: Student's level of motivation (High, Medium, Low). Hours of Sleep: Average number of hours the student sleeps per night. Diet Quality: Quality of the student's diet (Good, Average, Poor). Transportation Mode: Mode of transportation used by the student to commute to school (Bus, Car, Walk, Bike). School Type: Type of school attended by the student (Public, Private). School Location: Location of the school (Urban, Rural). Homework Completion Rate: The rate at which the student completes homework assignments. Reading Proficiency: Proficiency level in reading. Math Proficiency: Proficiency level in mathematics. Science Proficiency: Proficiency level in science. Language Proficiency: Proficiency level in language. Physical Activity Level: The level of physical activity (High, Medium, Low). Screen Time: Average daily screen time in hours. Bullying Incidents: Number of bullying incidents the student has experienced. Special Education Services: Whether the student receives special education services (Yes/No). Counseling Services: Whether the student receives counseling services (Yes/No). Learning Disabilities: Whether the student has any learning disabilities (Yes/No). Behavioral Issues: Whether the student has any behavioral issues (Yes/No). Attendance of Tutoring Sessions: Whether the student attends tutoring sessions (Yes/No). School Climate: Overall perception of the school's environment (Positive, Neutral, Negative). Parental Employment Status: Employment status of the student's parents (Employed, Unemployed). Household Size: Number of people living in the student's household. Performance Score: Overall performance score of the student (Low, Medium, High).

  17. m

    Big Data Set from RateMyProfessor.com for Professors' Teaching Evaluation

    • data.mendeley.com
    • narcis.nl
    Updated Mar 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jibo He (2020). Big Data Set from RateMyProfessor.com for Professors' Teaching Evaluation [Dataset]. http://doi.org/10.17632/fvtfjyvw7d.1
    Explore at:
    Dataset updated
    Mar 4, 2020
    Authors
    Jibo He
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is shared by Dr. Jibo HE, founder of the USEE Eye Tracking Inc. and professor of Tsinghua University. This is the dataset from RateMyProfessor.com for professors' teaching evaluation. The dataset crawled and extracted from RMP has 18 variables. This part briefly describes each variable that needs to be analyzed.  Professor name: name of the professor who is rated  School name: university where the professor is currently teaching  Department name: currently working there  Local name: university’s locally known as  State name: state which the university is located in  Year since first review: the professor's teaching age, from the first student evaluation to the time when we did the analysis in year 2019.  Star rating: the star rating of the professor's overall quality, the point 3.5-5.0 is good, 2.5-3.4 is average and 1.0-2.4 is poor according to RMP’s official standard. This star rating is the average score given to professors by all student comments;  Take again: percentage of students who want to choose this course again;  Difficulty index: The difficulty level of a course. Point 1 is easiest, and point 5 is hardest. The difficulty index is the average score given to professors by all students;  Tags: the tag students chose to describe a professor;  Post date: the date when the student posted an evaluation of a course;  Student star: each student gives a star rating to a professor;  Student-rated difficulty: every student gives difficulty index to a professor;  Attendance: whether a course is mandatory or not;  For credit: whether students chose a course for credit (yes or no);  Would take again: whether students would like to choose a course again (yes or no)  Grade: student’s final score of a course, such as A+, A, A-, B+, B, B-, C+, C, C-, D+, D, D-, F, WD, INC, Not, Audit/No. “WD” is Drop/Withdrawal. “INC” means Incomplete. “Not” is Not sure yet, and “Audit/No” is Audit/No Grade.  Comment: comments that students gave for professors.

  18. d

    The number of full-time faculty in universities and colleges

    • data.gov.tw
    csv
    Updated Jun 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Higher Education (2025). The number of full-time faculty in universities and colleges [Dataset]. https://data.gov.tw/en/datasets/26221
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 1, 2025
    Dataset authored and provided by
    Department of Higher Education
    License

    https://data.gov.tw/licensehttps://data.gov.tw/license

    Description
    1. The number of full-time faculty in various departments of colleges and universities.2. The data is the same as that on the "Teaching 1-1. Number of Full-time Faculty - Statistics by Department (Institute)" and "Teaching 1-2. Number of Full-time Faculty - Statistics by School" of the college and university affairs information open platform.
  19. Number Of Full-Time University Students Intake By Sex, Annual

    • data.gov.sg
    Updated Jul 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Singapore Department of Statistics (2025). Number Of Full-Time University Students Intake By Sex, Annual [Dataset]. https://data.gov.sg/datasets/d_1dd7e2c0ea6829dbfb452df2bcfd6e0c/view
    Explore at:
    Dataset updated
    Jul 7, 2025
    Dataset authored and provided by
    Singapore Department of Statistics
    License

    https://data.gov.sg/open-data-licencehttps://data.gov.sg/open-data-licence

    Time period covered
    Jan 2011 - Dec 2023
    Description

    Dataset from Singapore Department of Statistics. For more information, visit https://data.gov.sg/datasets/d_1dd7e2c0ea6829dbfb452df2bcfd6e0c/view

  20. d

    Number of international students graduating from universities and colleges...

    • data.gov.tw
    csv
    Updated Jul 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Overseas Compatriot Affairs Commission, R.O.C.(Taiwan) (2025). Number of international students graduating from universities and colleges by gender [Dataset]. https://data.gov.tw/en/datasets/55929
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jul 1, 2025
    Dataset authored and provided by
    Overseas Compatriot Affairs Commission, R.O.C.(Taiwan)
    License

    https://data.gov.tw/licensehttps://data.gov.tw/license

    Description

    The main content of this dataset includes the gender ratio of overseas Chinese students graduating from college in various years.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
mexwell (2024). 🎓 Elite College Admissions [Dataset]. https://www.kaggle.com/datasets/mexwell/elite-college-admissions
Organization logo

🎓 Elite College Admissions

How do admissions practices vary by institution?

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Jul 31, 2024
Dataset provided by
Kaggle
Authors
mexwell
Description

We know that students at elite universities tend to be from high-income families, and that graduates are more likely to end up in high-status or high-income jobs. But very little public data has been available on university admissions practices. This dataset, collected by Opportunity Insights, gives extensive detail on college application and admission rates for 139 colleges and universities across the United States, including data on the incomes of students. How do admissions practices vary by institution, and are wealthy students overrepresented?

Motivation

Education equality is one of the most contested topics in society today. It can be defined and explored in many ways, from accessible education to disabled/low-income/rural students to the cross-generational influence of doctorate degrees and tenure track positions. One aspect of equality is the institutions students attend. Consider the “Ivy Plus” universities, which are all eight Ivy League schools plus MIT, Stanford, Duke, and Chicago. Although less than half of one percent of Americans attend Ivy-Plus colleges, they account for more than 10% of Fortune 500 CEOs, a quarter of U.S. Senators, half of all Rhodes scholars, and three-fourths of Supreme Court justices appointed in the last half-century.

A 2023 study (Chetty et al, 2023) tried to understand how these elite institutions affect educational equality:

Do highly selective private colleges amplify the persistence of privilege across generations by taking students from high-income families and helping them obtain high-status, high-paying leadership positions? Conversely, to what extent could such colleges diversify the socioeconomic backgrounds of society’s leaders by changing their admissions policies?

To answer these questions, they assembled a dataset documenting the admission and attendance rate for 13 different income bins for 139 selective universities around the country. They were able to access and link not only student SAT/ACT scores and high school grades, but also parents’ income through their tax records, students’ post-college graduate school enrollment or employment (including earnings, employers, and occupations), and also for some selected colleges, their internal admission ratings for each student. This dataset covers students in the entering classes of 2010–2015, or roughly 2.4 million domestic students.

They found that children from families in the top 1% (by income) are more than twice as likely to attend an Ivy-Plus college as those from middle-class families with comparable SAT/ACT scores, and two-thirds of this gap can be attributed to higher admission rates with similar scores, with the remaining third due to the differences in rates of application and matriculation (enrollment conditional on admission). This is not a shocking conclusion, but we can further explore elite college admissions by socioeconomic status to understand the differences between elite private colleges and public flagships admission practices, and to reflect on the privilege we have here and to envision what a fairer higher education system could look like.

Data

The data has been aggregated by university and by parental income level, grouped into 13 income brackets. The income brackets are grouped by percentile relative to the US national income distribution, so for instance the 75.0 bin represents parents whose incomes are between the 70th and 80th percentile. The top two bins overlap: the 99.4 bin represents parents between the 99 and 99.9th percentiles, while the 99.5 bin represents parents in the top 1%.

Each row represents students’ admission and matriculation outcomes from one income bracket at a given university. There are 139 colleges covered in this dataset.

The variables include an array of different college-level-income-binned estimates for things including attendance rate (both raw and reweighted by SAT/ACT scores), application rate, and relative attendance rate conditional on application, also with respect to specific test score bands for each college and in/out-of state. Colleges are categorized into six tiers: Ivy Plus, other elite schools (public and private), highly selective public/private, and selective public/private, with selectivity generally in descending order. It also notes whether a college is public and/or flagship, where “flagship” means public flagship universities. Furthermore, they also report the relative application rate for each income bin within specific test bands, which are 50-point bands that had the most attendees in each school tier/category.

Several values are reported in “test-score-reweighted” form. These values control for SAT score: they are calculated separately for each SAT score value, then averaged with weights based on the distribution of SAT scores at the institution.

Note that since private schools typically don’t differentiate between in-...

Search
Clear search
Close search
Google apps
Main menu